Arithmetization-Oriented primitives: A need for mathematical tools.

Clémence Bouvier ^{1,2}

including joint works with Pierre Briaud^{1,2}, Anne Canteaut², Pyrros Chaidos³, Léo Perrin², Robin Salen⁴, Vesselin Velichkov^{5,6} and Danny Willems^{7,8}

¹Sorbonne Université,

²Inria Paris,

³National & Kapodistrian University of Athens, ⁴Toposware Inc., Boston, ⁵University of Edinburgh, ⁶Clearmatics, London, ⁷Nomadic Labs, Paris, ⁸Inria and LIX, CNRS

October 20th, 2022

Clémence Bouvier

A fast moving domain

A fast moving domain

A fast moving domain

Designing Arithmetization-Oriented Primitives

Arithmetization-Oriented primitives: A need for mathematical tools.

Emerging uses in symmetric cryptography

Algebraic Degree of MiMC

- Preliminaries
- Exact degree
- Integral attacks

Anemoi

- CCZ-equivalence
- New S-box: Flystel
- Comparison to previous work

Conclusions

1 Emerging uses in symmetric cryptography

2 Algebraic Degree of MiMC

- Preliminaries
- Exact degree
- Integral attacks

3 Anemoi

- CCZ-equivalence
- New S-box: Flystel
- Comparison to previous work

4 Conclusions

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- * Homomorphic Encryption (FHE)
- ★ Systems of Zero-Knowledge (ZK) proofs Example: SNARKs, STARKs, Bulletproofs

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- * Homomorphic Encryption (FHE)
- Systems of Zero-Knowledge (ZK) proofs
 Example: SNARKs, STARKs, Bulletproofs

Arithmetization-oriented primitives

 \Rightarrow What differs from the "usual" case?

Comparison with "usual" case

A new environment

"Usual" case * Field size: \mathbb{F}_{2^n} , with $n \simeq 4,8$ (AES: n = 8). * Operations: logical gates/CPU instructions

Arithmetization-friendly*Field size:
 \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$.*Operations:
large finite-field arithmetic

Emerging uses in symmetric cryptography Anemoi

Comparison with "usual" case

A new environment

"Usual" case * Field size: \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8). * Operations:

logical gates/CPU instructions

Arithmetization-friendly * Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$. * Operations: large finite-field arithmetic

 \mathbb{F}_p , with p given by Standardized Elliptic Curves.

Examples:

★ Curve BLS12-381 $\log_2 p = 381$

> p = 4002409555221667393417789825735904156556882819939007885332058136124031650490837864442687629129015664037894272559787

★ Curve BLS12-377 $\log_2 p = 377$

> p = 258664426012969094010652733694893533536393512754914660539884262666720468348340822774968888139573360124440321458177

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

 \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).

* Operations: logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

New properties

"Usual" case

 \star Operations:

 $y \leftarrow E(x)$

* Efficiency: implementation in software/hardware

Arithmetization-friendly

* Operations:

$$y == E(x)$$

* Efficiency: integration within advanced protocols

Comparison with "usual" case

A new environment

Arithmetization-friendly

* Field size:

Field size:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$

* Operations: large finite-field arithmetic

New properties

Preliminaries Exact degree Integral attacks

Algebraic Degree of MiMC

- Preliminaries
- Exact degree
- Integral attacks

3 Anemoi

- CCZ-equivalence
- New S-box: Flystel
- Comparison to previous work

4 Conclusions

Preliminaries Exact degree Integral attacks

Symmetric cryptography

We assume that a key is already shared.

- \star Stream cipher
- ★ Block cipher

Preliminaries Exact degree Integral attacks

Symmetric cryptography

We assume that a key is already shared.

- \star Stream cipher
- \star Block cipher
- ★ input: *n*-bit block x (i.e. $x \in \mathbb{F}_{2^n}$)
- \star parameter: *k*-bit key κ (i.e. $\kappa \in \mathbb{F}_{2^k}$)
- * output: *n*-bit block $y = E_{\kappa}(x)$
- \star symmetry: *E* and *E*⁻¹ use the same κ

Block cipher

Preliminaries Exact degree Integral attacks

Symmetric cryptography

We assume that a key is already shared.

- \star Stream cipher
- $\star\,$ Block cipher

- * input: *n*-bit block x (i.e. $x \in \mathbb{F}_{2^n}$)
- \star parameter: *k*-bit key κ (i.e. $\kappa \in \mathbb{F}_{2^k}$)
- * output: *n*-bit block $y = E_{\kappa}(x)$
- \star symmetry: *E* and *E*⁻¹ use the same κ

Block cipher

Random permutation

 \Rightarrow Block cipher: family of 2^k permutations of *n* bits.

Preliminaries Exact degree Integral attacks

Iterated constructions

\Rightarrow How to build a block cipher?

Performance constraints! The primitive must be fast.

Preliminaries Exact degree Integral attacks

The block cipher MiMC

- \star Minimize the number of multiplications in \mathbb{F}_{2^n} .
- \star Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - \star *n*-bit blocks (*n* odd \approx 129): $x \in \mathbb{F}_{2^n}$
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - * decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

Preliminaries Exact degree Integral attacks

The block cipher MiMC

- \star Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- ★ Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s=(2^{n+1}-1)/3$

 $R:=\lceil n\log_3 2\rceil.$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Preliminaries Exact degree Integral attacks

The block cipher MiMC

- \star Minimize the number of multiplications in $\mathbb{F}_{2^n}.$
- * Construction of MiMC₃ [Albrecht et al., Eurocrypt16]:
 - ★ *n*-bit blocks (*n* odd \approx 129): *x* ∈ \mathbb{F}_{2^n}
 - ★ *n*-bit key: $k \in \mathbb{F}_{2^n}$
 - \star decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $R:=\lceil n\log_3 2\rceil \ .$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC.

Preliminaries Exact degree Integral attacks

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{a}(f) = \max \left\{ \operatorname{hw}\left(u
ight) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0
ight\} \,,$$

Preliminaries Exact degree Integral attacks

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \dots, x_n] / ((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u, \text{ where } a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$$

This is the Algebraic Normal Form (ANF) of f.

Definition

Algebraic Degree of $f : \mathbb{F}_2^n \to \mathbb{F}_2$:

$$\deg^{\mathsf{a}}(f) = \max \left\{ \operatorname{hw}(u) : u \in \mathbb{F}_{2}^{n}, a_{u} \neq 0 \right\} ,$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^m$, then

$$\deg^a(F) = \max\{\deg^a(f_i), \ 1 \le i \le m\} \ .$$

where $F(x) = (f_1(x), ..., f_m(x)).$

Algebraic Degree of MiMC

Algebraic degree - 1st definition

Let $f : \mathbb{F}_2^n \to \mathbb{F}_2$, there is a unique multivariate polynomial in $\mathbb{F}_2[x_1, \ldots, x_n]/((x_i^2 + x_i)_{1 \le i \le n})$:

$$f(x_1,...,x_n) = \sum_{u \in \mathbb{F}_2^n} a_u x^u$$
, where $a_u \in \mathbb{F}_2, \ x^u = \prod_{i=1}^n x_i^{u_i}$

This is the **Algebraic Normal Form (ANF)** of *f*.

Example: $F : \mathbb{F}_{2^{11}} \to \mathbb{F}_{2^{11}}, x \mapsto x^3$

 $F: \mathbb{F}_2^{11} \to \mathbb{F}_2^{11}, (\mathbf{x}_0, \ldots, \mathbf{x}_{10}) \mapsto$

 $(x_{0}x_{10} + x_{0} + x_{1}x_{5} + x_{1}x_{9} + x_{2}x_{7} + x_{2}x_{9} + x_{2}x_{10} + x_{3}x_{4} + x_{3}x_{5} + x_{4}x_{8} + x_{4}x_{9} + x_{5}x_{10} + x_{6}x_{7} + x_{6}x_{10} + x_{7}x_{8} + x_{9}x_{10},$ $x_0x_1 + x_0x_6 + x_2x_5 + x_2x_8 + x_3x_6 + x_3x_9 + x_3x_{10} + x_4 + x_5x_8 + x_5x_9 + x_6x_9 + x_7x_8 + x_7x_9 + x_7 + x_{10}$ $x_0x_1 + x_0x_2 + x_0x_{10} + x_1x_5 + x_1x_6 + x_1x_6 + x_2x_7 + x_2x_4 + x_2x_7 + x_4x_5 + x_4x_8 + x_4x_{10} + x_5x_{10} + x_6x_7 + x_6x_8 + x_6x_9 + x_7x_{10} + x_8 + x_9x_{10}$ $x_0x_3 + x_0x_5 + x_0x_7 + x_1 + x_2x_5 + x_2x_6 + x_2x_8 + x_2x_1 + x_3x_6 + x_3x_8 + x_3x_9 + x_4x_5 + x_4x_5 + x_4x_5 + x_5x_8 + x_5x_9 + x_5x_9 + x_7x_9 + x_7x_9 + x_7 + x_8x_9 + x_10$ $x_0x_2 + x_0x_4 + x_1x_2 + x_1x_6 + x_1x_7 + x_2x_0 + x_2x_{10} + x_2x_5 + x_2x_6 + x_3x_7 + x_3x_0 + x_4x_5 + x_4x_7 + x_4x_0 + x_5 + x_6x_8 + x_7x_8 + x_8x_0 + x_8x_{10}$ $x_0x_5 + x_0x_7 + x_0x_8 + x_1x_9 + x_1x_3 + x_2x_6 + x_2x_7 + x_2x_{10} + x_3x_8 + x_4x_5 + x_4x_8 + x_5x_6 + x_5x_9 + x_7x_8 + x_7x_9 + x_7x_{10} + x_9$ $x_0x_3 + x_0x_6 + x_1x_4 + x_1x_7 + x_1x_8 + x_9 + x_3x_6 + x_3x_7 + x_3x_9 + x_4x_7 + x_4x_9 + x_4x_{10} + x_5x_6 + x_5x_7 + x_5 + x_5x_9 + x_7x_{10} + x_8x_{10} + x_8 + x_9x_{10}$ $x_0x_7 + x_0x_8 + x_0x_9 + x_1x_3 + x_1x_5 + x_2x_3 + x_2x_7 + x_2x_8 + x_3x_{10} + x_4x_6 + x_4x_7 + x_4x_8 + x_4x_{10} + x_5x_6 + x_5x_8 + x_5x_{10} + x_6 + x_7x_9 + x_8x_9 + x_9x_{10}$ $x_0x_4 + x_0x_8 + x_1x_6 + x_1x_8 + x_1x_9 + x_2x_3 + x_2x_4 + x_3x_7 + x_3x_8 + x_4x_9 + x_5x_6 + x_5x_9 + x_6x_7 + x_6x_{10} + x_8x_9 + x_8x_{10} + x_{10}$ $x_0x_{10} + x_1x_4 + x_1x_7 + x_2x_5 + x_2x_8 + x_2x_9 + x_3 + x_4x_7 + x_4x_8 + x_4x_{10} + x_5x_8 + x_5x_{10} + x_6x_7 + x_6x_8 + x_6 + x_7x_{10} + x_9$ $x_0x_5 + x_0x_{10} + x_1x_8 + x_1x_0 + x_1x_{10} + x_2x_4 + x_2x_6 + x_3x_4 + x_3x_8 + x_3x_9 + x_5x_7 + x_5x_9 + x_5x_9 + x_5x_9 + x_5x_9 + x_7 + x_8x_{10} + x_9x_{10} + x$

Preliminaries Exact degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i;\,b_i\in {\mathbb F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{\mathsf{a}}(\mathsf{F}) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \ \text{and} \ b_{i} \neq 0\}$$

Example:

 $\deg^{u}(x\mapsto x^{3})=3 \qquad \qquad \deg^{a}(x\mapsto x^{3})=2$

Preliminaries Exact degree Integral attacks

Algebraic degree - 2nd definition

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$. Then using the isomorphism $\mathbb{F}_2^n \simeq \mathbb{F}_{2^n}$,

there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$${\mathcal F}(x)=\sum_{i=0}^{2^n-1}b_ix^i; b_i\in {\mathbb F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$:

$$\deg^{a}(F) = \max\{\operatorname{hw}(i), \ 0 \leq i < 2^{n}, \text{ and } b_{i} \neq 0\}$$

Example:
$$\deg^u(x \mapsto x^3) = 3$$
 $\deg^a(x \mapsto x^3) = 2$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

 $\deg^a(F) \le n-1$

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Preliminaries Exact degree Integral attacks

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(\mathcal{F}) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- * <u>Round 1:</u> $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3, \quad (c_0 = 0)$$

 $3 = [11]_2$

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$
- * <u>Round 1:</u> $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * <u>Round 2:</u> $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* <u>Round 1:</u> $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$, $(c_0 = 0)$ $3 = [11]_2$ * <u>Round 2:</u> $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.
Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For r rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- \star Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Preliminaries Exact degree Integral attacks

First Plateau

Round *i* of MiMC₃: $x \mapsto (x + c_{i-1})^3$.

For *r* rounds:

- * Upper bound [Eichlseder et al., Asiacrypt20]: $\lceil r \log_2 3 \rceil$.
- $\star \text{ Aim: determine } B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r] \; .$

* Round 1: $B_{3}^{1} = 2$ $\mathcal{P}_{1}(x) = x^{3}, \quad (c_{0} = 0)$ $3 = [11]_{2}$ * Round 2: $B_{3}^{2} = 2$ $\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

Algebraic degree observed for n = 31.

Preliminaries Exact degree Integral attacks

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1} \}$$

Preliminaries Exact degree Integral attacks

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{ \exists j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1} \}$$

Example:

$$\mathcal{P}_{1}(x) = x^{3} \implies \mathcal{E}_{1} = \{3\}.$$

$$3 = [11]_{2} \xrightarrow{\succ} \begin{cases} [00]_{2} = 0 & \stackrel{\times 3}{\longrightarrow} & 0\\ [01]_{2} = 1 & \stackrel{\times 3}{\longrightarrow} & 3\\ [10]_{2} = 2 & \stackrel{\times 3}{\longrightarrow} & 6\\ [11]_{2} = 3 & \stackrel{\times 3}{\longrightarrow} & 9 \end{cases}$$

$$\mathcal{E}_{2} = \{0, 3, 6, 9\},$$

$$\mathcal{P}_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}.$$

Preliminaries Exact degree Integral attacks

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow$ No exponent $2^{2k} - 1$

$$\begin{array}{ll} \hline \text{Example:} & 63 = 2^{2 \times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\} \\ & \forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \leq 4 \end{array} \qquad \Rightarrow B_3^4 \leq 4 \end{array}$$

Preliminaries Exact degree Integral attacks

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

 $B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

Preliminaries Exact degree Integral attacks

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

And a lower bound if $3^r < 2^n - 1$:

 $B_3^r \geq \max\{wt(3^i), i \leq r\}$

Preliminaries Exact degree Integral attacks

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$

$$\star$$
 if $k_r = 0 \mod 2$,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

Example:

$$\begin{aligned} 123 &= 2^7 - 5 = 2^{k_5} - 5 &\in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 &\in \mathcal{E}_8. \end{aligned}$$

Preliminaries Exact degree Integral attacks

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$ $\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$

Example:

$$\begin{split} &123=2^7-5=2^{k_5}-5\qquad \in \mathcal{E}_5,\\ &4089=2^{12}-7=2^{k_8}-7\qquad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, ..., 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, ...\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$

 $\omega_r=2^{k_r}-7\in\mathcal{E}_r.$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Preliminaries Exact degree Integral attacks

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$ $\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$

Example:

$$\begin{split} 123 &= 2^7 - 5 = 2^{k_5} - 5 \qquad \quad \in \mathcal{E}_5, \\ 4089 &= 2^{12} - 7 = 2^{k_8} - 7 \qquad \quad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Preliminaries Exact degree Integral attacks

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor \log_2 3^r \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: $\star \text{ if } k_r = 1 \mod 2,$ $\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$ $\star \text{ if } k_r = 0 \mod 2,$ $\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$

Example:

$$\begin{split} &123=2^7-5=2^{k_5}-5\qquad \in \mathcal{E}_5,\\ &4089=2^{12}-7=2^{k_8}-7\qquad \in \mathcal{E}_8. \end{split}$$

$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Preliminaries Exact degree Integral attacks

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Preliminaries Exact degree Integral attacks

Covered rounds

Idea of the proof:

 \star inductive proof: existence of "good" ℓ

Limit: $\ell = 22$.

Is this true for any t? Should we consider more ε_j for larger t?

Preliminaries Exact degree Integral attacks

Covered rounds

Idea of the proof:

- \star inductive proof: existence of "good" ℓ
- ⋆ MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

Preliminaries Exact degree Integral attacks

Plateau

 \Rightarrow plateau when $k_r = \lfloor \log_2 3^r \rfloor = 1 \mod 2$ and $k_{r+1} = \lfloor \log_2 3^{r+1} \rfloor = 0 \mod 2$

Algebraic degree observed for n = 31.

If we have a plateau

$$B_3^r = B_3^{r+1} ,$$

$$B_3^{r+4} = B_3^{r+5}$$
 or $B_3^{r+5} = B_3^{r+6}$

.

Music in MIMC₃

→ Patterns in sequence $(k_r)_{r>0}$:

 \Rightarrow denominators of semiconvergents of log₂(3) \simeq 1.5849625

 $\mathfrak{D} = \{ 1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots \} ,$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

Music theory:

- perfect octave 2:1
- perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Integral attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Preliminaries Exact degree Integral attacks

Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

Preliminaries Exact degree Integral attacks

Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.

For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	[EGL+20]
<mark>81</mark> /82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	New
80/82	2 ¹²⁵ XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

CCZ-equivalence New S-box: Flystel Comparison to previous work

2 Algebraic Degree of MiMC

- Preliminaries
- Exact degree
- Integral attacks

Anemoi

- CCZ-equivalence
- New S-box: Flystel
- Comparison to previous work

4 Conclusions

CCZ-equivalence New S-box: Flystel Comparison to previous work

Anemoi

CCZ-equivalence New S-box: Flystel Comparison to previous work

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

CCZ-equivalence New S-box: Flystel Comparison to previous work

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

₩

\star Anemoi

Greek gods of winds

CCZ-equivalence New S-box: Flystel Comparison to previous work

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightsquigarrow *E*: low degree

$$y == E(x) \longrightarrow E$$
: low degree

CCZ-equivalence New S-box: Flystel Comparison to previous work

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightsquigarrow *E*: low degree

 \Rightarrow vulnerability to some attacks...

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x)$ $\sim E$: low degree y == E(x) $\sim E$: low degree

 \Rightarrow vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x)$ $\sim E$: low degree y == E(x) $\sim E$: low degree

 \Rightarrow vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Differential and Linear properties

Let $F : \mathbb{F}_q^m \to \mathbb{F}_q^m$

* Differential uniformity: maximum value of the DDT (Difference Distribution Table)

$$\delta_F = \max_{a \neq 0, b} |\{x \in F_q^m, F(x+a) - F(x) = b\}|$$

* Linearity: maximum value of the LAT (Linear Approximation Table)

$$\mathcal{W}_{F} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_{2}^{m}} (-1)^{a \cdot x + b \cdot F(x)} \right|$$
$$\mathcal{W}_{F} = \max_{a,b\neq 0} \left| \sum_{x \in \mathbb{F}_{p}^{m}} exp\left(\frac{2\pi i (\langle a, x \rangle - \langle b, F(x) \rangle)}{p} \right) \right|$$

CCZ-equivalence New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

CCZ-equivalence New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q o \mathbb{F}_q$ and $G: \mathbb{F}_q o \mathbb{F}_q$ are CCZ-equivalent if

 $\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

 \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.

CCZ-equivalence New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star **F** and **G** have the same differential properties: $\delta_F = \delta_G$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

CCZ-equivalence New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

 $\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_F = \delta_G$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$
CCZ-equivalence New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F : \mathbb{F}_q \to \mathbb{F}_q$ and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

 $\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

C**CZ-equivalence** New S-box: Flystel Comparison to previous work

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

- \star F and G have the same differential properties: $\delta_{F}~=~\delta_{G}$.
- \star F and G have the same linear properties: $\mathcal{W}_{F}~=~\mathcal{W}_{G}$.
- * <u>Verification</u> is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

CCZ-equivalence New S-box: Flystel Comparison to previous work

The Flystel

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \texttt{Flystel}$

A 3-round Feistel-network with

 $Q:\mathbb{F}_q o \mathbb{F}_q$ and $Q':\mathbb{F}_q o \mathbb{F}_q$ two quadratic functions, and $E:\mathbb{F}_q o \mathbb{F}_q$ a permutation

Open Flystel $\mathcal H.$

Closed Flystel V.

30 / 41

Anemoi

The Flystel

 \mathcal{H} and \mathcal{V} are CCZ-equivalent $\Gamma_{\mathcal{H}} = \left\{ \left((x, y), \ \mathcal{H}((x, y)) \right) \mid (x, y) \in \mathbb{F}_{q}^{2} \right\}$ $= \mathcal{A}\left(\left\{\left((\mathbf{v}, \mathbf{y}), \mathcal{V}((\mathbf{v}, \mathbf{y})) \right) \mid (\mathbf{v}, \mathbf{y}) \in \mathbb{F}_{a}^{2} \right\}\right) = \mathcal{A}(\Gamma_{\mathcal{V}})$

High-degree permutation

Open Flystel H.

Closed Flystel \mathcal{V} .

function

Anemoi

Advantage of CCZ-equivalence

★ High Degree Evaluation.

Closed Flystel V.

Emerging uses in symmetric cryptography Algebraic Degree of MiMC <u>Anemon</u> Conclusions

CCZ-equivalence New S-box: Flystel Comparison to previous work

Advantage of CCZ-equivalence

- $\star\,$ High Degree Evaluation.
- $\star\,$ Low Cost Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$

 $\textit{Open Flystel } \mathcal{H}.$

Closed Flystel V.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Flystel in \mathbb{F}_{2^n}

$$\mathcal{H}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto & \left(x + \beta y^3 + \gamma + \beta \left(y + (x + \beta y^3 + \gamma)^{1/3}\right)^3 + \delta \right., \\ & y + (x + \beta y^3 - \gamma)^{1/3} \\ \end{array} \right). \qquad \mathcal{V}: \begin{cases} \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \to \mathbb{F}_{2^n} \times \mathbb{F}_{2^n} \\ (x,y) \mapsto \left((y + v)^3 + \beta y^3 + \gamma \right., \\ & (y + v)^3 + \beta v^3 + \delta \\ \end{array} \right), \end{cases}$$

Open Flystel₂.

Closed Flystel₂.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Properties of Flystel in \mathbb{F}_{2^n}

Degenerated Butterfly.

First introduced by [Perrin et al. 2016].

Well-studied butterfly.

Theorems in [Li et al. 2018] state that if $\beta \neq 0$:

★ Differential properties

* Flystel₂:
$$\delta_{\mathcal{H}} = \delta_{\mathcal{V}} = 4$$

- ★ Linear properties
 - * Flystel₂: $\mathcal{W}_{\mathcal{H}} = \mathcal{W}_{\mathcal{V}} = 2^{2n-1} 2^n$
- ⋆ Algebraic degree
 - * Open Flystel₂: $\deg_{\mathcal{H}} = n$
 - * Closed Flystel₂: $deg_{\mathcal{V}} = 2$

Anemoi

Flystel in \mathbb{F}_p

$$\mathcal{H}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (x,y) & \mapsto \left(x - \beta y^{2} - \gamma + \beta \left(y - (x - \beta y^{2} - \gamma)^{1/\alpha}\right)^{2} + \delta \right), \\ y - (x - \beta y^{2} - \gamma)^{1/\alpha} \end{cases}, \quad \mathcal{V}: \begin{cases} \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} & \to \mathbb{F}_{\rho} \times \mathbb{F}_{\rho} \\ (y,v) & \mapsto \left((y - v)^{\alpha} + \beta y^{2} + \gamma \right), \\ (v - y)^{\alpha} + \beta v^{2} + \delta \end{pmatrix}. \end{cases}$$

V

 \downarrow

и

CCZ-equivalence New S-box: Flystel Comparison to previous work

Flystel in \mathbb{F}_p

Example Curve BLS12-381:

 $p = 4002409555221667393417789825735904156556882819939007885332 \\058136124031650490837864442687629129015664037894272559787$

$$\alpha = 5$$

 $\alpha^{-1} = 3201927644177333914734231860588723325245506255951206308265 \\ 646508899225320392670291554150103303212531230315418047829$

CCZ-equivalence New S-box: Flystel Comparison to previous work

Properties of the Flystel in \mathbb{F}_p

* Differential properties Flystel_p has a differential uniformity equals to $\alpha - 1$.

DDT of Flystel_p.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Properties of Flystel in \mathbb{F}_p

★ Linear properties

 $\mathcal{W} \leq p \log p$?

Conjecture for the linearity.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Properties of Flystel in \mathbb{F}_p

★ Linear properties

$$\mathcal{N} \leq p \log p$$
 ?

(a) when p = 11 and $\alpha = 3$.

(c) when p = 17 and $\alpha = 3$.

LAT of Flystel_p.

CCZ-equivalence New S-box: Flystel Comparison to previous work

The SPN Structure

(SPN: Substitution-Permutation Network)

Let

$$X = \left(\begin{array}{ccc} x_0 & x_1 & \dots & x_{\ell-1} \end{array}
ight)$$
 and $Y = \left(\begin{array}{ccc} y_0 & y_1 & \dots & y_{\ell-1} \end{array}
ight)$ with $x_i, y_i \in \mathbb{F}_q$.

The internal state of Anemoi can be represented as:

$$\left(\begin{array}{c} X\\ Y\end{array}\right)$$
.

Addition of constants and the linear layer as:

$$\left(\begin{array}{c} X\\ Y\end{array}\right)\mapsto \left(\begin{array}{c} X\\ Y\end{array}\right)+\left(\begin{array}{c} C\\ D\end{array}\right), \qquad \left(\begin{array}{c} X\\ Y\end{array}\right)\mapsto \left(\begin{array}{c} X\mathcal{M}_{x}\\ Y\mathcal{M}_{y}\end{array}\right).$$

And the S-Box layer as:

$$\left(\begin{array}{c}X\\Y\end{array}\right)\mapsto \left(\begin{array}{c}{}^{t}\mathcal{H}(x_{0},y_{0}) \quad {}^{t}\mathcal{H}(x_{1},y_{1}) \quad \dots \quad {}^{t}\mathcal{H}(x_{\ell-1},y_{\ell-1})\end{array}\right) \ .$$

CCZ-equivalence New S-box: Flystel Comparison to previous work

The SPN Structure

Overview of Anemoi.

CCZ-equivalence New S-box: Flystel Comparison to previous work

Some Benchmarks

	т	Rescue'	Poseidon	GRIFFIN	Anemoi			т	Rescue'	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76			2	240	216	-	95
	4	224	232	112	96	R1CS	P1CS	4	264	264	110	120
	6	216	264	-	120		6	288	315	-	150	
	8	256	296	176	160		8	384	363	162	200	
Plonk	2	312	380	-	173			2	320	344	-	192
	4	560	1336	291	220	Plonk	Dlauli	4	528	1032	253	244
	6	756	3024	-	320		PIONK	6	768	2265	-	350
	8	1152	5448	635	456			8	1280	4003	543	496
AIR	2	156	300	-	114		AIR	2	200	360	-	190
	4	168	348	168	144			4	220	440	220	240
	6	162	396	-	180			6	240	540	-	300
	8	192	480	264	240			8	320	640	360	400

(a) when $\alpha = 3$.

(b) when $\alpha = 5$.

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (we fix s = 128).

CCZ-equivalence New S-box: Flystel Comparison to previous work

Some Benchmarks

	т	Rescue'	Poseidon	Griffin	Anemoi			т	Rescue'	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76			2	240	216	-	95
	4	224	232	112	96	R1CS	DICC	4	264	264	110	120
	6	216	264	-	120		6	288	315	-	150	
	8	256	296	176	160		8	384	363	162	200	
Plonk	2	312	380	-	173		Plonk	2	320	344	-	192
	4	560	1336	291	220			4	528	1032	253	244
	6	756	3024	-	320	PIO		6	768	2265	-	350
	8	1152	5448	635	456			8	1280	4003	543	496
AIR	2	156	300	-	114	A		2	200	360	-	190
	4	168	348	168	144		AIR	4	220	440	220	240
	6	162	396	-	180			6	240	540	-	300
	8	192	480	264	240			8	320	640	360	400

(a) when $\alpha = 3$.

(b) when $\alpha = 5$.

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (we fix s = 128).

Conclusions

- ★ Algebraic degree of MIMC₃
 - \star A tight upper bound, up to 16265 rounds: $2\times \lceil \lfloor \log_2(3^r) \rfloor/2 1 \rceil$.
 - $\star\,$ The minimal complexity for higher-order differential attack
 - More details on <u>eprint.iacr.org/2022/366</u> and to appear in *Designs, Codes and Cryptography*

Conclusions

- ★ Algebraic degree of MIMC₃
 - \star A tight upper bound, up to 16265 rounds: $2\times \lceil \lfloor \log_2(3^r) \rfloor/2 1 \rceil$.
 - $\star\,$ The minimal complexity for higher-order differential attack
 - More details on <u>eprint.iacr.org/2022/366</u> and to appear in *Designs, Codes and Cryptography*

\star Anemoi

- \star A new family of ZK-friendly hash functions efficient accross proof system
- \star New observations of fundamental interest:
 - * Standalone component: Flystel
 - $\star\,$ Identify a link between AO and CCZ-equivalence
- More details on eprint.iacr.org/2022/840

Future Work

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored! And the opinion of mathematicians would be of great help to us!

Future Work

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored! And the opinion of mathematicians would be of great help to us!

- ⋆ On MIMC
 - $\star\,$ solve the conjecture for maximum-weight exponents
 - \star extend the analysis to MIMC_d for any d, to SPN constructions, ...

Future Work

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored! And the opinion of mathematicians would be of great help to us!

- ⋆ On MIMC
 - \star solve the conjecture for maximum-weight exponents
 - \star extend the analysis to MIMC_d for any d, to SPN constructions, ...
- ⋆ On Anemoi:
 - \star explaining linear properties of the Flystel.
 - $\star\,$ pushing further the use of CCZ-equivalence for AO primitives

Future Work

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored! And the opinion of mathematicians would be of great help to us!

- ⋆ On MIMC
 - \star solve the conjecture for maximum-weight exponents
 - \star extend the analysis to MIMC_d for any d, to SPN constructions, ...
- ⋆ On Anemoi:
 - \star explaining linear properties of the Flystel.
 - $\star\,$ pushing further the use of CCZ-equivalence for AO primitives

Thanks for your attention!

