Algebraic Attacks against Some Arithmetization-Oriented Primitives

Clémence Bouvier ^{1,2}

joint work with Augustin Bariant², Gaëtan Leurent², Léo Perrin²

¹Sorbonne Université,

²Inria Paris

FSE, March, 2023

Ínnia-

AOP: "Appellation d'origine protégée"

Camembert de Normandie

AOP

Motivation

A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

Category	Parameters	Security Level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N=6,m=2	25	\$4,000
Medium	N=7,m=2	29	\$6,000
Hard	N=5,m=3	30	\$12,000
Hard	N=8,m=2	33	\$26,000

(a) Rescue-Prime

Category	Parameters	Security Level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4, 000
Medium	RP = 13	24	\$6, 000
Hard	RP=19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) POSEIDON

Category	Parameters	Security Level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 1 4	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(b) Feistel-MiMC

Category	Parameters	Security Level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Motivation

A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

Category	Parameters	Security Level	Bounty
Easy	N = 4, m = 3	25	\$2,000
Easy	N=6,m=2	25	\$4,000
Medium	N=7,m=2	29	\$6,000
Hard	N=5,m=3	30	\$12,000
Hard	N=8,m=2	33	\$26,000

(a) Rescue-Prime

Category	Parameters	Security Level	Bounty
Easy	RP = 3	8	\$2,000
Easy	RP = 8	16	\$4, 000
Medium	RP = 13	24	\$6,000
Hard	RP=19	32	\$12,000
Hard	RP = 24	40	\$26,000

(c) POSEIDON

Category	Parameters	Security Level	Bounty
Easy	r = 6	9	\$2,000
Easy	r = 10	15	\$4,000
Medium	r = 1 4	22	\$6,000
Hard	r = 18	28	\$12,000
Hard	r = 22	34	\$26,000

(b) Feistel-MiMC

Category	Parameters	Security Level	Bounty
Easy	p = 281474976710597	24	\$4,000
Medium	p = 72057594037926839	28	\$6,000
Hard	p = 18446744073709551557	32	\$12,000

(d) Reinforced Concrete

Content

Algebraic Attacks against Some Arithmetization-Oriented Primitives.

- Arithmetization-Oriented Primitives
- CICO Problem

2 Solving Systems

- Univariate Systems
- Multivariate Systems

Trick for SPN

- Applied to POSEIDON
- Applied to Rescue-Prime

4 CIMINION

olving Systems Trick for SPN CIMINION Arithmetization-Oriented Primitive CICO Problem

Preliminaries

- Arithmetization-Oriented Primitives
- CICO Problem

2 Solving Syst

- Univariate Systems
- Multivariate Systems

3 Trick for SPN

- Applied to POSEIDON
- Applied to Rescue-Prime

4 CIMINION

Arithmetization-Oriented Primitives CICO Problem

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * <u>Field size</u>: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- * Operations: large finite-field arithmetic

Arithmetization-Oriented Primitives CICO Problem

Comparison with "usual" case

A new environment

"Usual" case

- ★ Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- * Operations: large finite-field arithmetic

 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z},$ with p given by the order of some elliptic curves

Examples: * Curve BLS12-381 $\log_2 p = 255$ p = 52435875175126190479447740508185965837690552500527637822603658699938581184513 * Curve BLS12-377 $\log_2 p = 253$ p = 8444461749428370424248824938781546531375899335154063

827935233455917409239041

Arithmetization-Oriented Primitives CICO Problem

Comparison with "usual" case

A new environment

"Usual" case

* Field size:

 \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).

* Operations: logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$
- * Operations: large finite-field arithmetic

New properties

Arithmetization-friendly

$$y \leftarrow E(x)$$
 and $y == E(x)$

* Optimized for: integration within advanced protocols

Arithmetization-Oriented Primitives CICO Problem

Comparison with "usual" case

A new environment

Solving Systems Trick for SPN Arithmetization-Oriented Primitive CICO Problem

CICO Problem

Sponge construction.

Trick for SPN

Arithmetization-Oriented Primitive CICO Problem

CICO Problem

Sponge construction.

CICO: Constrained Input Constrained Output

Definition
Let
$$F : \mathbb{F}_q^t \to \mathbb{F}_q^t$$
 and $u < t$. The **CICO** problem is:
Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Trick for SPN

Arithmetization-Oriented Primitive CICO Problem

CICO Problem

Sponge construction.

CICO: Constrained Input Constrained Output

Definition

Let $F : \mathbb{F}_q^t \to \mathbb{F}_q^t$ and u < t. The **CICO** problem is: Finding $X, Y \in \mathbb{F}_q^{t-u}$ s.t. $P(X, 0^u) = (Y, 0^u)$.

when t = 3, u = 1.

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime

Univariate Systems Multivariate Systems

Preliminarie

- Arithmetization-Oriented Primitives
- CICO Problem

2 Solving Systems

- Univariate Systems
- Multivariate Systems

3 Trick for SPN

- Applied to POSEIDON
- Applied to Rescue-Prime

4 CIMINION

Univariate Systems Multivariate System

Univariate Solving

Find the **roots** of a polynomial $P \in \mathbb{F}_q[X]$, with deg P = d.

Steps:

- 1. Compute $Q = X^q X \mod P$. using a double-and-add algorithm.
- 2. Compute R = gcd(P, Q). roots(P) = roots(R) in \mathbb{F}_q
- 3. Factor R. deg(R) \simeq 1 or 2 for random P

Cost (in theory):

 $\mathcal{O}(d \log(q) \log(d) \log(\log(d))))$

 $O(d \log^2(d) \log(\log(d)))$

negligible.

$$\mathcal{O}(d \cdot \log(d) \cdot (\log(d) + \log(q)) \cdot \log(\log(d)))$$

Univariate Systems Multivariate System

Univariate Solving

Find the **roots** of a polynomial $P \in \mathbb{F}_q[X]$, with deg P = d.

Steps:

- 1. Compute $Q = X^q X \mod P$. using a double-and-add algorithm.
- 2. Compute R = gcd(P, Q). roots(P) = roots(R) in \mathbb{F}_q
- 3. Factor R. deg(R) \simeq 1 or 2 for random P

Cost (in practice):

Degree d	311	3 ¹⁵	3 ¹⁸
Step 1.	14s	1,433s	47,964s
Step 2.	7s	903s	38,693s

for random systems

$$\mathcal{O}(\ d \cdot \log(d) \cdot (\log(d) + \log(q)) \cdot \log(\log(d)))$$

Univariate Systems Multivariate System

Multivariate Solving

Compute a **Gröbner Basis (GB)** from polynomial equations in $\mathbb{F}_q[X_1, \ldots, X_n]$:

$$\begin{cases} P_{j,j=1,...n}(X_1,...,X_n) = 0, \qquad D_{\text{reg}} \le 1 + \sum_{i=1}^n (d_i - 1), \qquad d \le \prod_{i=1}^n d_i \end{cases}$$

Steps:

Cost (in theory):

- 1. **F5** algorithm Compute a grevlex order GB.
- 2. **FGLM** algorithm Convert it into lex order GB.
- 3. Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

$$\mathcal{O}\left(nD_{\text{reg}} \times \binom{n+D_{\text{reg}}-1}{D_{\text{reg}}}^{\omega}\right), \text{ with } 2 \le \omega \le 3$$
for regular systems

$$\mathcal{O}(nd^3)$$
 or $\mathcal{O}(nd^{\omega})$

 $\mathcal{O}(d \log^2(d))$

Solving Systems Trick for SPN

Univariate Systems Multivariate System

Multivariate Solving

Compute a **Gröbner Basis (GB)** from polynomial equations in $\mathbb{F}_q[X_1, \ldots, X_n]$:

$$\left\{ P_{j,j=1,...n}(X_1,...X_n) = 0, \qquad D_{\text{reg}} \leq 1 + \sum_{i=1}^n (d_i - 1), \qquad d \leq \prod_{i=1}^n d_i \right\}$$

Steps:

- 1. **F5** algorithm Compute a grevlex order GB.
- 2. **FGLM** algorithm Convert it into lex order GB.
- 3. Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

In practice:

Degree d	1024	4608	16384
F4	2.36s	92.9s	3,030s
FGLM	18.96s	1,011s	32,069s

for random systems with 4 equations on 4 variables

Univariate Systems Multivariate System

Multivariate Solving

Compute a **Gröbner Basis (GB)** from polynomial equations in $\mathbb{F}_q[X_1, \ldots, X_n]$:

$$\left\{ P_{j,j=1,...n}(X_1,...X_n) = 0, \qquad D_{\text{reg}} \leq 1 + \sum_{i=1}^n (d_i - 1), \qquad d \leq \prod_{i=1}^n d_i \right\}$$

Steps:

- 1. **F5** algorithm Compute a grevlex order GB.
- 2. **FGLM** algorithm Convert it into lex order GB.
- 3. Find the roots in \mathbb{F}_q^n of the GB polynomials using univariate system resolution.

In practice:

Degree d	1024	4608	16384
F4	2.36s	92.9s	3,030s
FGLM	18.96s	1,011s	32,069s

for random systems with 4 equations on 4 variables

Take Away Build univariate $\widetilde{\mathcal{O}}(d)$ instead of multivariate $\widetilde{\mathcal{O}}(d^3)$ systems when possible! 10/20 Clémence Bouvier

Applied to POSEIDON Applied to Rescue-Prime

Preliminarie

- Arithmetization-Oriented Primitives
- CICO Problem

2 Solving System

- Univariate Systems
- Multivariate Systems

Trick for SPN

- Applied to POSEIDON
- Applied to Rescue-Prime

④ CIMINION

Applied to POSEIDON Applied to Rescue-Prime

Trick for SPN

Let $P = P_0 \circ P_1$ be a permutation of \mathbb{F}_p^3 and suppose

 $\exists \ V, G \in \mathbb{F}_p^3, \quad \text{ s.t. } \forall \ X \in \mathbb{F}_p, \quad P_0^{-1}(XV + G) = (*, *, 0) \ .$

Approach used against POSEIDON and Rescue-Prime

Applied to POSEIDON Applied to Rescue-Prim

POSEIDON

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, USENIX 2021

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$, ($\alpha = 3$)
 - ★ Linear layer: MDS
 - $\star\,$ Round constants addition: AddC
- * Number of rounds (for challenges):

$$\begin{aligned} R &= 2 \times \mathsf{Rf} + \mathsf{RP} \\ &= 8 + (\mathsf{from 3 to 24}) \;. \end{aligned}$$

Applied to POSEIDON Applied to Rescue–Prim

POSEIDON

$$\left\{ egin{array}{ll} V &= (A^3,B^3,0) \ G &= (0,0,g) \ , \end{array}
ight.$$

with

$$\begin{cases} B &= -\frac{\alpha_{0,2}}{\alpha_{1,2}}A \\ g &= \left(\frac{1}{\alpha_{2,2}} \left(\alpha_{0,2}c_0^1 + \alpha_{1,2}c_1^1\right) + c_2^1 + (c_2^0)^3\right)^3 \ . \end{cases}$$

R	Designers claims	Ethereum estimations	d	complexity
8+3	2 ¹⁷	2 ⁴⁵	3 ⁹	2 ²⁶
8+8	2 ²⁵	2 ⁵³	314	2 ³⁵
8 + 13	233	201	319	2**
8 + 19	242	269	325	254
8 + 24	2 ⁵⁰	2 ⁷⁷	3 ³⁰	2 ⁶²

Complexity of our attack against POSEIDON.

Applied to POSEIDON Applied to Rescue-Prim

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - $\star\,$ Round constants addition: AddC
- * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round).

Applied to POSEIDON Applied to Rescue-Prim

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - * Round constants addition: AddC
- * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round). Example of parameters p = 18446744073709551557 $\simeq 2^{64}$ $\alpha = 3$ $\alpha^{-1} = 12297829382473034371$

Applied to POSEIDON Applied to Rescue-Prim

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, *ToSC 2020*

- \star SPN construction:
 - * S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1/\alpha}$, $(\alpha = 3)$
 - ★ Linear layer: MDS
 - $\star\,$ Round constants addition: AddC
- * Number of rounds (for challenges):

R = from 4 to 8 (2 S-boxes per round).

Applied to POSEIDON Applied to Rescue-Prim

Rescue-Prime

$$\begin{cases} V &= (A^3, B^3, 0) , \\ G &= (0, 0, g) , \end{cases}$$

with

$$\begin{cases} B = -\frac{\alpha_{0,2}}{\alpha_{1,2}}A \\ g = \left(\frac{1}{\alpha_{2,2}} \left(\alpha_{0,2}c_0^0 + \alpha_{1,2}c_1^0\right) + c_2^0\right)^{1/3} \end{cases}$$

R	т	Designers claims	Ethereum estimations	d	complexity
4	3	2 ³⁶	2 ^{37.5}	3 ⁹	2 ⁴³
6	2	2 ⁴⁰	$2^{37.5}$	3^{11}	2 ⁵³
7	2	2 ⁴⁸	2 ^{43.5}	3 ¹³	2 ⁶²
5	3	2 ⁴⁸	2 ⁴⁵	3 ¹²	2 ⁵⁷
8	2	2 ⁵⁶	2 ^{49.5}	315	272

Complexity of our attack against Rescue.

Preliminarie

- Arithmetization-Oriented Primitives
- CICO Problem

2 Solving Syster

- Univariate Systems
- Multivariate Systems

3 Trick for SPN

- Applied to POSEIDON
- Applied to Rescue-Prime

CIMINION

C. Dobraunig, L. Grassi, A. Guinet and D. Kuijster, *EUROCRYPT 2021*

Construction: Toffoli gates

 $(a, b, c) \mapsto (a, b, c + ab)$

Round function.

Overview of CIMINION *in* \mathbb{F}_p .

Attack on **CIMINION**

- $\star\,$ Designers' system:
 - ★ 6 equations . . .
 - * over 6 variables ...
 - \star of degrees
 - $\{2^{R-1}, 2^{R}, 2^{R}, 2^{R+1}, 2^{R+1}, 2^{R+2}\}$

Weaker Scheme.

Trick for SPN CIMINION

X

Attack on CIMINION

- ★ Designers' system:
 - ★ 6 equations . . .
 - ★ over 6 variables . . .
 - \star of degrees

$$\{2^{R-1}, 2^R, 2^R, 2^{R+1}, 2^{R+1}, 2^{R+2}\}$$

- ★ Our system
 - ★ 4 equations . . .
 - ★ over 4 variables . . .
 - \star of degrees

$$\{2^{R-1}, 2^R, 3 \cdot 2^{R-1}, 3 \cdot 2^{R-1}\}$$

Attack in roughly

Original scheme.

Conclusions

Some suggestions for designers:

- \star consider as many variants of encoding as possible
- \star build univariate instead of multivariate systems when possible
- \star start (and end) with a linear layer
- \star 2 rounds can be skipped with the trick

Conclusions

Some suggestions for designers:

- * consider as many variants of encoding as possible
- * build univariate instead of multivariate systems when possible
- \star start (and end) with a linear layer
- \star 2 rounds can be skipped with the trick

Conclusions

Some suggestions for designers:

- \star consider as many variants of encoding as possible
- * build univariate instead of multivariate systems when possible
- \star start (and end) with a linear layer
- \star 2 rounds can be skipped with the trick

Thanks for your attention

Trick for SPN

Clémence Bouvier Algebraic Atacks against Some AOP

Univariate systems: POSEIDON, Feistel-MiMC

Multivariate systems: Rescue–Prime

Multivariate systems: CIMINION

