Algebraic Attacks against Some Arithmetization-Oriented Primitives

Clémence Bouvier ${ }^{1,2}$

joint work with Augustin Bariant ${ }^{2}$, Gaëtan Leurent ${ }^{2}$, Léo Perrin ${ }^{2}$

${ }^{1}$ Sorbonne Université, $\quad{ }^{2}$ Inria Paris

FSE, March, 2023

AOP

AOP: "Appellation d’origine protégée"

Camembert de Normandie

Motivation

A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

Category	Parameters	Security Level	Bounty
Easy	$N=4, m=3$	25	$\$ 2,000$
Easy	$N=6, m=2$	25	$\$ 4,000$
Medium	$N=7, m=2$	29	$\$ 6,000$
Hard	$N=5, m=3$	30	$\$ 12,000$
Hard	$N=8, m=2$	33	$\$ 26,000$

(a) Rescue-Prime

Category	Parameters	Security Level	Bounty
Easy	$R P=3$	8	$\$ 2,000$
Easy	$R P=8$	16	$\$ 4,000$
Aedium	$R P=13$	24	$\$ 6,000$
Hard	$R P=19$	32	$\$ 12,000$
Hard	$R P=24$	40	$\$ 26,000$

(c) Poseidon

Category	Parameters	Security Level	Bounty
Easy	$+=6$	9	$\$ 2,000$
Easy	$=10$	15	$\$ 4,000$
Medium	$+=14$	22	$\$ 6,000$
Hard	$+=18$	28	$\$ 12,000$
Hard	$+=22$	34	$\$ 26,000$

(b) Feistel-MiMC

Category	Parameters	Security Level	Bounty
Easy	$p=281474976710597$	24	$\$ 4,000$
Medium	$p=72057594037926839$	28	$\$ 6,000$
Hard	$p=18446744073709551557$	32	$\$ 12,000$

(d) Reinforced Concrete

Motivation

A Cryptanalysis Challenge for ZK-friendly Hash Functions! In November 2021, by the Ethereum Fundation.

Category	Parameters	Security Level	Bounty
Easy	$N=4, m=3$	25	$\$ 2,000$
Easy	$N=6, m=2$	25	$\$ 4,000$
Medium	$N=7, m=2$	29	$\$ 6,000$
Hard	$N=5, m=3$	30	$\$ 12,000$
Hard	$N=8, m=2$	33	$\$ 26,000$

(a) Rescue-Prime

Category	Parameters	Security Level	Bounty
Easy	$R P=3$	8	$\$ 2,000$
Easy	$R P=8$	16	$\$ 4,000$
Aedium	$R P=13$	24	$\$ 6,000$
Hard	$R P=19$	32	$\$ 12,000$
Hard	$R P=24$	40	$\$ 26,000$

(c) Poseidon

Category	Parameters	Security Level	Bounty
Easy	$r=6$	9	$\$ 2,000$
Easy	$=10$	15	$\$ 4,000$
Medium	$r=14$	22	$\$ 6,000$
Hard	$r=18$	28	$\$ 12,000$
Hard	$\ldots=22$	34	$\$ 26,000$

(b) Feistel-MiMC

Category	Parameters	Security Level	Bounty
Easy	$p=281474976710597$	24	$\$ 4,000$
Medium	$p=72057594037926839$	28	$\$ 6,000$
Hard	$p=18446744073709551557$	32	$\$ 12,000$

(d) Reinforced Concrete

Content

Algebraic Attacks against Some Arithmetization-Oriented Primitives.

(1) Preliminaries

- Arithmetization-Oriented Primitives
- CICO Problem
(2) Solving Systems
- Univariate Systems
- Multivariate Systems
(3) Trick for SPN
- Applied to Poseidon
- Applied to Rescue-PrimeCiminion
(1) Preliminaries
- Arithmetization-Oriented Primitives
- CICO Problem
(2) Solving Systems
- Univariate Systems
- Multivariate Systems
(3) Trick for SPN
- Applied to Poseidon
- Applied to Rescue-Prime

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8(\operatorname{AES}: n=8)$.
* Operations:
logical gates/CPU instructions

Arithmetization-friendly
\star Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$

* Operations:
large finite-field arithmetic

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8(A E S: n=8)$.
* Operations:
logical gates/CPU instructions

Arithmetization-friendly

* Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$
* Operations:
large finite-field arithmetic
$\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$, with p given by the order of some elliptic curves
Examples: \star Curve BLS12-381 $\quad \log _{2} p=255$
$p=5243587517512619047944774050818596583769055250052763$ 7822603658699938581184513

$$
\begin{aligned}
& \star \text { Curve BLS12-377 } \quad \log _{2} p=253 \\
& \qquad p=8444461749428370424248824938781546531375899335154063 \\
& 827935233455917409239041
\end{aligned}
$$

Comparison with "usual" case

A new environment

"Usual" case

* Field size:
$\mathbb{F}_{2^{n}}$, with $n \simeq 4,8(\operatorname{AES}: n=8)$.
* Operations:
logical gates/CPU instructions

Arithmetization-friendly

\star Field size:
\mathbb{F}_{q}, with $q \in\left\{2^{n}, p\right\}, p \simeq 2^{n}, n \geq 64$

* Operations:
large finite-field arithmetic

New properties

"Usual" case

$$
y \leftarrow E(x)
$$

* Optimized for: implementation in software/hardware

Arithmetization-friendly

$$
y \leftarrow E(x) \quad \text { and } \quad y==E(x)
$$

\star Optimized for:
integration within advanced protocols

Comparison with "usual" case

CICO Problem

Sponge construction.

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $F: \mathbb{F}_{q}^{t} \rightarrow \mathbb{F}_{q}^{t}$ and $u<t$. The CICO problem is:
Finding $X, Y \in \mathbb{F}_{q}^{t-u}$ s.t. $P\left(X, 0^{u}\right)=\left(Y, 0^{u}\right)$.

when $t=3, u=1$.

CICO Problem

CICO: Constrained Input Constrained Output

Definition

Let $F: \mathbb{F}_{q}^{t} \rightarrow \mathbb{F}_{q}^{t}$ and $u<t$. The CICO problem is:
Finding $X, Y \in \mathbb{F}_{q}^{t-u}$ s.t. $P\left(X, 0^{u}\right)=\left(Y, 0^{u}\right)$.

when $t=3, u=1$.

Ethereum Challenges: solving CICO problem for AO primitives with $q \sim 2^{64}$ prime
(1) Preliminaries

- Arithmetization-Oriented Primitives
- CICO Problem
(2) Solving Systems
- Univariate Systems
- Multivariate Systems
(3) Trick for SPN
- Applied to Poseidon
- Applied to Rescue-Prime

Univariate Solving

Find the roots of a polynomial $P \in \mathbb{F}_{q}[X]$, with $\operatorname{deg} P=d$.

Steps:

1. Compute $Q=X^{q}-X \bmod P$. using a double-and-add algorithm.
2. Compute $R=\operatorname{gcd}(P, Q)$. $\operatorname{roots}(P)=\operatorname{roots}(R)$ in \mathbb{F}_{q}

Cost (in theory):

$$
\mathcal{O}(d \log (q) \log (d) \log (\log (d))))
$$

$$
O\left(d \log ^{2}(d) \log (\log (d))\right)
$$

negligible.
$\operatorname{deg}(R) \simeq 1$ or 2 for random P

$$
\mathcal{O}(d \cdot \log (d) \cdot(\log (d)+\log (q)) \cdot \log (\log (d)))
$$

Univariate Solving

Find the roots of a polynomial $P \in \mathbb{F}_{q}[X]$, with $\operatorname{deg} P=d$.

Steps:

1. Compute $Q=X^{q}-X \bmod P$. using a double-and-add algorithm.
2. Compute $R=\operatorname{gcd}(P, Q)$. $\operatorname{roots}(P)=\operatorname{roots}(R)$ in \mathbb{F}_{q}
3. Factor R.
$\operatorname{deg}(R) \simeq 1$ or 2 for random P

Cost (in practice):

Degree d	3^{11}	3^{15}	3^{18}
Step 1.	14 s	$1,433 \mathrm{~s}$	$47,964 \mathrm{~s}$
Step 2.	7 s	903 s	$38,693 \mathrm{~s}$

for random systems

$$
\mathcal{O}(d \cdot \log (d) \cdot(\log (d)+\log (q)) \cdot \log (\log (d)))
$$

Multivariate Solving

Compute a Gröbner Basis (GB) from polynomial equations in $\mathbb{F}_{q}\left[X_{1}, \ldots X_{n}\right]$:

$$
\left\{P_{j, j=1, \ldots n}\left(X_{1}, \ldots X_{n}\right)=0, \quad D_{\mathrm{reg}} \leq 1+\sum_{i=1}^{n}\left(d_{i}-1\right), \quad d \leq \prod_{i=1}^{n} d_{i}\right.
$$

Steps:

1. F5 algorithm

Compute a grevlex order GB.
2. FGLM algorithm

Convert it into lex order GB.

Cost (in theory):

$$
\begin{gathered}
\mathcal{O}\left(n D_{\text {reg }} \times\binom{ n+D_{\text {reg }}-1}{D_{\text {reg }}}^{\omega}\right) \text {, with } 2 \leq \omega \leq 3 \\
\mathcal{O}\left(n d^{3}\right) \quad \text { or regular systems } \mathcal{O}\left(n d^{\omega}\right)
\end{gathered}
$$

3. Find the roots in \mathbb{F}_{q}^{n} of the $G B$ polynomials using univariate system resolution.

Multivariate Solving

Compute a Gröbner Basis (GB) from polynomial equations in $\mathbb{F}_{q}\left[X_{1}, \ldots X_{n}\right]$:

$$
\left\{P_{j, j=1, \ldots n}\left(X_{1}, \ldots X_{n}\right)=0, \quad D_{\mathrm{reg}} \leq 1+\sum_{i=1}^{n}\left(d_{i}-1\right), \quad d \leq \prod_{i=1}^{n} d_{i}\right.
$$

Steps:

1. F5 algorithm

Compute a grevlex order GB.
2. FGLM algorithm

Convert it into lex order GB.
3. Find the roots in \mathbb{F}_{q}^{n} of the $G B$ polynomials using univariate system resolution.

In practice:

Degree d	1024	4608	16384
F4	2.36 s	92.9 s	$3,030 \mathrm{~s}$
FGLM	18.96 s	$1,011 \mathrm{~s}$	$32,069 \mathrm{~s}$

for random systems with 4 equations on 4 variables

Multivariate Solving

Compute a Gröbner Basis (GB) from polynomial equations in $\mathbb{F}_{q}\left[X_{1}, \ldots X_{n}\right]$:

$$
\left\{P_{j, j=1, \ldots n}\left(X_{1}, \ldots X_{n}\right)=0, \quad D_{\mathrm{reg}} \leq 1+\sum_{i=1}^{n}\left(d_{i}-1\right), \quad d \leq \prod_{i=1}^{n} d_{i}\right.
$$

Steps:

1. F5 algorithm

Compute a grevlex order GB.
2. FGLM algorithm

Convert it into lex order GB.
3. Find the roots in \mathbb{F}_{q}^{n} of the $G B$ polynomials using univariate system resolution.

In practice:

Degree d	1024	4608	16384
F4	2.36 s	92.9 s	$3,030 \mathrm{~s}$
FGLM	18.96 s	$1,011 \mathrm{~s}$	$32,069 \mathrm{~s}$

for random systems with 4 equations on 4 variables

Take Away

Build univariate $\widetilde{\mathcal{O}}(d)$ instead of multivariate $\widetilde{\mathcal{O}}\left(d^{3}\right)$ systems when possible!
(1) Preliminaries

- Arithmetization-Oriented Primitives
- CICO Problem
(2) Solving Systems
- Univariate Systems
- Multivariate Systems
(3) Trick for SPN
- Applied to Poseidon
- Applied to Rescue-Prime

Trick for SPN

Let $P=P_{0} \circ P_{1}$ be a permutation of \mathbb{F}_{p}^{3} and suppose

$$
\exists V, G \in \mathbb{F}_{p}^{3}, \quad \text { s.t. } \forall X \in \mathbb{F}_{p}, \quad P_{0}^{-1}(X V+G)=(*, *, 0) .
$$

Approach used against Poseidon and Rescue-Prime

Poseidon

L. Grassi, D. Khovratovich, C. Rechberger, A. Roy and M. Schofnegger, USENIX 2021
\star SPN construction:

* S-Box layer: $x \mapsto x^{\alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
R & =2 \times R f+R P \\
& =8+(\text { from } 3 \text { to } 24) .
\end{aligned}
$$

Poseidon

$$
\left\{\begin{array}{l}
V=\left(A^{3}, B^{3}, 0\right), \\
G=(0,0, g),
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
B=-\frac{\alpha_{0,2}}{\alpha_{1,2}} A \\
g=\left(\frac{1}{\alpha_{2,2}}\left(\alpha_{0,2} c_{0}^{1}+\alpha_{1,2} c_{1}^{1}\right)+c_{2}^{1}+\left(c_{2}^{0}\right)^{3}\right)^{3} .
\end{array}\right.
$$

R	Designers claims	Ethereum estimations	d	complexity
$8+3$	2^{17}	2^{45}	3^{9}	2^{26}
$8+8$	2^{25}	2^{53}	3^{14}	2^{35}
$8+13$	2^{33}	2^{61}	3^{19}	2^{44}
$8+19$	2^{42}	2^{69}	3^{25}	2^{54}
$8+24$	2^{50}	2^{77}	3^{30}	2^{62}

Complexity of our attack against Poseidon.

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
* Number of rounds (for challenges):

$$
\begin{aligned}
& R=\text { from } 4 \text { to } 8 \\
& (2 \text { S-boxes per round }) .
\end{aligned}
$$

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS

Example of parameters

* Round constants addition: AddC
\star Number of rounds (for challenges):

$$
\begin{aligned}
p & =18446744073709551557 \\
& \simeq 2^{64} \\
\alpha & =3 \\
\alpha^{-1} & =12297829382473034371
\end{aligned}
$$

$R=$ from 4 to 8
(2 S-boxes per round).

Rescue-Prime

A. Aly, T. Ashur, E. Ben-Sasson, S. Dhooghe and A. Szepieniec, ToSC 2020

* SPN construction:
* S-Box layer: $x \mapsto x^{\alpha}$ and $x \mapsto x^{1 / \alpha},(\alpha=3)$
* Linear layer: MDS
* Round constants addition: AddC
* Number of rounds (for challenges):

$$
\begin{aligned}
& R=\text { from } 4 \text { to } 8 \\
& (2 \mathrm{~S} \text {-boxes per round }) .
\end{aligned}
$$

Rescue-Prime

$$
\left\{\begin{array}{l}
V=\left(A^{3}, B^{3}, 0\right), \\
G=(0,0, g),
\end{array}\right.
$$

with

$$
\left\{\begin{array}{l}
B=-\frac{\alpha_{0,2}}{\alpha_{1,2}} A \\
g=\left(\frac{1}{\alpha_{2,2}}\left(\alpha_{0,2} c_{0}^{0}+\alpha_{1,2} c_{1}^{0}\right)+c_{2}^{0}\right)^{1 / 3} .
\end{array}\right.
$$

R	m	Designers claims	Ethereum estimations	d	complexity
4	3	2^{36}	$2^{37.5}$	3^{9}	2^{43}
6	2	2^{40}	$2^{37.5}$	3^{11}	2^{53}
7	2	2^{48}	$2^{43.5}$	3^{13}	2^{62}
5	3	2^{48}	2^{45}	3^{12}	2^{57}
8	2	2^{56}	$2^{49.5}$	3^{15}	2^{72}

Complexity of our attack against Rescue.

(1) Preliminaries

- Arithmetization-Oriented Primitives
- CICO ProblemSolving Systems
- Univariate Systems
- Multivariate Systems
(3) Trick for SPN
- Applied to Poseidon
- Applied to Rescue-Prime
(4) Ciminion

Ciminion

C. Dobraunig, L. Grassi, A. Guinet and D. Kuijster, EUROCRYPT 2021

Construction: Toffoli gates

$$
(a, b, c) \mapsto(a, b, c+a b)
$$

Round function.

Overview of Ciminion in \mathbb{F}_{p}.

Attack on Ciminion

* Designers' system:
* 6 equations
* over 6 variables...
* of degrees
$\left\{2^{R-1}, 2^{R}, 2^{R}, 2^{R+1}, 2^{R+1}, 2^{R+2}\right\}$

Weaker Scheme.

Attack on Ciminion

* Designers' system:
* 6 equations
* over 6 variables...
* of degrees
$\left\{2^{R-1}, 2^{R}, 2^{R}, 2^{R+1}, 2^{R+1}, 2^{R+2}\right\}$

* Our system
* 4 equations...
* over 4 variables
* of degrees

$$
\left\{2^{R-1}, 2^{R}, 3 \cdot 2^{R-1}, 3 \cdot 2^{R-1}\right\}
$$

Attack in roughly

Conclusions

Some suggestions for designers:

* consider as many variants of encoding as possible
* build univariate instead of multivariate systems when possible
* start (and end) with a linear layer
* 2 rounds can be skipped with the trick

Conclusions

Some suggestions for designers:

* consider as many variants of encoding as possible
* build univariate instead of multivariate systems when possible
* start (and end) with a linear layer
* 2 rounds can be skipped with the trick

Conclusions

Some suggestions for designers:

* consider as many variants of encoding as possible
* build univariate instead of multivariate systems when possible
* start (and end) with a linear layer
* 2 rounds can be skipped with the trick

Thanks for your attention

Trick for SPN

Univariate systems: Poseidon, Feistel-MiMC

Multivariate systems: Rescue-Prime

Multivariate systems: CIMINION

