On the Algebraic Degree of Iterated Power Functions

Clémence Bouvier ^{3, 5} joint work with Anne Canteaut²⁵ and Léo Perrin³⁵

*Sorbonne Université, *Inria Paris, team COSMIQ

WCC, March 7th, 2022

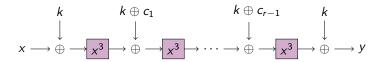
Ínnía-

A bit of context

The block cipher MiMC

- → Minimize the number of multiplications in \mathbb{F}_{2^n} .
- ♣ Construction of MiMC₃ [Albrecht et al., EC16]:
 - ▶ *n*-bit blocks (*n* odd \approx 129)
 - ♪ *n*-bit key *k*

A decryption : replacing
$$x^3$$
 by x^s where $s = (2^{n+1} - 1)/3$



A bit of context

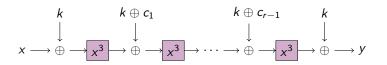
The block cipher MiMC

- → Minimize the number of multiplications in \mathbb{F}_{2^n} .
- Construction of MiMC₃ [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 129)
 - ♪ *n*-bit key *k*
 - ♪ decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $R := \lceil n \log_3 2 \rceil$.

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC instances.



A bit of context

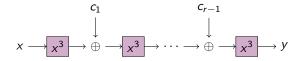
The block cipher MiMC

- → Minimize the number of multiplications in \mathbb{F}_{2^n} .
- Construction of MiMC₃ [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 129)
 - ♪ *n*-bit key *k*
 - A decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

 $R := \lceil n \log_3 2 \rceil .$

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC instances.



Content

On the Algebraic Degree of Iterated Power Functions

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree
- 2 On the algebraic degree of MiMC₃
 - First plateau
 - Bounding the degree
 - Exact degree

Other permutations

- Quadratic functions
- Algebraic degree of MiMC₃⁻¹

Integral attack

- Secret-key 0-sum distinguisher
- Comparison to previous work

Background

n the algebraic degree of MiMC₃ Other permutations Integral attack Emerging uses in symmetric cryptography Definition of algebraic degree

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree

On the algebraic degree of MiMC₃

- First plateau
- Bounding the degree
- Exact degree

3 Other permutations

- Quadratic functions
- Algebraic degree of MiMC₃⁻¹

Integral attack

- Secret-key 0-sum distinguisher
- Comparison to previous work

Emerging uses in symmetric cryptography Definition of algebraic degree

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- multiparty computation (MPC)
- systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

Emerging uses in symmetric cryptography Definition of algebraic degree

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- multiparty computation (MPC)
- systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

"Usual" case

- ♪ operations on \mathbb{F}_{2^n} , where $n \simeq 4, 8$.
- based on CPU instructions and hardware components

Arithmetization-friendly

- ▶ operations on \mathbb{F}_q , where $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$.
- based on large finite-field arithmetic

Emerging uses in symmetric cryptography Definition of algebraic degree

Algebraic degree

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$:

$$\deg(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

 $\deg(F) \le n-1$

Emerging uses in symmetric cryptography Definition of algebraic degree

Algebraic degree

Let $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^n-1} b_i x^i; b_i \in \mathbb{F}_{2^n}$$

Definition

Algebraic degree of $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$:

$$\deg(F) = \max\{wt(i), \ 0 \le i < 2^n, \ \text{and} \ b_i \ne 0\}$$

If $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg(F) \leq n-1$$

First plateau Bounding the degree Exact degree

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree

On the algebraic degree of MiMC₃

- First plateau
- Bounding the degree
- Exact degree

3 Other permutations

- Quadratic functions
- Algebraic degree of $MiMC_3^{-1}$

Integral attack

- Secret-key 0-sum distinguisher
- Comparison to previous work

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ♪ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- ♪ Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- A Round 1: $B_3^1 = 2$ $P_1(x) = x^3$ 3 = [11]₂

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

J Round 1: B₃¹ = 2 P₁(x) = x³ 3 = [11]₂

J Round 2: P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³ 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 A Round 1: B₃¹ = 2
 P₁(x) = x³
 3 = [11]₂
 B₃² = 2
 P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³
 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

Prove the second sec

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.

First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

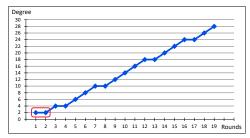
For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 A Round 1: B₃¹ = 2
 P₁(x) = x³
 3 = [11]₂
 B₃² = 2
 P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³
 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

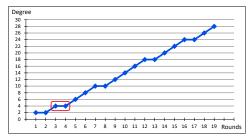
For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 $P_{1}(x) = x^{3}$ $P_{1}(x) = x^{3}$ $3 = [11]_{2}$ $P_{2}(x) = x^{9} + c_{1}x^{6} + c_{1}^{2}x^{3} + c_{1}^{3}$ $9 = [1001]_{2} \ 6 = [110]_{2} \ 3 = [11]_{2}$

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

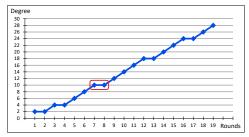
For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 A Round 1: B₃¹ = 2
 P₁(x) = x³
 3 = [11]₂
 B₃² = 2
 P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³
 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

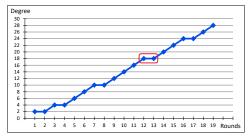
For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 A Round 1: B₃¹ = 2
 P₁(x) = x³
 3 = [11]₂
 B₃² = 2
 P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³
 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



First plateau Bounding the degree Exact degree

First Plateau

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

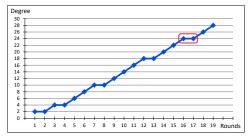
For r rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

 A Round 1: B₃¹ = 2
 P₁(x) = x³
 3 = [11]₂
 B₃² = 2
 P₂(x) = x⁹ + c₁x⁶ + c₁²x³ + c₁³
 9 = [1001]₂ 6 = [110]₂ 3 = [11]₂

Definition

There is a **plateau** whenever $B_3^r = B_3^{r-1}$.



First plateau Bounding the degree Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

 $\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \preceq i, i \in \mathcal{E}_{r-1}\}$

First plateau Bounding the degree Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow$ No exponent $2^{2k} - 1$

First plateau Bounding the degree Exact degree

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \preceq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow$ No exponent $2^{2k} - 1$

ż

$$\underbrace{ \mathsf{Example}}_{\forall e \in \mathcal{E}_4 \setminus \{63\}, wt(e) \le 4} : 63 = 2^{2 \times 3} - 1 \notin \mathcal{E}_4 = \{0, 3, \dots, 81\} \qquad \Rightarrow B_3^4 < 6 = wt(63)$$

... 3^{r}

First plateau Bounding the degree Exact degree

Bounding the degree

Theorem

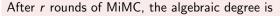
After r rounds of MiMC, the algebraic degree is

 $B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

First plateau Bounding the degree Exact degree

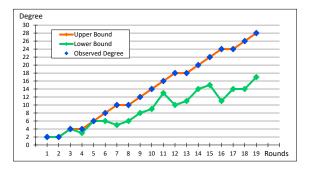
Bounding the degree

Theorem



 $B_3^r \leq 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$

And a lower bound if $3^r < 2^n - 1$:



First plateau Bounding the degree Exact degree

Exact degree

Maximum-weight exponents:

Let $k_r = \lfloor r \log_2 3 \rfloor$. $\forall r \in \{4, \ldots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \ldots\}$: $\Im \text{ if } k_r \text{ is odd,}$

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

 $hacksim k_r$ is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$

First plateau Bounding the degree **Exact degree**

Exact degree

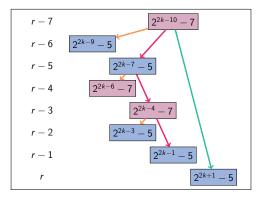
Maximum-weight exponents:

Let $k_r = \lfloor r \log_2 3 \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: \square if k_r is odd,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$$

1 if k_r is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

First plateau Bounding the degree Exact degree

Exact degree

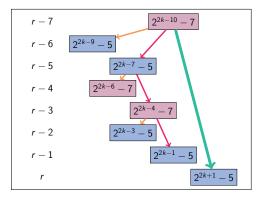
Maximum-weight exponents:

Let $k_r = \lfloor r \log_2 3 \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: \square if k_r is odd,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$$

1 if k_r is even,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r.$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

First plateau Bounding the degree **Exact degree**

Exact degree

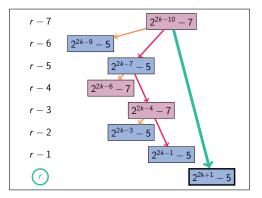
Maximum-weight exponents:

Let $k_r = \lfloor r \log_2 3 \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: \square if k_r is odd,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$$

1 if k_r is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$



$$\exists \, \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \, \Rightarrow \, \omega_r \in \mathcal{E}_r$$

First plateau Bounding the degree **Exact degree**

Exact degree

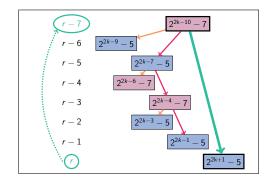
Maximum-weight exponents:

Let $k_r = \lfloor r \log_2 3 \rfloor$. $\forall r \in \{4, \dots, 16265\} \setminus \mathcal{F} \text{ with } \mathcal{F} = \{465, 571, \dots\}$: \Im if k_r is odd,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

 $hacksim k_r$ is even,

$$\omega_r=2^{k_r}-7\in\mathcal{E}_r.$$



$$\exists \ell \text{ s.t. } \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

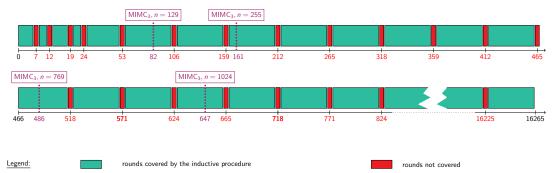
First plateau Bounding the degree Exact degree

Covered rounds

Idea of the proof:

ightarrow inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.



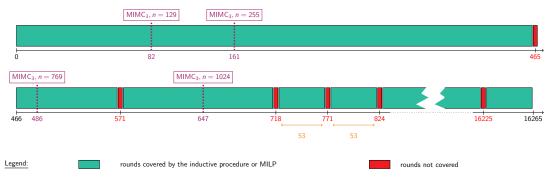
First plateau Bounding the degree **Exact degree**

Covered rounds

Idea of the proof:

- ightarrow inductive proof: existence of "good" ℓ
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.



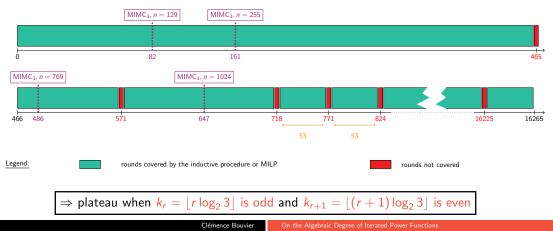
First plateau Bounding the degree Exact degree

Covered rounds

Idea of the proof:

- \blacktriangleright inductive proof: existence of "good" ℓ
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.



Quadratic functions Algebraic degree of MiMC₃

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree

On the algebraic degree of MiMC₃

- First plateau
- Bounding the degree
- Exact degree

3 Other permutations

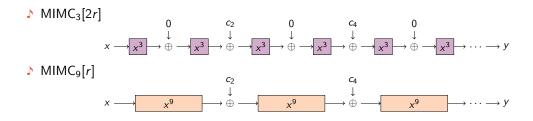
- Quadratic functions
- Algebraic degree of MiMC₃⁻¹

Integral attack

- Secret-key 0-sum distinguisher
- Comparison to previous work

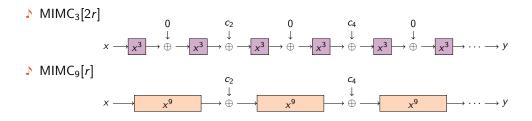
Quadratic functions Algebraic degree of MiMC₃

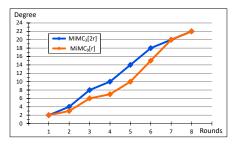
MiMC₉ and form of coefficients



Quadratic functions Algebraic degree of MiMC₃

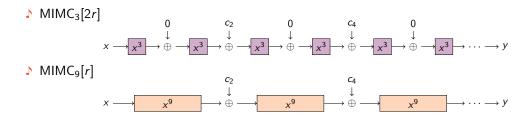
MiMC₉ and form of coefficients

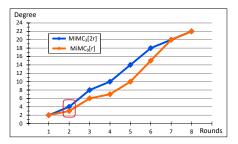




Quadratic functions Algebraic degree of MiMC₃

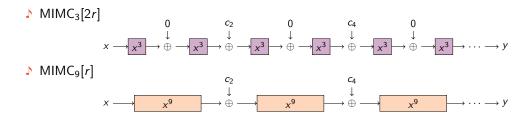
MiMC₉ and form of coefficients

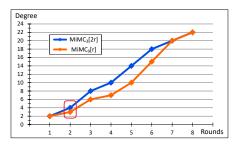




Quadratic functions Algebraic degree of MiMC₃

MiMC₉ and form of coefficients





Example: coefficients of maximum weight exponent monomials at round 4

$27: c_1^{18} + c_3^2$	57:c ₁ ⁸
$30:c_1^{17}$	$75: c_1^2$
$51:c_1^{10}$	78 : <i>c</i> ₁
$54: c_1^9 + c_3$	

Quadratic functions Algebraic degree of MiMC₃

Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

 $\forall i \in \mathcal{E}_r, i \bmod 8 \in \{0,1\}.$

Quadratic functions Algebraic degree of MiMC₃

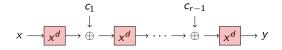
Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

 $\forall i \in \mathcal{E}_r, \ i \bmod 8 \in \{0, 1\} \ .$

Gold Functions: x^3 , x^9 , ...



Proposition

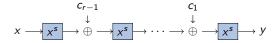
Let \mathcal{E}_r be the set of exponents in the univariate form of $\text{MIMC}_d[r]$, where $d = 2^j + 1$. Then:

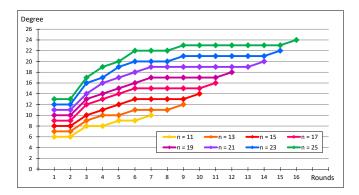
 $\forall i \in \mathcal{E}_r, i \mod 2^j \in \{0,1\}$.

Quadratic functions Algebraic degree of MiMC₃

Study of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$





Quadratic functions Algebraic degree of MiMC₃

Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- → Round 1: $B_s^1 = wt(s) = (n+1)/2$
- ▷ Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Quadratic functions Algebraic degree of MiMC₃

Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- → Round 1: $B_s^1 = wt(s) = (n+1)/2$
- ▷ Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3\\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3\\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Next rounds: another plateau at n - 2?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$

Secret-key 0-sum distinguishe Comparison to previous work

Background

- Emerging uses in symmetric cryptography
- Definition of algebraic degree

On the algebraic degree of MiMC₃

- First plateau
- Bounding the degree
- Exact degree

3 Other permutations

- Quadratic functions
- Algebraic degree of MiMC₃⁻¹

Integral attack

- Secret-key 0-sum distinguisher
- Comparison to previous work

Secret-key 0-sum distinguisher Comparison to previous work

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1

Secret-key 0-sum distinguishe Comparison to previous work

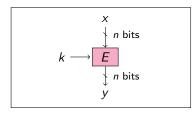
Higher-order differential attack

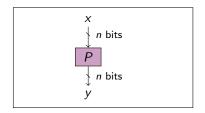
Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n - 1



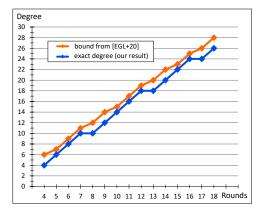


Random permutation

Secret-key 0-sum distinguishe Comparison to previous work

Comparison to previous work

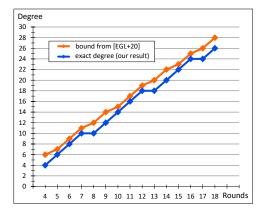
<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



Secret-key 0-sum distinguishe Comparison to previous work

Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow$ Exact degree: $2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	[EGL+20]
<mark>81</mark> /82	2^{128} XOR	2 ¹²⁸	New
80/82	2 ¹²⁵ XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Secret-key 0-sum distinguishe Comparison to previous work

Conclusions

- \square guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

 $2\times \lceil \lfloor \log_2(3^r) \rfloor/2 - 1 \rceil$.

bound tight, up to 16265 rounds.

minimal complexity for higher-order differential attack

Secret-key 0-sum distinguishe Comparison to previous work

Conclusions

- J guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

 $2\times \lceil \lfloor \log_2(3^r) \rfloor/2 - 1 \rceil$.

- **bound tight**, up to 16265 rounds.
- minimal complexity for higher-order differential attack
- \square application in music for semiconvergents of $\log_2(3)$

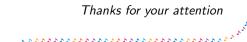
Secret-key 0-sum distinguishe Comparison to previous work

Conclusions

- J guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

 $2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$.

- **bound tight**, up to 16265 rounds.
- minimal complexity for higher-order differential attack
- \square application in music for semiconvergents of $\log_2(3)$



Secret-key 0-sum distinguishe Comparison to previous work

Music in MIMC₃

→ Patterns in sequence $(k_r)_{r>0}$:

 \Rightarrow denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$

 $\mathfrak{D} = \{1, 2, 3, 5, 7, 12, 17, 29, 41, 53, 94, 147, 200, 253, 306, 359, \ldots\},\$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

Music theory:

- perfect octave 2:1
- perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Secret-key 0-sum distinguishe Comparison to previous work

Sporadic Cases

Bound on ℓ

Observation

$$\forall 1 \leq t \leq 21, \; \forall x \in \mathbb{Z}/3^t\mathbb{Z}, \; \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \; \text{s.t.} \; x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \; \text{mod} \; 3^t \; .$$

Let: $k_r = \lfloor r \log_2 3 \rfloor$, $b_r = k_r \mod 2$ and

$$\mathcal{L}_r = \{\ell, \ 1 \leq \ell < r, \ \text{s.t.} \ k_{r-\ell} = k_r - k_\ell \} \;.$$

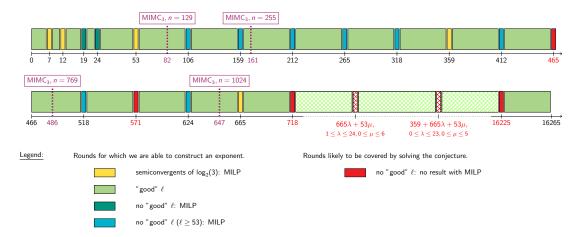
Proposition

Let $r \ge 4$, and $\ell \in \mathcal{L}_r$ s.t.: $\ell = 1, 2,$ $2 < \ell \le 22$ s.t. $k_r \ge k_\ell + 3\ell + b_r + 1$, and ℓ is even, or ℓ is odd, with $b_{r-\ell} = \overline{b_r}$; $2 < \ell \le 22$ is odd s.t. $k_r \ge k_\ell + 3\ell + \overline{b_r} + 5$ Then $\omega_{r-\ell} \in \mathcal{E}_{r-\ell}$ implies that $\omega_r \in \mathcal{E}_r$.

Secret-key 0-sum distinguishe Comparison to previous work

Covered Rounds

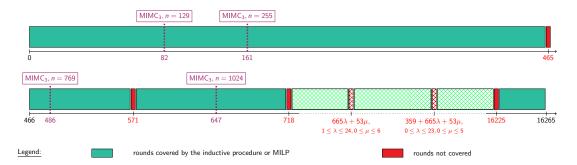
Rounds for which we are able to exhibit a maximum-weight exponent.



Secret-key 0-sum distinguishe Comparison to previous work

Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.



Clémence Bouvier On the Algebraic Degree of Iterated Power Functions

Secret-key 0-sum distinguishe Comparison to previous work

MILP Solver

$$\mathsf{Mult}_3: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{(3j_0) \bmod (2^n - 1), ..., (3j_{\ell-1}) \bmod (2^n - 1)\} \end{cases},$$

and

Let

$$\mathsf{Cover}: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0, ..., j_{\ell-1}\} & \mapsto \{k \preceq j_i, i \in \{0, ..., \ell-1\}\} \end{cases}.$$

So that:

$$\mathcal{E}_r = \mathsf{Mult}_3(\mathsf{Cover}(\mathcal{E}_{r-1}))$$
.

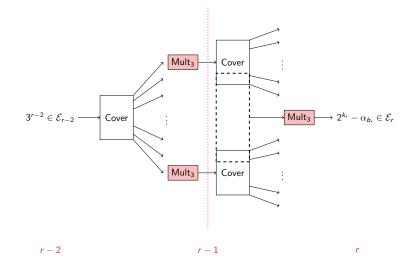
 \Rightarrow MILP problem solved using PySCIPOpt

existence of a solution $\Leftrightarrow \omega_r \in (\mathsf{Mult}_3 \circ \mathsf{Cover})^{\ell}(\{3^{r-\ell}\})$

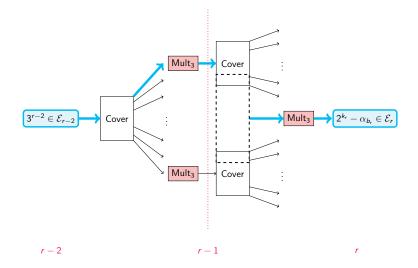
<u>With $\ell = 1$ </u>:

$$3^{r-1} \in \mathcal{E}_{r-1} \longrightarrow \text{Cover} \longrightarrow \text{Mult}_3 \longrightarrow 2^{k_r} - \alpha_{b_r} \in \mathcal{E}_r$$

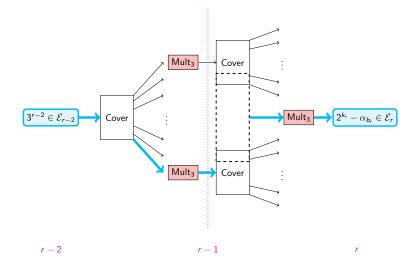
Secret-key 0-sum distinguishe Comparison to previous work



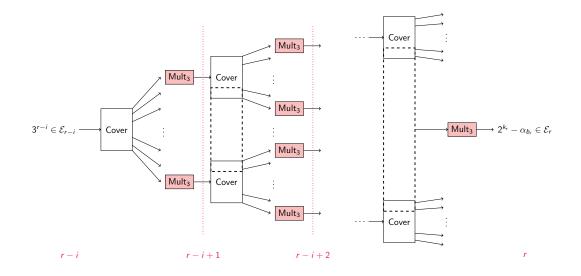
Secret-key 0-sum distinguishe Comparison to previous work



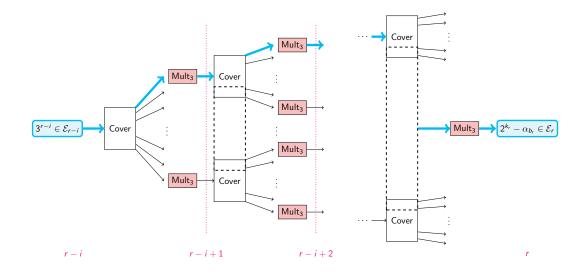
Secret-key 0-sum distinguishe Comparison to previous work



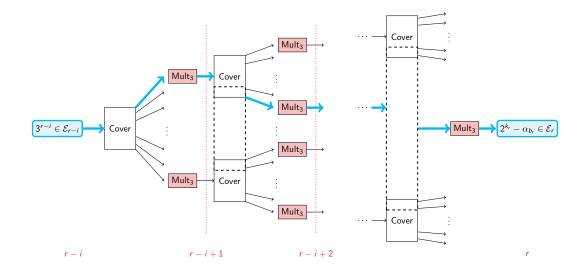
Secret-key 0-sum distinguishe Comparison to previous work



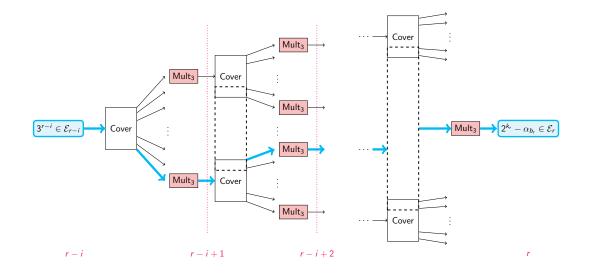
Secret-key 0-sum distinguishe Comparison to previous work



Secret-key 0-sum distinguishe Comparison to previous work



Secret-key 0-sum distinguishe Comparison to previous work



Secret-key 0-sum distinguishe Comparison to previous work

