

Clémence Bouvier $^{\Join, \bigstar}$ joint work with Léo Perrin $^{\bowtie}$ and Vesselin Velichkov $^{\bowtie}$

[₩]Sorbonne Université,

[™]Inria Paris, team COSMIQ,

Sclearmatics, London

Rump session, FSE, 2022

Ínría

"The Auld Alliance"

Clémence Bouvier

Emerging uses in symmetric cryptography

Zero-knowledge proofs \Rightarrow New primitives designed to minimize the number of multiplications in finite fields.

"Usual" case

operations on $\mathbb{F}_{2^{\eta}}$, $\eta \simeq 4, 8$.

CPU instructions and hardware components

Arithmetization-friendly

large finite-field arithmetic

Emerging uses in symmetric cryptography

Zero-knowledge proofs \Rightarrow New primitives designed to minimize the number of multiplications in finite fields.

'Usual" case

W operations on $\mathbb{F}_{2^{\eta}}$, $\eta \simeq 4, 8$.

CPU instructions and hardware components

Arithmetization-friendly

Design goals:

- Compatibility with Various Proof Systems.
 - Limited Reliance on Randomness.
 - Different Algorithms for Different Purposes.
 - Design Consistency.

CCZ-equivalence

Definition

 $\phi:\mathbb{F}_\rho\to\mathbb{F}_\rho$ and $\psi:\mathbb{F}_\rho\to\mathbb{F}_\rho$ are CCZ-equivalent

$$\Gamma_{\phi} = \left\{ \left(\chi, \phi(\chi) \right) \mid \chi \in \mathbb{F}_{\rho} \right\} = \theta(\Gamma_{\psi}) = \left\{ \theta\left(\chi, \phi(\chi) \right) \mid \chi \in \mathbb{F}_{\rho} \right\} \,,$$

where $\boldsymbol{\theta}$ is an affine permutation.

CCZ-equivalence

Definition

 $\phi: \mathbb{F}_{\rho} \to \mathbb{F}_{\rho}$ and $\psi: \mathbb{F}_{\rho} \to \mathbb{F}_{\rho}$ are CCZ-equivalent

$$\Gamma_{\phi} = \left\{ \left(\chi, \phi(\chi) \right) \mid \chi \in \mathbb{F}_{\rho} \right\} = \theta(\Gamma_{\psi}) = \left\{ \theta\left(\chi, \phi(\chi) \right) \mid \chi \in \mathbb{F}_{\rho} \right\} \,,$$

where θ is an affine permutation.

CCZ-equivalence

- 🦋 High Degree.
- 🦋 Low Differential Uniformity.

- 🕷 Low Cost Verification.
- 🦋 Less Costly Evaluation.

Open Flystel

- **W** Random oracle replacement: AuldRO
- **W** Collision resistant compression function for Merkle-trees: AuldMC Dedicated mode

$$\Pi_{\iota}: (\chi, \zeta) \mapsto \Lambda \circ \phi(\chi + \kappa_{\iota}, \zeta + \omega_{\iota})$$

$$(\boldsymbol{\mu}, \boldsymbol{\nu}) = (\Pi_{\eta-1} \circ \dots \circ \Pi_0)(\boldsymbol{\chi}, \boldsymbol{\zeta}) ,$$

 \Rightarrow 2 words in 1

$$(\chi,\zeta)\mapsto \chi+\zeta+\mu+\nu$$
.

The Conquest of Athens

Athena and Poseidon