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Anemoi: Family of ZK-friendly Hash functions

Improve PlonK state-of-the-art

Up to 54%
over highly optimized Poseidon

AnemoiJive: 51 constraints

Poseidon: 110 constraints
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Arithmetization-oriented
primitives

⇒ What differs from the
“usual” case?
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Comparison with “usual” case

A new environment

“Usual” case

⋆ Field size:
F2n , with n ≃ 4, 8 (AES: n = 8).

⋆ Operations:
logical gates/CPU instructions

Arithmetization-friendly

⋆ Field size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64 .

⋆ Operations:
large finite-field arithmetic

New properties

“Usual” case

⋆ Operations:

⋆ Efficiency:
implementation in software/hardware

Arithmetization-friendly

⋆ Operations:

⋆ Efficiency:
integration within advanced protocols
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⋆ Field size:
Fq, with q ∈ {2n, p}, p ≃ 2n, n ≥ 64 .

⋆ Operations:
large finite-field arithmetic

Fp = Z/pZ, with p given for instance by the order of commonly used pairing-friendly elliptic curves

Examples: ⋆ Curve BLS12-381 log2 p = 255

p = 5243587517512619047944774050818596583769055250052763

7822603658699938581184513

⋆ Curve BLS12-377 log2 p = 253
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Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

y ← E (x) ; E : low degree y == E (x) ; E : low degree

⇒ potential vulnerability to some attacks...

New approach:
CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is CCZ-equivalent to a function that can be verified
efficiently.

y ← F (x) ; F : high degree v == G (u) ; G : low degree
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CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

F : Fq → Fq and G : Fq → Fq are CCZ-equivalent if

ΓF =
{︀
(x ,F (x)) | x ∈ Fq

}︀
= 𝒜(ΓG ) =

{︀
𝒜 (x ,G (x)) | x ∈ Fq

}︀
,

where 𝒜 is an affine permutation, 𝒜(x) = ℒ(x) + c .

Important things to remember!

⋆

⋆ The degree is not preserved.
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Why Anemoi?

⋆ Anemoi
Family of ZK-friendly Hash functions

⇓

⋆ Anemoi
Greek gods of winds
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The Flystel

Butterfly + Feistel ⇒ Flystel

A 3-round Feistel-network with
Q𝛾 : Fq → Fq and Q𝛿 : Fq → Fq two quadratic functions, and E : Fq → Fq a permutation

High-degree
permutation

x y

⊟

⊟

⊞

u v

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-degree
function

y v

⊟

⊞ ⊞

x u

Q𝛾 E Q𝛿

Closed Flystel 𝒱.
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Flystel in Fp

Q𝛾 : Fp → Fp, x ↦→ 𝛾 + 𝛽x2 Q𝛿 : Fp → Fp, x ↦→ 𝛿 + 𝛽x2 E : Fp → Fp, x ↦→ x𝛼

x y

⊟

⊟

⊞

u v

𝛾 + 𝛽x2

x1/𝛼

𝛿 + 𝛽x2

Open Flystelp.

usually
𝛼 = 3 or 5.

y v

⊟

⊞ ⊞

x u

𝛾 + 𝛽x2 x𝛼 𝛿 + 𝛽x2

Closed Flystelp.

12 / 26 Clémence Bouvier Anemoi and Jive



Preliminaries
New tools for AO primitives

Conclusions

New permutation: Anemoi
New mode: Jive
Comparison to previous work

Flystel in Fp

Q𝛾 : Fp → Fp, x ↦→ 𝛾 + 𝛽x2 Q𝛿 : Fp → Fp, x ↦→ 𝛿 + 𝛽x2 E : Fp → Fp, x ↦→ x𝛼

Example Curve BLS12-381:
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

p = 5243587517512619047944774050818596583769055250052763

7822603658699938581184513

𝛼 = 5

𝛼−1 = 2097435007005047619177909620327438633507622100021105512904

1463479975432473805

x y
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Flystel and CCZ-equivalence

ℋ and 𝒱
are CCZ-equivalent

Γℋ =
{︀
( (x , y), ℋ((x , y)) ) | (x , y) ∈ F2

q

}︀
= 𝒜

(︀{︀
( (v , y), 𝒱((v , y)) ) | (v , y) ∈ F2

q

}︀)︀
= 𝒜(Γ𝒱)

High-degree
permutation

x y

⊟

⊟

⊞

u v

Q𝛾

E−1

Q𝛿

Open Flystel ℋ.

Low-degree
function

y v

⊟

⊞ ⊞

x u

Q𝛾 E Q𝛿

Closed Flystel 𝒱.
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.
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Advantage of CCZ-equivalence

⋆ High Degree Evaluation.

⋆ Low Cost Verification.

(u, v) == ℋ(x , y)⇔ (x , u) == 𝒱(y , v)

High-degree
permutation

x y

⊟

⊟

⊞
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The SPN Structure

SPN: Substitution-Permutation Network

The internal state of Anemoi and its basic operations:

x0 x1 ... xℓ−1

y0 y1 ... yℓ−1

X

Y

(a) Internal state

ℳx

ℳy =ℳx ∘ 𝜌

(b) The diffusion layer (matrix multiplication).

ℋ ℋ ... ℋ

(c) The confusion or S-box layer ℋ (the Flystel).

X i

Y i

C i

D i
+=

(d) The constant addition.
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The SPN Structure

yrℓ−1

yrℓ−2

.

.

.

yr2

yr1

yr0

drℓ−1drℓ−2
. . .dr2dr1dr0

⊞
⊞

⊞

⊞
⊞ yr+1

ℓ−1

yr+1
ℓ−2

.

.

.

yr+1
2

yr+1
1

yr+1
0

ℳy

xrℓ−1

xrℓ−2

.

.

.

xr2

xr1

xr0

crℓ−1crℓ−2
. . .cr2cr1cr0

⊞
⊞

⊞

⊞
⊞ xr+1

ℓ−1

xr+1
ℓ−2

.

.

.

xr+1
2

xr+1
1

xr+1
0

ℳx

ℋ

ℋ

ℋ

ℋ

ℋ

.

.

.

Overview of Anemoi.
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Number of rounds

Anemoiq,𝛼,ℓ = ℳ∘ Rnr−1 ∘ ... ∘ R0

⇒ Choosing the number of rounds:

nr ≥ max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩10 , 1 + ℓ⏟  ⏞  
security margin

+min

{︃
r ∈ N

⃒⃒⃒⃒
⃒
(︂
2ℓr + 𝛼+ 1 + 2 · (ℓr − 2)

2ℓr

)︂2

≥ 2s

}︃
⏟  ⏞  

to prevent algebraic attacks

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ .

𝛼 3 5 7 11 13 17

ℓ = 1 19 19 18 18 17 16

ℓ = 2 12 12 11 11 11 10

ℓ = 3 10 10 10 10 10 10

ℓ = 4 10 10 10 10 10 10

Number of Rounds of Anemoi (s = 128).
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New Mode: Jive

⋆ Hash function (random oracle):

⋆ input: arbitrary length
⋆ ouput: fixed length

⊞

m0

Fc
q

Fr
q

Anemoi

⊞

m1

Anemoi

⊞

m2

Anemoi

. . .

. . .

⊞

𝜎

⊞

mℓ−1

Anemoi

z0

Anemoi

. . .

. . .

z1

Anemoi

zh

Absorption Squeezing

Dedicated mode ⇒ b words in 1

Jiveb(P) :

⎧⎪⎨⎪⎩
(Fm

q )
b → Fm

q

(x0, ..., xb−1) ↦→
b−1∑︁
i=0

(xi + Pi (x0, ..., xb−1)) .

x0 x1 . . . xb−1

Jiveb(x0, ..., xb−1)

P

⊞

⊞

⊞
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New Mode: Jive

⋆ Hash function (random oracle):

⋆ input: arbitrary length
⋆ ouput: fixed length

⋆ Compression function (Merkle-tree):

⋆ input: fixed length
⋆ output: (input length) /2

Dedicated mode ⇒ 2 words in 1

(x , y) ↦→ x + y + u + v .

x

y

0

w

/

/

P

x y

Jive2(x , y)

P

u v
⊞

⊞

Dedicated mode ⇒ b words in 1

Jiveb(P) :

⎧⎪⎨⎪⎩
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q
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⊞
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Some Motivation

Anemoi: Family of ZK-friendly Hash functions

Improve PlonK state-of-the-art

Up to 54%
over highly optimized Poseidon

AnemoiJive: 51 constraints

Poseidon: 110 constraints
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Rescue–Prime

[Aly et al., ToSC20]

⋆ S-Box layer

⋆ Linear layer: MDS

⋆ Round constants addition: AddC

S : x ↦→ x𝛼, and S−1 : x ↦→ x1/𝛼

R ≈ 10

...

x𝛼

x𝛼

x𝛼

MDS AddC
...

x1/𝛼

x1/𝛼

x1/𝛼

MDS AddC

Overview of Rescue–Prime.
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Poseidon
[Grassi et al., USENIX21]

⋆ S-Box layer

⋆ Linear layer: MDS

⋆ Round constants addition: AddC

S : x ↦→ x𝛼

R = RF + RP ≈ 50

...

AddC

x𝛼

x𝛼

x𝛼

MDS . . .

Rf rounds

...

AddC

x𝛼

MDS . . .

RP rounds

...

AddC

x𝛼

x𝛼

x𝛼

MDS

Rf rounds

Overview of Poseidon.
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Griffin

[Grassi et al. 2022]

⋆ S-Box layer

⋆ Linear layer: MDS

⋆ Round constants addition: AddC

S : new design

R ≈ 12

S(x0, ..., xt−1) = y0 || ... || yt−1

y0 = x
1
𝛼
0

y1 = x𝛼1

y2 = x2(L2(y0, y1, 0)
2 + 𝛼2 · L2(y0, y1, 0) + 𝛽2)

yi = xi (Li (y0, y1, xi−1)
2 + 𝛼i · Li (y0, y1, xi−1) + 𝛽i )

where Li (y0, y1, xi−1) = (i − 1)y0 + y1 + xi−1
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Some Benchmarks

m Rescue′ Poseidon Griffin Anemoi

R1CS

2 208 198 - 76
4 224 232 112 96
6 216 264 - 120
8 256 296 176 160

PlonK

2 312 380 - 173
4 560 1336 291 220
6 756 3024 - 320
8 1152 5448 635 456

AIR

2 156 300 - 114
4 168 348 168 144
6 162 396 - 180
8 192 480 264 240

(a) when 𝛼 = 3

m Rescue′ Poseidon Griffin Anemoi

R1CS

2 240 216 - 95
4 264 264 110 120
6 288 315 - 150
8 384 363 162 200

PlonK

2 320 344 - 192
4 528 1032 253 244
6 768 2265 - 350
8 1280 4003 543 496

AIR

2 200 360 - 190
4 220 440 220 240
6 240 540 - 300
8 320 640 360 400

(b) when 𝛼 = 5

Constraint comparison for Rescue–Prime, Poseidon, Griffin and Anemoi (s = 128)

for standard arithmetization, without optimization.
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Comparison for PlonK (with optimizations)

m Constraints

Poseidon
3 110
2 88

Reinforced Concrete
3 378
2 236

Rescue–Prime 3 252

Griffin 3 125

AnemoiJive 2 79

(a) With 3 wires.

m Constraints

Poseidon
3 98
2 82

Reinforced Concrete
3 267
2 174

Rescue–Prime 3 168

Griffin 3 111

AnemoiJive 2 58

(b) With 4 wires.

Constraints comparison with an additional custom gate for x𝛼 and ’next’ wires (s = 128).

with an additional quadratic custom gate: 51 constraints
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Native performance

Rescue–Prime-12-8 Poseidon-12-8 Griffin-12-8 Anemoi-8

11.39 𝜇s 1.93 𝜇s 3.13 𝜇s 3.93 𝜇s

2-to-1 compression functions for Fp with p = 264 − 232 + 1 (s = 128).

Rescue–Prime Poseidon Griffin Anemoi

255.36 𝜇s 14.43 𝜇s 73.66 𝜇s 115.82 𝜇s

For BLS12− 381, Anemoi is instantiated with state size of 2, others of 3 (s = 128)
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Conclusions

⋆ A new family of ZK-friendly hash functions:

⇒ Anemoi efficient accross proof system, specially for PlonK

⋆ New observations of fundamental interest:

⋆ Standalone components:

⋆ New S-box: Flystel
⋆ New mode: Jive

⋆ Identify a link between AO and CCZ-equivalence

⇒ Another version of AnemoiJive3 with TurboPlonK: 8.5 faster than Rescue–Prime.

☞ More details on https://ia.cr/2022/1487

Thanks for your attention!
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