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�Sorbonne Université, �Inria Paris, team COSMIQ

WCC, March 7th, 2022

1 / 21 Clémence Bouvier On the Algebraic Degree of Iterated Power Functions



Background
On the algebraic degree of MiMC3

Other permutations
Integral attack

A bit of context

The block cipher MiMC

� Minimize the number of multiplications in F2n .

� Construction of MiMC3 [Albrecht et al., EC16]:

� n-bit blocks (n odd ≈ 129)
� n-bit key k
� decryption : replacing x3 by x s where

s = (2n+1 − 1)/3

x

k

⊕ x3

k ⊕ c1

⊕ x3 . . .

k ⊕ cr−1

⊕ x3

k

⊕ y
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Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

� multiparty computation (MPC)

� systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

”Usual” case

� operations on F2n , where n ' 4, 8.

� based on CPU instructions and
hardware components

Arithmetization-friendly

� operations on Fq, where
q ∈ {2n, p}, p ' 2n, n ≥ 64.

� based on large finite-field arithmetic
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Emerging uses in symmetric cryptography
Definition of algebraic degree

Algebraic degree

Let F : Fn
2 → Fn

2, there is a unique univariate polynomial representation on F2n of degree
at most 2n − 1:

F (x) =
2n−1∑
i=0

bix
i ; bi ∈ F2n

Definition

Algebraic degree of F : Fn
2 → Fn

2:

deg(F ) = max{wt(i), 0 ≤ i < 2n, and bi 6= 0}

If F : Fn
2 → Fn

2 is a permutation, then

deg(F ) ≤ n − 1
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First Plateau

Round i of MiMC3: x 7→ x3 + ci+1.

For r rounds:
� Upper bound [Eichlseder et al., AC20]: dr log2 3e .

� Aim: determine B r
3 := maxc deg

aMIMC3,c [r ] .

� Round 1:

P1(x) = x3

3 = [11]2

� Round 2:

P2(x) = x9 + c1x
6 + c2

1x
3 + c3

1

9 = [1001]2 6 = [110]2 3 = [11]2

Definition

There is a plateau whenever B r
3 = B r−1

3 .
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Degree

Rounds

Algebraic degree observed for n = 31.
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An upper bound

Proposition

Set of exponents that might appear in the polynomial:

Er = {3j mod (2n − 1) where j � i , i ∈ Er−1}

No exponent ≡ 5, 7 mod 8 ⇒ No exponent 22k − 1

Er ⊆ { 0 3 6 9 12 ��ZZ15 18 ��ZZ21
24 27 30 33 36 ��ZZ39 42 ��ZZ45
48 51 54 57 60 ��ZZ63 66 ��ZZ69

. . . 3r}

Example : 63 = 22×3 − 1 6∈ E4 = {0, 3, . . . , 81} ⇒ B4
3 < 6 = wt(63)

∀e ∈ E4\{63},wt(e) ≤ 4 ⇒ B4
3 ≤ 4
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Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

B r
3 ≤ 2× dblog2(3r )c/2− 1e

And a lower bound
if 3r < 2n − 1:

B r
3 ≥ wt(3r )

5 6 7 8 9 10 11
6 6 5 6 8 9 13
6 8 10 10 12 14 16
6 8 10 10 12 14 16

5 6 7 8 9 10 11
19 19 19 19 19 19 19
21 22 22 22 23 23 23
20 22 22 22 23 23 23

0
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8
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Degree

Rounds

Upper Bound
Lower Bound
Observed Degree

Upper Bound
Lower bound
Observed Degree
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Exact degree

Maximum-weight exponents:

Let kr = br log2 3c.

∀r ∈ {4, . . . , 16265}\F with F = {465, 571, . . .}:

� if kr is odd,

ωr = 2kr − 5 ∈ Er ,

� if kr is even,

ωr = 2kr − 7 ∈ Er .

Constructing exponents.

∃ ` s.t. ωr−` ∈ Er−` ⇒ ωr ∈ Er
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−1
3

MiMC9 and form of coefficients

� MIMC3[2r ]

x x3

0

⊕ x3

c2

⊕ x3

0

⊕ x3

c4

⊕ x3

0

⊕ x3 . . . y

� MIMC9[r ]

x x9

c2

⊕ x9

c4

⊕ x9 . . . y

Example: coefficients of maximum weight
exponent monomials at round 4

27 : c18
1 + c2

3 57 : c8
1

30 : c17
1 75 : c2

1

51 : c10
1 78 : c1

54 : c9
1 + c3
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Integral attack

Quadratic functions
Algebraic degree of MiMC

−1
3

Other Quadratic functions

Proposition

Let Er be the set of exponents in the univariate form of MIMC9[r ]. Then:

∀ i ∈ Er , i mod 8 ∈ {0, 1} .

Gold Functions: x3, x9, . . .

x xd

c1

⊕ xd . . .

cr−1

⊕ xd y

Proposition

Let Er be the set of exponents in the univariate form of MIMCd [r ], where d = 2j + 1. Then:

∀ i ∈ Er , i mod 2j ∈ {0, 1} .
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Study of MiMC−1
3

Inverse: F : x 7→ x s , s = (2n+1 − 1)/3 = [101..01]2

x x s

cr−1

⊕ x s . . .

c1

⊕ x s y

0

2

4

6

8

10

12

14

16

18

20

22

24

26

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Degree

Rounds

n = 11 n = 13 n = 15 n = 17

n = 19 n = 21 n = 23 n = 25
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Some ideas studied

Plateau between rounds 1 and 2, for s = (2n+1 − 1)/3 = [101..01]2:

� Round 1: B1
s = wt(s) = (n + 1)/2

� Round 2: B2
s = max{wt(is), for i � s} = (n + 1)/2

Proposition

For i � s such that wt(i) ≥ 2:

wt(is) ∈


[wt(i)− 1, (n − 1)/2] if wt(i) ≡ 2 mod 3

[wt(i), (n − 1)/2] if wt(i) ≡ 0 mod 3

[wt(i), (n + 1)/2] if wt(i) ≡ 1 mod 3

Next rounds: another plateau at n − 2?

rn−2 ≥
⌈

1
log2 3

(
2
⌈
n−1

4

⌉
+ 1
)⌉
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Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace V ⊂ Fn
2 with dimV ≥ dega(F ) + 1, we have a 0-sum distinguisher:⊕

x∈V
F (x) = 0.

Random permutation: degree = n − 1

k E

x
n bits

y

n bits

Block cipher

P

x
n bits

y

n bits

Random permutation
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Comparison to previous work

First Bound: dr log2 3e ⇒ Exact degree: 2× dbr log2 3c/2− 1e .

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Degree

Rounds

 bound from [EGL+20]

 exact degree (our result)

For n = 129, MIMC3 = 82 rounds

Rounds Time Data Source

80/82 2128xor 2128 [EGL+20]

81/82 2128xor 2128 New

80/82 2125xor 2125 New

Secret-key distinguishers (n = 129)
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Conclusions

� guarantee on the algebraic degree of MIMC3.

� upper bound on the algebraic degree:

2× dblog2(3r )c/2− 1e .

� bound tight, up to 16265 rounds.

� minimal complexity for higher-order differential attack

� application in music for semiconvergents of log2(3)

Thanks for your attention

�
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�
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�
� � � � �

�

�
� � � � �

�
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�

� � � � � �

�
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Music in MIMC3

� Patterns in sequence (kr )r>0:

⇒ denominators of semiconvergents of log2(3) ' 1.5849625

D = { 1 , 2 , 3, 5, 7 , 12 , 17, 29, 41, 53 , 94, 147, 200, 253, 306, 359 , . . .} ,

log2(3) ' a

b
⇔ 2a ' 3b

� Music theory:

� perfect octave 2:1
� perfect fifth 3:2

219 ' 312 ⇔ 27 '
(

3

2

)12

⇔ 7 octaves ∼ 12 fifths
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Sporadic Cases

Bound on `

Observation

∀1 ≤ t ≤ 21, ∀x ∈ Z/3tZ, ∃ε2, . . . , ε2t+2 ∈ {0, 1}, s.t. x =
2t+2∑
j=2

εj4
j mod 3t .

Let: kr = br log2 3c, br = kr mod 2 and

Lr = {`, 1 ≤ ` < r , s.t. kr−` = kr − k`} .

Proposition

Let r ≥ 4, and ` ∈ Lr s.t.:

� ` = 1, 2,

� 2 < ` ≤ 22 s.t. kr ≥ k` + 3`+ br + 1, and ` is even, or ` is odd, with br−` = br ;

� 2 < ` ≤ 22 is odd s.t. kr ≥ k` + 3`+ br + 5

Then ωr−` ∈ Er−` implies that ωr ∈ Er .
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Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.

0 19 247 12 53 359106 159 212 265 318 412 465

466 665518 624571 718 665λ+ 53µ,
1 ≤ λ ≤ 24, 0 ≤ µ ≤ 6

359 + 665λ+ 53µ,
0 ≤ λ ≤ 23, 0 ≤ µ ≤ 5

16225 16265

MIMC3, n = 129

82

MIMC3, n = 255

161

MIMC3, n = 769

486

MIMC3, n = 1024

647

Legend: Rounds for which we are able to construct an exponent.

semiconvergents of log2(3): MILP

”good” `

no ”good” `: MILP

no ”good” ` (` ≥ 53): MILP

Rounds likely to be covered by solving the conjecture.

no ”good” `: no result with MILP
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466 571 718 665λ+ 53µ,
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16225 16265
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82
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Legend: rounds covered by the inductive procedure or MILP rounds not covered
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MILP Solver

Let

Mult3 :

{
NN → NN

{j0, ..., j`−1} 7→ {(3j0) mod (2n − 1), ..., (3j`−1) mod (2n − 1)} ,

and

Cover :

{
NN → NN

{j0, ..., j`−1} 7→ {k � ji , i ∈ {0, ..., `− 1}} .

So that:
Er = Mult3

(
Cover(Er−1)

)
.

⇒ MILP problem solved using PySCIPOpt

existence of a solution ⇔ ωr ∈ (Mult3 ◦ Cover)`({3r−`})

With ` = 1:
3r−1 ∈ Er−1 Cover Mult3 2kr − αbr ∈ Er
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MILP Solver (2 rounds)

3r−2 ∈ Er−2 Cover

Mult3 Cover ...

Mult3 Cover ...

... Mult3 2kr − αbr ∈ Er

r − 2 r − 1 r
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MILP Solver (i rounds)

3r−i ∈ Er−i Cover

Mult3 Cover ...

Mult3 Cover ...

...

Mult3

Mult3

Mult3
Cover. . . ...

Mult3

Cover. . . ...

... Mult3 2kr − αbr ∈ Er

r − i r − i + 1 r − i + 2 r
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