Preliminaries Conclusions

Anemoi and Jive

New Arithmetization-Oriented tools for Plonk-based applications.

Clémence Bouvier ^{1,2} and Danny Willems ^{3,4}

joint work with Pierre Briaud^{1,2}, Pyrros Chaidos⁵, Léo Perrin², Robin Salen⁶ and Vesselin Velichkov^{7,8}

¹Sorbonne Université, ²Inria Paris, ³Nomadic Labs, Paris, ⁴Inria and LIX, CNRS

⁵National & Kapodistrian University of Athens, ⁶Toposware Inc., Boston, ⁷University of Edinburgh. ⁸Clearmatics. London.

ZKProof5, November 16th, 2022

Some Motivation

Anemoi: Family of ZK-friendly Hash functions

Improve PlonK state-of-the-art

Up to 54%

over highly optimized $\operatorname{POSEIDON}$

AnemoiJive: 51 constraints POSEIDON: 110 constraints

Anemoi **and** Jive

New Arithmetization-Oriented tools for Plonk-based applications.

🚺 Pr

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

2 New tools for AO primitives

- New permutation: Anemoi
- New mode: Jive
- Comparison to previous work

3 Conclusions

Emerging uses in symmetric cryptography CCZ-equivalence

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

New tools for AO primitives

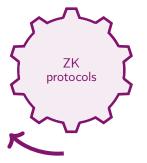
- New permutation: Anemoi
- New mode: Jive
- Comparison to previous work

3 Conclusions

AO primitives

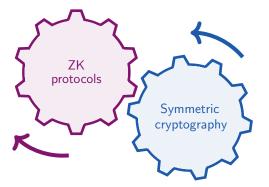
Emerging uses in symmetric cryptography CCZ-equivalence

A need of new primitives



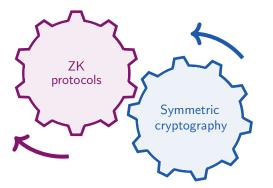
Emerging uses in symmetric cryptography CCZ-equivalence

A need of new primitives



Emerging uses in symmetric cryptography CCZ-equivalence

A need of new primitives



Arithmetization-oriented primitives

 \Rightarrow What differs from the "usual" case?

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * Field size: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

Preliminaries ols for AO primitives

Conclusions

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

"Usi	ual" case
*	Field size: \mathbb{F}_{2^n} , with $n \simeq 4,8$ (AES: $n = 8$).
*	Operations:
	logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size:}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, with p given for instance by the order of commonly used pairing-friendly elliptic curves

Examples:

- * Curve BLS12-381 $\log_2 p = 255$ p = 52435875175126190479447740508185965837690552500527637822603658699938581184513
- $\star \underline{\text{Curve BLS12-377}} \qquad \log_2 p = 253$

p = 8444461749428370424248824938781546531375899335154063

827935233455917409239041

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

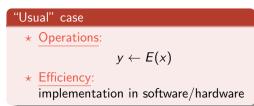
"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

New properties

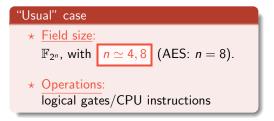


Arithmetization-friendly					
*	Operations:				
	y == E(x)				
*	Efficiency:				
	integration within advanced protocols				

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment



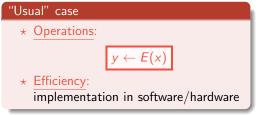
Arithmetization-friendly

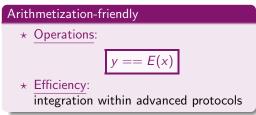
* Field size:

$$\mathbb{F}_q$$
, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$

* Operations: large finite-field arithmetic

New properties





Preliminaries w tools for AO primitives

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightsquigarrow *E*: low degree

$$y == E(x) \longrightarrow E$$
: low degree

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y == E(x) \longrightarrow E$$
: low degree

 \Rightarrow potential vulnerability to some attacks...

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree $y == E(x) \longrightarrow E$: low degree

 \Rightarrow potential vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x)$ $\rightsquigarrow E$: low degree y == E(x) $\rightsquigarrow E$: low degree

 \Rightarrow potential vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

 $v == G(u) \quad \rightsquigarrow G:$ low degree

Emerging uses in symmetric cryptography CCZ-equivalence

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Emerging uses in symmetric cryptography CCZ-equivalence

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{\boldsymbol{F}} = \left\{ \left(x, \boldsymbol{F}(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{\boldsymbol{G}}) = \left\{ \mathcal{A}\left(x, \boldsymbol{G}(x) \right) \mid x \in \mathbb{F}_{q} \right\},\$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

* Verification is the same: if $(x, y) = \mathcal{A}((u, v))$ with $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

* Verification is the same: if $(x, y) = \mathcal{A}((u, v))$ with $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Emerging uses in symmetric cryptography CCZ-equivalence

CCZ-equivalence

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F : \mathbb{F}_q \to \mathbb{F}_q$$
 and $G : \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

* <u>Verification</u> is the same: if $(x, y) = \mathcal{A}((u, v))$ with $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Preliminaries New permutat New tools for AO primitives New mode: J: Conclusions Comparison to

New permutation: Anemoi New mode: Jive Comparison to previous work

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

2 New tools for AO primitives

- New permutation: Anemoi
- New mode: Jive
- Comparison to previous work

3 Conclusions

New permutation: Anemoi New mode: Jive Comparison to previous work

Why Anemoi?

* Anemoi

Family of ZK-friendly Hash functions

New permutation: Anemoi New mode: Jive Comparison to previous work

Why Anemoi?

★ Anemoi Family of ZK-friendly Hash functions

\star Anemoi

Greek gods of winds

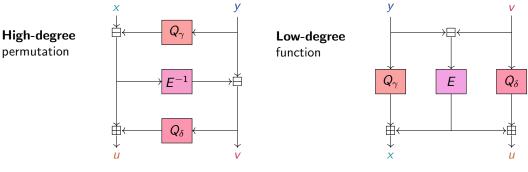
New permutation: Anemoi New mode: Jive Comparison to previous work

The Flystel

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \texttt{Flystel}$

A 3-round Feistel-network with

 $Q_\gamma: \mathbb{F}_q \to \mathbb{F}_q$ and $Q_\delta: \mathbb{F}_q \to \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q \to \mathbb{F}_q$ a permutation



 $[\]textit{Open Flystel } \mathcal{H}.$

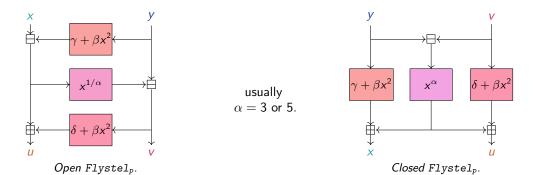
Closed Flystel \mathcal{V} .

New permutation: Anemoi New mode: Jive Comparison to previous work

Flystel in \mathbb{F}_p

(

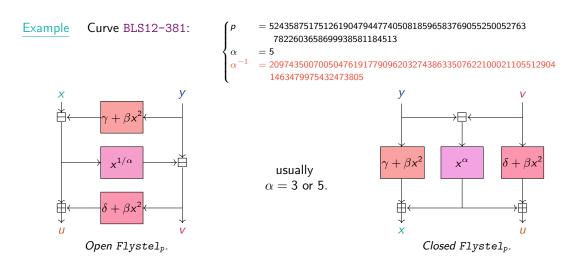
$$Q_{\gamma}: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \gamma + \beta x^{2} \qquad Q_{\delta}: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \delta + \beta x^{2} \qquad E: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto x^{\alpha}$$



New permutation: Anemoi New mode: Jive Comparison to previous work

Flystel in \mathbb{F}_p

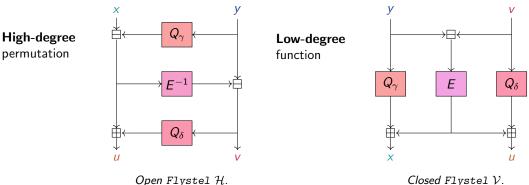
$$Q_{\gamma}: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \gamma + \beta x^{2} \qquad Q_{\delta}: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \delta + \beta x^{2} \qquad E: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto x^{\alpha}$$



New permutation: Anemoi

Flystel and CCZ-equivalence

 \mathcal{H} and \mathcal{V} are CCZ-equivalent $\Gamma_{\mathcal{H}} = \left\{ \left((x, y), \ \mathcal{H}((x, y)) \right) \mid (x, y) \in \mathbb{F}_{q}^{2} \right\}$ $= \mathcal{A}\left(\left\{\left((v, y), \mathcal{V}((v, y))\right) \mid (v, y) \in \mathbb{F}_{q}^{2}\right\}\right) = \mathcal{A}(\Gamma_{\mathcal{V}})$

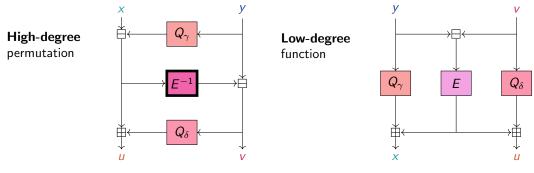


Closed Flystel \mathcal{V} .

New permutation: Anemoi New mode: Jive Comparison to previous work

Advantage of CCZ-equivalence

 $\star\,$ High Degree Evaluation.



 $\textit{Open Flystel } \mathcal{H}.$

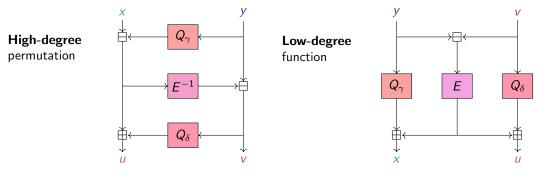
Closed Flystel \mathcal{V} .

New permutation: Anemoi New mode: Jive Comparison to previous work

Advantage of CCZ-equivalence

- \star High Degree Evaluation.
- \star Low Cost Verification.

$$(u, v) == \mathcal{H}(x, y) \Leftrightarrow (x, u) == \mathcal{V}(y, v)$$



Closed Flystel \mathcal{V} .

 $\textit{Open Flystel } \mathcal{H}.$

New permutation: Anemoi New mode: Jive Comparison to previous work

The SPN Structure

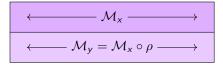
SPN: Substitution-Permutation Network

The internal state of Anemoi and its basic operations:

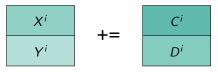
X	<i>x</i> 0	<i>x</i> ₁	 $x_{\ell-1}$
Y	<i>y</i> 0	<i>y</i> 1	 $y_{\ell-1}$

(a) Internal state

(c) The confusion or S-box layer \mathcal{H} (the Flystel).



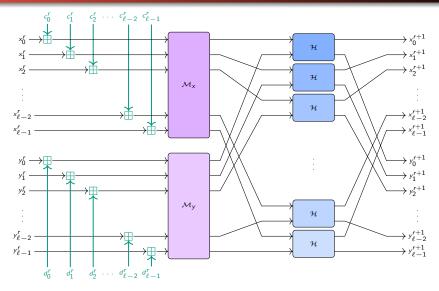
(b) The diffusion layer (matrix multiplication).



(d) The constant addition.

Preliminaries New tools for AO primitives New permutation: Anemoi New mode: Jive Comparison to previous work

The SPN Structure



Overview of Anemoi.

New permutation: Anemoi New mode: Jive Comparison to previous work

٠

Number of rounds

 $\mathtt{Anemoi}_{q,\alpha,\ell} = \mathcal{M} \circ \mathsf{R}_{n_r-1} \circ ... \circ \mathsf{R}_0$

 \Rightarrow Choosing the number of rounds:

$$n_r \geq \max\left\{10, \underbrace{1+\ell}_{\text{security margin}} + \underbrace{\min\left\{r \in \mathbb{N} \mid \binom{2\ell r + \alpha + 1 + 2 \cdot (\ell r - 2)}{2\ell r}\right\}}_{\text{to prevent algebraic attacks}}\right\}$$

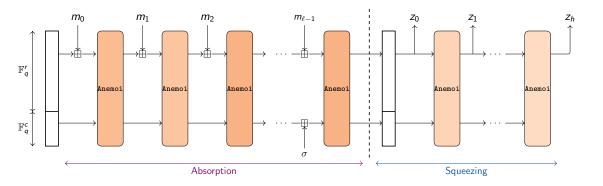
α	3	5	7	11	13	17
$\ell = 1$	19	19	18	18	17	16
ℓ = 2	12	12	11	11	11	10
ℓ = 3	10	10	10	10	10	10
ℓ = 4	10	10	10	10	10	10

Number of Rounds of Anemoi (s = 128).

New permutation: Anemoi New mode: Jive Comparison to previous work

New Mode: Jive

- ★ Hash function (random oracle):
 - ★ input: arbitrary length
 - \star ouput: fixed length



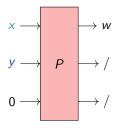
New permutation: Anemoi New mode: Jive Comparison to previous work

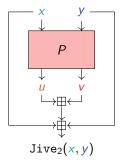
New Mode: Jive

- * Hash function (random oracle):
 - ★ input: arbitrary length
 - \star ouput: fixed length
- Dedicated mode \Rightarrow 2 words in 1

- ★ Compression function (Merkle-tree):
 - \star input: fixed length
 - \star output: (input length) /2

 $(x, y) \mapsto x + y + u + v$.





New permutation: Anemoi New mode: Jive Comparison to previous work

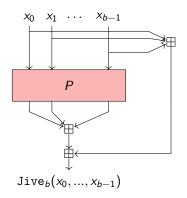
New Mode: Jive

- ★ Hash function (random oracle):
 - ★ input: arbitrary length
 - \star ouput: fixed length

Dedicated mode \Rightarrow b words in 1

$$\operatorname{Jive}_b(P): \begin{cases} (\mathbb{F}_q^m)^b & \to \mathbb{F}_q^m \\ (x_0, ..., x_{b-1}) & \mapsto \sum_{i=0}^{b-1} (x_i + P_i(x_0, ..., x_{b-1})) \end{cases}.$$

- * Compression function (Merkle-tree):
 - \star input: fixed length
 - \star output: (input length) /b



Some Motivation

Anemoi: Family of ZK-friendly Hash functions

Improve PlonK state-of-the-art

Up to 54%

over highly optimized $\operatorname{POSEIDON}$

AnemoiJive: 51 constraints

POSEIDON: 110 constraints

New permutation: Anemoi New mode: Jive Comparison to previous work

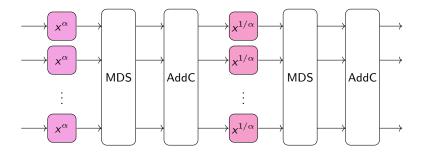
Rescue-Prime

[Aly et al., ToSC20]

- * S-Box layer
- ★ Linear layer: MDS
- ★ Round constants addition: AddC

 $S: x \mapsto x^{lpha}$, and $S^{-1}: x \mapsto x^{1/lpha}$

 $R \approx 10$



Overview of Rescue-Prime.

New permutation: Anemoi New mode: Jive Comparison to previous work

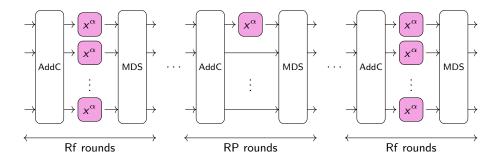
POSEIDON

[Grassi et al., USENIX21]

- \star S-Box layer
- ★ Linear layer: MDS
- ★ Round constants addition: AddC

 $S: x \mapsto x^{\alpha}$

 $R = \text{RF} + \text{RP} \approx 50$



Overview of POSEIDON.

New permutation: Anemoi New mode: Jive Comparison to previous work

S: new design

 $R \approx 12$

GRIFFIN

[Grassi et al. 2022]

- \star S-Box layer
- ★ Linear layer: MDS
- \star Round constants addition: AddC

$$S(x_0, ..., x_{t-1}) = y_0 || ... || y_{t-1}$$

$$y_0 = x_0^{\frac{1}{\alpha}}$$

$$y_1 = x_1^{\alpha}$$

$$y_2 = x_2 (L_2(y_0, y_1, 0)^2 + \alpha_2 \cdot L_2(y_0, y_1, 0) + \beta_2)$$

$$y_i = x_i (L_i(y_0, y_1, x_{i-1})^2 + \alpha_i \cdot L_i(y_0, y_1, x_{i-1}) + \beta_i)$$

where $L_i(y_0, y_1, x_{i-1}) = (i-1)y_0 + y_1 + x_{i-1}$

New permutation: Anemoi New mode: Jive Comparison to previous work

Some Benchmarks

	т	Rescue'	Poseidon	Griffin	Anemoi			т	Rescue'	Poseidon	Griffin	Anemoi	
	2	208	198	-	76			2	240	216	-	95	
R1CS	4	224	232	112	96		R1CS	4	264	264	110	120	
RICS	6	216	264	-	120			6	288	315	-	150	
	8	256	296	176	160			8	384	363	162	200	
	2	312	380	-	173			2	320	344	-	192	
PlonK	4	560	1336	291	220	-	PlonK	4	528	1032	253	244	
PIONK	6	756	3024	-	320			PION	6	768	2265	-	350
	8	1152	5448	635	456			8	1280	4003	543	496	
	2	156	300	-	114	A		2	200	360	-	190	
	4	168	348	168	144				4	220	440	220	240
AIR	6	162	396	-	180			AIR	6	240	540	-	300
	8	192	480	264	240			8	320	640	360	400	
						-							

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (s = 128) for standard arithmetization, without optimization.

New permutation: Anemoi New mode: Jive Comparison to previous work

Some Benchmarks

	т	Rescue'	Poseidon	Griffin	Anemoi			т	Rescue'	Poseidon	GRIFFIN	Anemoi	
	2	208	198	-	76			2	240	216	-	95	
R1CS	4	224	232	112	96		R1CS	4	264	264	110	120	
RICS	6	216	264	-	120		RICS	6	288	315	-	150	
	8	256	296	176	160			8	384	363	162	200	
	2	312	380	-	173			2	320	344	-	192	
PlonK	4	560	1336	291	220			DIST	4	528	1032	253	244
PIONK	6	756	3024	-	320			Pionr	PlonK	6	768	2265	-
	8	1152	5448	635	456			8	1280	4003	543	496	
	2	156	300	-	114			2	200	360	-	190	
AIR	4	168	348	168	144		AIR	4	220	440	220	240	
AIR	6	162	396	-	180		AIR	6	240	540	-	300	
	8	192	480	264	240			8	320	640	360	400	

(a) when $\alpha = 3$

(b) when $\alpha = 5$

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (s = 128) for standard arithmetization, without optimization.

New permutation: Anemoi New mode: Jive Comparison to previous work

Comparison for PlonK (with optimizations)

	т	Constraints
Poseidon	3	110
	2	88
Reinforced Concrete	3	378
Keiniorced Concrete	$\begin{array}{c} 3 \\ \hline 2 \\ \hline 3 \\ \hline 2 \\ \hline 3 \\ \hline \end{array}$	236
Rescue-Prime	3	252
Griffin	3	125
AnemoiJive	2	79

(a) With 3 wires.

	т	Constraints
Poseidon	3	98
I OSEIDON	$\frac{3}{2} = \frac{9}{2}$ $\frac{3}{2} = \frac{1}{2}$ $\frac{3}{2} = \frac{1}{2}$ $\frac{3}{2} = \frac{1}{2}$	82
Reinforced Concrete		267
Kelliorced concrete	$\begin{array}{c}3\\3\\2\\3\\2\\3\\3\\2\end{array}$	174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	58

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} and 'next' wires (s = 128).

New permutation: Anemoi New mode: Jive Comparison to previous work

Comparison for PlonK (with optimizations)

	т	Constraints
Poseidon	3	110
r OSEIDON	2 88 3 378	88
Deinferred Comments	3	378
Reinforced Concrete	te $\frac{3}{2}$	236
Rescue–Prime	3	252
Griffin	3	125
AnemoiJive	2	79 51

(a) With 3 wires.

	т	Constraints
Poseidon	3	98
I OSEIDON	2 3 2	82
Reinforced Concrete		267
Reinforced Concrete	3 2 3 2 3 3 3 2	174
Rescue-Prime	3	168
Griffin	3	111
AnemoiJive	2	58

(b) With 4 wires.

Constraints comparison with an additional custom gate for x^{α} and 'next' wires (s = 128).

with an additional quadratic custom gate: 51 constraints

Rescue–Prime-12-8	Poseidon-12-8	$\operatorname{Griffin-12-8}$	Anemoi-8	
11.39 μ s	1.93 μ s	$3.13~\mu s$	3.93 μ s	

2-to-1 compression functions for \mathbb{F}_p with $p = 2^{64} - 2^{32} + 1$ (s = 128).

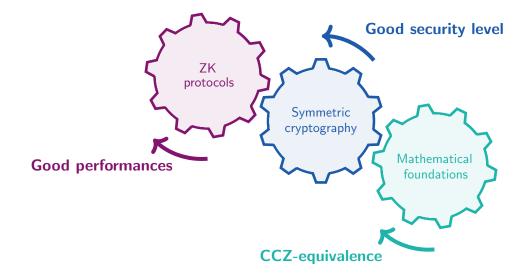
Rescue-Prime	Poseidon	GRIFFIN	Anemoi	
255.36 μs	14.43 μ s	73.66 μ s	115.82 μ s	

For BLS12 - 381, Anemoi is instantiated with state size of 2, others of 3 (s = 128)

Conclusions

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system, specially for PlonK
- * New observations of fundamental interest:
 - $\star\,$ Standalone components:
 - \star New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence

Conclusions



Conclusions

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system, specially for PlonK
- * New observations of fundamental interest:
 - ★ Standalone components:
 - * New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence

More details on https://ia.cr/2022/840

 \Rightarrow Another version of AnemoiJive_3 with TurboPlonK: 8.5 faster than Rescue–Prime.

More details on https://ia.cr/2022/1487

Conclusions

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system, specially for PlonK
- * New observations of fundamental interest:
 - ★ Standalone components:
 - * New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence

More details on https://ia.cr/2022/840

 \Rightarrow Another version of AnemoiJive_3 with TurboPlonK: 8.5 faster than Rescue–Prime.

More details on https://ia.cr/2022/1487

Thanks for your attention!

