A New Approach for Arithmetization-Oriented Symmetric Primitives.

Clémence Bouvier ^{1,2}

joint work with Pierre Briaud^{1,2}, Pyrros Chaidos³, Léo Perrin², Robin Salen⁴, Vesselin Velichkov^{5,6} and Danny Willems^{7,8}

¹Sorbonne Université,

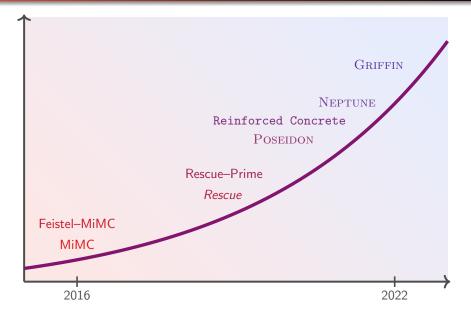
²Inria Paris,

³National & Kapodistrian University of Athens,
 ⁴Toposware Inc., Boston,
 ⁵University of Edinburgh,
 ⁶Clearmatics, London,
 ⁷Nomadic Labs, Paris,
 ⁸Inria and LIX, CNRS

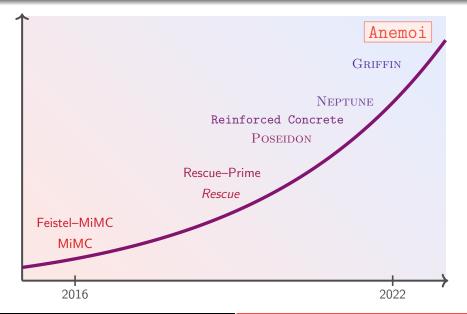
CrossFyre, October 7th, 2022

Clémence Bouvier

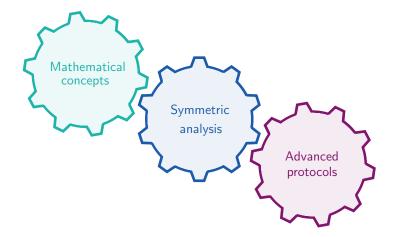
A fast moving domain



A fast moving domain



Designing Arithmetization-Oriented Primitives



A New Approach for Arithmetization-Oriented Symmetric Primitives.

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

- New S-box: Flystel
- New mode: Jive
- Comparison to previous work

3 Conclusions

Preliminaries

merging uses in symmetric cryptography CCZ-equivalence

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

Anemoi: a new family of hash-functions

- New S-box: Flystel
- New mode: Jive
- Comparison to previous work

3 Conclusions

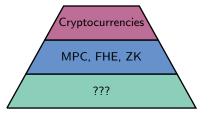
Emerging uses in symmetric cryptography CCZ-equivalence

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- ★ Multiparty Computation (MPC)
- * Homomorphic Encryption (FHE)
- Systems of Zero-Knowledge (ZK) proofs
 Example: SNARKs, STARKs, Bulletproofs



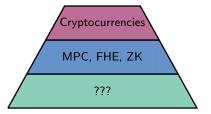
Emerging uses in symmetric cryptography CCZ-equivalence

A need of new primitives

Problem: Designing new symmetric primitives

Protocols requiring new primitives:

- * Multiparty Computation (MPC)
- * Homomorphic Encryption (FHE)
- Systems of Zero-Knowledge (ZK) proofs
 Example: SNARKs, STARKs, Bulletproofs



Arithmetization-oriented primitives

 \Rightarrow What differs from the "usual" case?

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

"Usual" case

- * Field size:
 - \mathbb{F}_{2^n} , with $n \simeq 4, 8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * <u>Field size</u>: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

"Usual" case

- * Field size: \mathbb{F}_{2^n} , with $n \simeq 4,8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- $\star rac{ ext{Field size}:}{\mathbb{F}_q} ext{, with } q \in \{2^n, p\}, p \simeq 2^n, \ n \geq 64$.
- * Operations: large finite-field arithmetic

 $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, with p given by Standardized Elliptic Curves.

Examples:

 $\star \underline{\text{Curve BLS12-381}} \qquad \log_2 p = 381$

 $p = 4002409555221667393417789825735904156556882819939007885332 \\ 058136124031650490837864442687629129015664037894272559787$

* <u>Curve BLS12-377</u> $\log_2 p = 377$

 $p = 258664426012969094010652733694893533536393512754914660539 \\884262666720468348340822774968888139573360124440321458177$

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

A new environment

"Usual" case

- * Field size: \mathbb{F}_{2^n} , with $n \simeq 4.8$ (AES: n = 8).
- * Operations: logical gates/CPU instructions

Arithmetization-friendly

- * $\frac{\text{Field size}}{\mathbb{F}_q}$, with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

New properties

"Usual" case

 \star Operations:

 $y \leftarrow E(x)$

* Efficiency: implementation in software/hardware

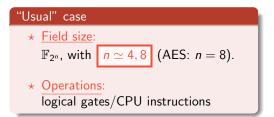
Arithmetization-friendly * Operations: y == E(x) * Efficiency: integration within advanced protocols

Conclusions

Emerging uses in symmetric cryptography CCZ-equivalence

Comparison with "usual" case

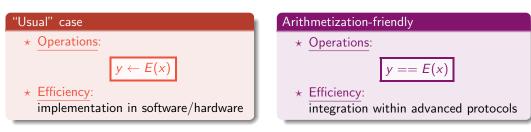
A new environment



Arithmetization-friendly

- * <u>Field size</u>: \mathbb{F}_q , with $q \in \{2^n, p\}, p \simeq 2^n$, $n \ge 64$.
- * Operations: large finite-field arithmetic

New properties



Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 \rightsquigarrow *E*: low degree

$$y == E(x) \longrightarrow E$$
: low degree

Emerging uses in symmetric cryptography CCZ-equivalence

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

$$y \leftarrow E(x) \longrightarrow E$$
: low degree

$$y == E(x)$$
 $\rightsquigarrow E$: low degree

 \Rightarrow vulnerability to some attacks...

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree

 $y == E(x) \longrightarrow E$: low degree

 \Rightarrow vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

y == E(x)

Our approach

Need: verification using few multiplications.

First approach: evaluation also using few multiplications.

 $y \leftarrow E(x) \longrightarrow E$: low degree

 \Rightarrow vulnerability to some attacks...

New approach:

CCZ-equivalence

Our vision

A function is arithmetization-oriented if it is **CCZ-equivalent** to a function that can be verified efficiently.

 \rightsquigarrow *F*: high degree

$$v == G(u)$$

 \rightsquigarrow *G*: low degree

 $\sim E$: low degree

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F: \mathbb{F}_q \to \mathbb{F}_q$$
 and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

Definition [Carlet, Charpin, Zinoviev, DCC98]

 $F: \mathbb{F}_q \to \mathbb{F}_q$ and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

★ Verification is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

★ The degree is not preserved.

Definition [Carlet, Charpin, Zinoviev, DCC98]

$$F: \mathbb{F}_q \to \mathbb{F}_q$$
 and $G: \mathbb{F}_q \to \mathbb{F}_q$ are **CCZ-equivalent** if

$$\Gamma_{F} = \left\{ \left(x, F(x) \right) \mid x \in \mathbb{F}_{q} \right\} = \mathcal{A}(\Gamma_{G}) = \left\{ \mathcal{A}\left(x, G(x) \right) \mid x \in \mathbb{F}_{q} \right\},$$

where \mathcal{A} is an affine permutation, $\mathcal{A}(x) = \mathcal{L}(x) + c$.

Important things to remember!

* <u>Verification</u> is the same: if $y \leftarrow F(x)$, $v \leftarrow G(u)$

$$y == F(x)? \iff v == G(u)?$$

 \star The degree is not preserved.

Preliminaries New S-box: Flystel Anemoi: a new family of hash-functions Conclusions Comparison to previous work

Preliminaries

- Emerging uses in symmetric cryptography
- CCZ-equivalence

2 Anemoi: a new family of hash-functions

- New S-box: Flystel
- New mode: Jive
- Comparison to previous work

3 Conclusions

New S-box: Flystel New mode: Jive Comparison to previous work

Why Anemoi?

* Anemoi

Family of ZK-friendly Hash functions

Preliminaries N Anemoi: a new family of hash-functions Conclusions Conclusions

New S-box: Flystel New mode: Jive Comparison to previous work

Why Anemoi?

\star Anemoi

Family of ZK-friendly Hash functions

₩

 \star Anemoi

Greek gods of winds

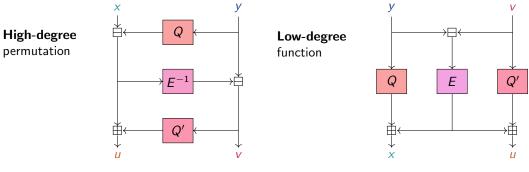
New S-box: Flystel New mode: Jive Comparison to previous work

The Flystel

 $\mathsf{Butterfly} + \mathsf{Feistel} \Rightarrow \texttt{Flystel}$

A 3-round Feistel-network with

 $Q: \mathbb{F}_q o \mathbb{F}_q$ and $Q': \mathbb{F}_q o \mathbb{F}_q$ two quadratic functions, and $E: \mathbb{F}_q o \mathbb{F}_q$ a permutation



Open Flystel \mathcal{H} .

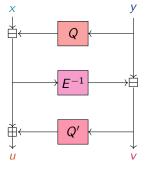
Closed Flystel \mathcal{V} .

New S-box: Flystel New mode: Jive Comparison to previous work

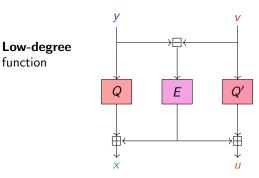
The Flystel

 ${\cal H} \mbox{ and } {\cal V}$ are CCZ-equivalent

$$\begin{split} \mathsf{\Gamma}_{\mathcal{H}} &= \big\{ ((x,y), \ \mathcal{H}((x,y)) \) \mid (x,y) \in \mathbb{F}_q^2 \big\} \\ &= \mathcal{A}\left(\big\{ ((v,y), \ \mathcal{V}((v,y)) \) \mid (v,y) \in \mathbb{F}_q^2 \big\} \right) = \mathcal{A}(\mathsf{\Gamma}_{\mathcal{V}}) \end{split}$$



Open Flystel \mathcal{H} .

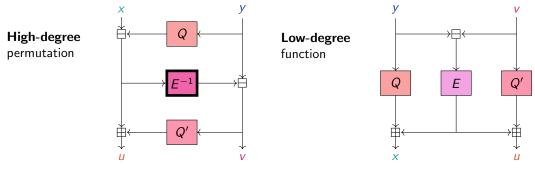


Closed Flystel \mathcal{V} .

New S-box: Flystel New mode: Jive Comparison to previous work

Advantage of CCZ-equivalence

 \star High Degree Evaluation.



 $\textit{Open Flystel } \mathcal{H}.$

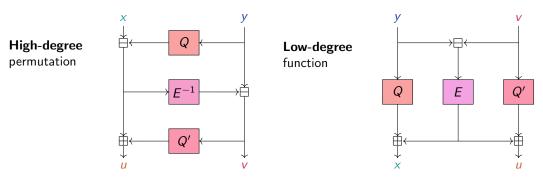
Closed Flystel \mathcal{V} .

New S-box: Flystel New mode: Jive Comparison to previous work

Advantage of CCZ-equivalence

- $\star\,$ High Degree Evaluation.
- $\star\,$ Low Cost Verification.

$$(u,v) == \mathcal{H}(x,y) \Leftrightarrow (x,u) == \mathcal{V}(y,v)$$



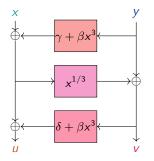
Closed Flystel \mathcal{V} .

New S-box: Flystel New mode: Jive Comparison to previous work

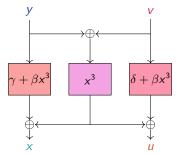
Flystel in \mathbb{F}_{2^n}

Well-studied butterfly. First introduced by [Perrin et al. 2016].

 $Q: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, x \mapsto \gamma + \beta x^3 \qquad Q': \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, x \mapsto \delta + \beta x^3 \qquad E: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}, x \mapsto x^3$



Open Flystel₂.

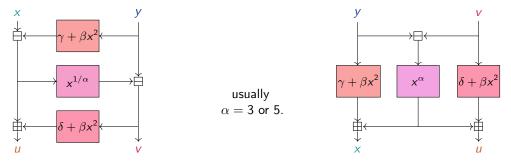


Closed Flystel₂.

Anemoi: a new family of hash-functions

$$: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \delta + \beta x^{2} \qquad E : \mathbb{F}_{p} \to$$

$$\rightarrow \mathbb{F}_p, x \mapsto \gamma + \beta x^2 \qquad Q' : \mathbb{F}_p \to \mathbb{F}_p, x \mapsto \delta + \beta x^2 \qquad E : \mathbb{F}_p \to \mathbb{F}_p, x \mapsto x^{\alpha}$$



Open Flystel_p.

Closed Flystelp.

Flystel in \mathbb{F}_p

 $Q:\mathbb{F}_p$

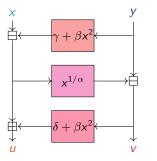
Preliminaries New S-box: Flystel Anemoi: a new family of hash-functions Conclusions Comparison to previo

Flystel in \mathbb{F}_p

$$Q: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \gamma + \beta x^{2} \qquad Q': \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto \delta + \beta x^{2} \qquad E: \mathbb{F}_{p} \to \mathbb{F}_{p}, x \mapsto x^{\alpha}$$

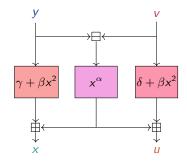
Example Curve BLS12-381:

 $\begin{aligned} &\alpha = \mathbf{5} \\ &\alpha^{-1} = 3201927644177333914734231860588723325245506255951206308265 \\ & 646508899225320392670291554150103303212531230315418047829 \end{aligned}$



Open Flystelp.

usually $\alpha = 3$ or 5.



Closed Flystelp.

New S-box: Flystel New mode: Jive Comparison to previous work

The SPN Structure

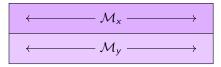
SPN: Substitution-Permutation Network

The internal state of Anemoi and its basic operations:

X	<i>x</i> 0	<i>x</i> ₁	 $x_{\ell-1}$
Y	<i>y</i> 0	<i>y</i> ₁	 $y_{\ell-1}$

(a) Internal state

(c) The confusion or S-box layer \mathcal{H} (the Flystel).

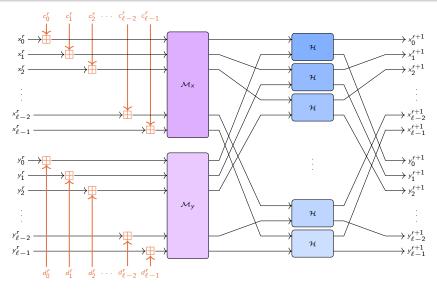


(b) The diffusion layer (matrix multiplication).

⁽d) The constant addition.

New S-box: Flystel New mode: Jive Comparison to previous work

The SPN Structure

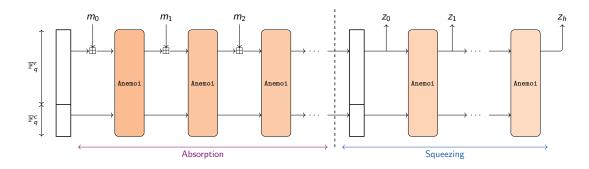


Overview of Anemoi.

New S-box: Flystel New mode: Jive Comparison to previous work

New Mode

- ★ Hash function:
 - \star input: arbitrary length
 - \star ouput: fixed length



New S-box: Flystel New mode: Jive Comparison to previous work

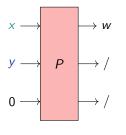
New Mode

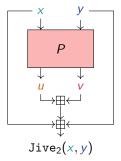
- \star Hash function:
 - \star input: arbitrary length
 - \star ouput: fixed length

- ★ Compression function:
 - \star input: fixed length
 - \star output: length 1

Dedicated mode \Rightarrow 2 words in 1

 $(x, y) \mapsto x + y + u + v$.





Anemoi: a new family of hash-functions

Some Benchmarks

	т	Rescue'	Poseidon	GRIFFIN	Anemoi			т	Rescue'	Poseidon	Griffin
R1CS	2	208	198	-	76	R1CS	2	240	216	-	
	4	224	232	112	96		4	264	264	110	
	6	216	264	-	120		6	288	315	-	
	8	256	296	176	160			8	384	363	162
	2	312	380	-	173			2	320	344	-
Plonk	4	560	1336	291	220	Plonk	4	528	1032	253	
Plonk	6	756	3024	-	320		6	768	2265	-	
	8	1152	5448	635	456		8	1280	4003	543	
	2	156	300	-	114	AIR	2	200	360	-	
AIR	4	168	348	168	144		4	220	440	220	
	6	162	396	-	180		6	240	540	-	
	8	192	480	264	240		8	320	640	360	

(a) when $\alpha = 3$.

(b) when $\alpha = 5$.

Anemoi

95

120 150

200

192

244 350

496

190

240 300

400

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (we fix s = 128).

New S-box: Flystel New mode: Jive Comparison to previous work

Some Benchmarks

	т	Rescue'	Poseidon	Griffin	Anemoi
R1CS	2	208	198	-	76
	4	224	232	112	96
	6	216	264	-	120
	8	256	296	176	160
	2	312	380	-	173
Plonk	4	560	1336	291	220
PIONK	6	756	3024	-	320
	8	1152	5448	635	456
AIR	2	156	300	-	114
	4	168	348	168	144
	6	162	396	-	180
	8	192	480	264	240

	Ш	Rescue	FOSEIDON	GRIFFIN	Allemot
R1CS	2	240	216	-	95
	4	264	264	110	120
	6	288	315	-	150
	8	384	363	162	200
	2	320	344	-	192
	4	528	1032	253	244
Plonk	6	768	2265	-	350
	8	1280	4003	543	496
	2	200	360	-	190
AIR	4	220	440	220	240
	6	240	540	-	300
	8	320	640	360	400

POSEIDON CRIEFIN Anomoj

Rescue!

m

(a) when $\alpha = 3$.

(b) when $\alpha = 5$.

Constraint comparison for Rescue-Prime, POSEIDON, GRIFFIN and Anemoi (we fix s = 128).

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system
- * New observations of fundamental interest:
 - ★ Standalone components:
 - * New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence
- More details on eprint.iacr.org/2022/840

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system
- * New observations of fundamental interest:
 - ★ Standalone components:
 - * New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence

More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

- * A new family of ZK-friendly hash functions:
 - \Rightarrow Anemoi efficient accross proof system
- * New observations of fundamental interest:
 - $\star\,$ Standalone components:
 - * New S-box: Flystel
 - \star New mode: Jive
 - $\star\,$ Identify a link between AO and CCZ-equivalence

More details on eprint.iacr.org/2022/840

Cryptanalysis and designing of arithmetization-oriented primitives remain to be explored!

Thanks for your attention!

