On the Algebraic Degree of Iterated Power Functions

Clémence Bouvier 5,52
joint work with Anne Canteaut 2 and Léo Perrin 2

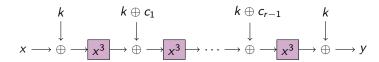
Sorbonne Université, Inria Paris, team COSMIQ

JC2, April 11th, 2022

A bit of context

The block cipher MiMC

- lacksquare Minimize the number of multiplications in \mathbb{F}_{2^n} .
- Construction of MiMC₃ [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 129)
 - ♪ *n*-bit key *k*
 - ♪ decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$



A bit of context

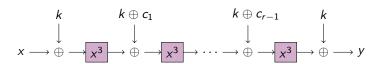
The block cipher MiMC

- $oldsymbol{\square}$ Minimize the number of multiplications in \mathbb{F}_{2^n} .
- Construction of MiMC₃ [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 129)
 - *▶ n*-bit key *k*
 - decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil$$
.

n	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC instances.



A bit of context

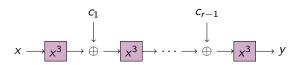
The block cipher MiMC

- $oldsymbol{\square}$ Minimize the number of multiplications in \mathbb{F}_{2^n} .
- Construction of MiMC₃ [Albrecht et al., EC16]:
 - ♪ *n*-bit blocks (*n* odd \approx 129)
 - *▶ n*-bit key *k*
 - decryption : replacing x^3 by x^s where $s = (2^{n+1} 1)/3$

$$R := \lceil n \log_3 2 \rceil$$
.

 1	129	255	769	1025
R	82	161	486	647

Number of rounds for MiMC instances.



Content

On the Algebraic Degree of Iterated Power Functions

- Background
 - Emerging uses in symmetric cryptography
 - Definition of algebraic degree
- 2 On the algebraic degree of MiMC₃
 - First plateau
 - Bounding the degree
 - Exact degree
- Integral attack
 - Secret-key 0-sum distinguisher
 - Comparison to previous work

- Background
 - Emerging uses in symmetric cryptography
 - Definition of algebraic degree
- 2 On the algebraic degree of MiMC₃
 - First plateau
 - Bounding the degree
 - Exact degree
- Integral attack
 - Secret-key 0-sum distinguisher
 - Comparison to previous work

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- multiparty computation (MPC)
- systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

Emerging uses in symmetric cryptography

Problem: Analyzing the security of new symmetric primitives

Protocols requiring new primitives:

- multiparty computation (MPC)
- → systems of zero-knowledge proofs (zk-SNARK, zk-STARK)

Primitives designed to minimize the number of multiplications in finite fields.

"Usual" case

- ▶ operations on \mathbb{F}_{2^n} , where $n \simeq 4, 8$.
- based on CPU instructions and hardware components

Arithmetization-friendly

- ▶ operations on \mathbb{F}_q , where $q \in \{2^n, p\}, p \simeq 2^n, n \ge 64$.
- based on large finite-field arithmetic

Algebraic degree

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_{i} x^{i}; b_{i} \in \mathbb{F}_{2^{n}}$$

Definition

Algebraic degree of $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$:

$$deg(F) = max\{wt(i), 0 \le i < 2^n, and b_i \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg(F) \leq n-1$$

Algebraic degree

Let $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$, there is a unique univariate polynomial representation on \mathbb{F}_{2^n} of degree at most $2^n - 1$:

$$F(x) = \sum_{i=0}^{2^{n}-1} b_{i} x^{i}; b_{i} \in \mathbb{F}_{2^{n}}$$

Definition

Algebraic degree of $F : \mathbb{F}_2^n \to \mathbb{F}_2^n$:

$$deg(F) = max\{wt(i), 0 \le i < 2^n, and b_i \ne 0\}$$

If $F: \mathbb{F}_2^n \to \mathbb{F}_2^n$ is a permutation, then

$$\deg(F) \leq n-1$$

- Background
 - Emerging uses in symmetric cryptography
 - Definition of algebraic degree
- 2 On the algebraic degree of MiMC₃
 - First plateau
 - Bounding the degree
 - Exact degree
- Integral attack
 - Secret-key 0-sum distinguisher
 - Comparison to previous work

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $lacksymbol{A}$ Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- ho Aim: determine $B_3^r := \max_c \deg^a MIMC_{3,c}[r]$.
- Nound 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

$$3 = [11]_2$$

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- ho Aim: determine $B_3^r := \max_c \deg^a MIMC_{3,c}[r]$.

$$\mathcal{P}_1(x) = x^3$$

$$3 = [11]_2$$

Nound 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- lacksquare Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- Round 1: $B_3^1 = 2$ $\mathcal{P}_1(x) = x^3$ $3 = [11]_2$
- Round 2: $B_3^2 = 2$ $\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$ $9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $lacksymbol{\mathcal{P}}$ Aim: determine $B_3^r := \max_c \deg^a \mathsf{MIMC}_{3,c}[r]$.
- **Proof** Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

- $3 = [11]_2$
- Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$
- ∴ Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

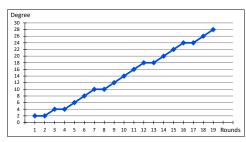
$$3 = [11]_2$$

Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$
- Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

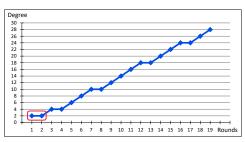
$$3 = [11]_2$$

Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 6 = [110]_2 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$
- Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

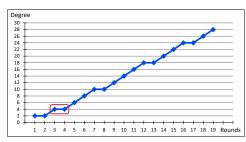
$$3 = [11]_2$$

Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$
- Round 1: $B_3^1 = 2$

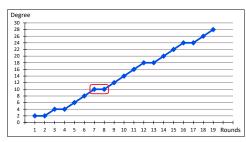
$$\mathcal{P}_1(x) = x^3$$

$$3 = [11]_2$$

Pound 2: $B_3^2 = 2$ $P_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$

$$9 = [1001]_2 6 = [110]_2 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$

$$\mathcal{P}_1(x) = x^3$$

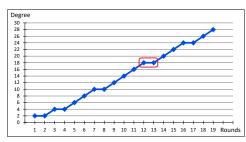
$$3 = [11]_2$$

Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

Round *i* of MiMC₃: $x \mapsto x^3 + c_{i+1}$.

For *r* rounds:

- ▶ Upper bound [Eichlseder et al., AC20]: $\lceil r \log_2 3 \rceil$.
- $\textbf{A} \ \, \text{Aim: determine} \qquad \qquad B_3^r := \max_c \deg^a \! \mathsf{MIMC}_{3,c}[r] \; .$
- Round 1: $B_3^1 = 2$

$$\mathcal{P}_1(x) = x^3$$

$$3 = [11]_2$$

Round 2: $B_3^2 = 2$

$$\mathcal{P}_2(x) = x^9 + c_1 x^6 + c_1^2 x^3 + c_1^3$$

$$9 = [1001]_2 \ 6 = [110]_2 \ 3 = [11]_2$$

Definition



Algebraic degree observed for n = 31.

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow \text{No exponent } 2^{2k} - 1$

...
$$3^r$$

An upper bound

Proposition

Set of exponents that might appear in the polynomial:

$$\mathcal{E}_r = \{3j \mod (2^n - 1) \text{ where } j \leq i, i \in \mathcal{E}_{r-1}\}$$

No exponent $\equiv 5,7 \mod 8 \Rightarrow \text{No exponent } 2^{2k} - 1$

...
$$3^r$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

Bounding the degree

Theorem

After r rounds of MiMC, the algebraic degree is

$$B_3^r \le 2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$

And a lower bound if $3^r < 2^n - 1$:

$$B_3^r \geq wt(3^r)$$

Maximum-weight exponents:

Let
$$k_r = \lfloor r \log_2 3 \rfloor$$
.

$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

ightharpoonup if k_r is odd,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r$$

ightharpoonup if k_r is even,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.

Maximum-weight exponents:

Let
$$k_r = \lfloor r \log_2 3 \rfloor$$
.

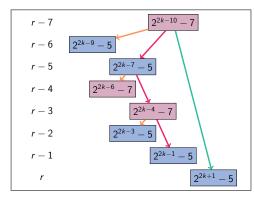
$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

 \bullet if k_r is odd,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

ightharpoonup if k_r is even,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor r \log_2 3 \rfloor$$
.

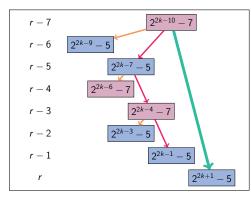
$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} :$$

ightharpoonup if k_r is odd,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

ightharpoonup if k_r is even,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor r \log_2 3 \rfloor$$
.

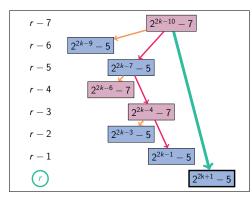
$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} \text{:}$$

ightharpoonup if k_r is odd,

$$\omega_r=2^{k_r}-5\in\mathcal{E}_r,$$

ightharpoonup if k_r is even,

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.



$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Maximum-weight exponents:

Let
$$k_r = \lfloor r \log_2 3 \rfloor$$
.

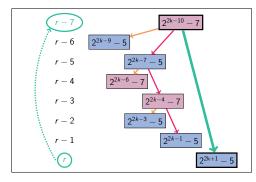
$$\forall r \in \{4,\dots,16265\} \backslash \mathcal{F} \text{ with } \mathcal{F} = \{465,571,\dots\} \colon$$

ightharpoonup if k_r is odd,

$$\omega_r = 2^{k_r} - 5 \in \mathcal{E}_r,$$

ightharpoonup if k_r is even.

$$\omega_r = 2^{k_r} - 7 \in \mathcal{E}_r$$
.



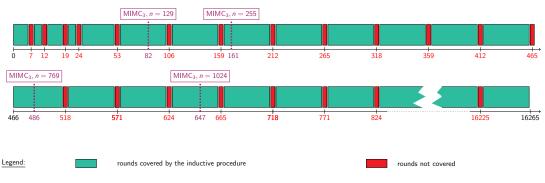
$$\exists \ell \text{ s.t.} \quad \omega_{r-\ell} \in \mathcal{E}_{r-\ell} \Rightarrow \omega_r \in \mathcal{E}_r$$

Covered rounds

Idea of the proof:

♪ inductive proof: existence of "good" ℓ

Rounds for which we are able to exhibit a maximum-weight exponent.

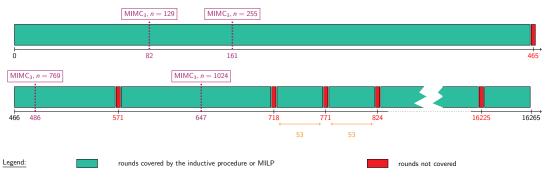


Covered rounds

Idea of the proof:

- ♪ inductive proof: existence of "good" ℓ
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.

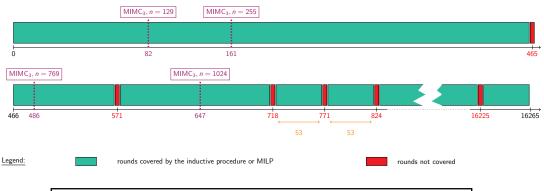


Covered rounds

Idea of the proof:

- ♪ inductive proof: existence of "good" ℓ
- MILP solver (PySCIPOpt)

Rounds for which we are able to exhibit a maximum-weight exponent.



 \Rightarrow plateau when $k_r = |r \log_2 3|$ is odd and $k_{r+1} = |(r+1) \log_2 3|$ is even

- Background
 - Emerging uses in symmetric cryptography
 - Definition of algebraic degree
- On the algebraic degree of MiMC₃
 - First plateau
 - Bounding the degree
 - Exact degree
- Integral attack
 - Secret-key 0-sum distinguisher
 - Comparison to previous work

Higher-order differential attack

Exploiting a low algebraic degree

For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0.$$

Random permutation: degree = n-1

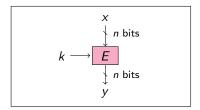
Higher-order differential attack

Exploiting a low algebraic degree

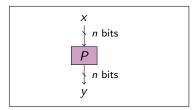
For any affine subspace $\mathcal{V} \subset \mathbb{F}_2^n$ with dim $\mathcal{V} \geq \deg^a(F) + 1$, we have a 0-sum distinguisher:

$$\bigoplus_{x\in\mathcal{V}}F(x)=0$$

Random permutation: degree = n-1



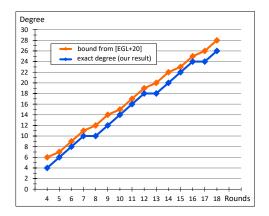
Block cipher



Random permutation

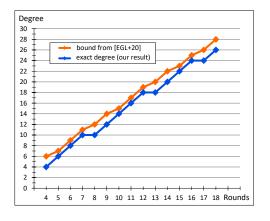
Comparison to previous work

<u>First Bound</u>: $\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$.



Comparison to previous work

First Bound:
$$\lceil r \log_2 3 \rceil \Rightarrow \text{Exact degree: } 2 \times \lceil \lfloor r \log_2 3 \rfloor / 2 - 1 \rceil$$
.



For n = 129, MIMC₃ = 82 rounds

Rounds	Time	Data	Source
80/82	$2^{128}\mathrm{XOR}$	2^{128}	[EGL+20]
81/82	$2^{128}\mathrm{XOR}$	2 ¹²⁸	New
80/82	2^{125} XOR	2 ¹²⁵	New

Secret-key distinguishers (n = 129)

Conclusions

- \rightarrow guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil$$
.

- bound tight, up to 16265 rounds.
- iminimal complexity for higher-order differential attack

Conclusions

- ightharpoonup guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil.$$

- bound tight, up to 16265 rounds.
- iminimal complexity for higher-order differential attack
- \rightarrow application in music for semiconvergents of $log_2(3)$

Conclusions

- \rightarrow guarantee on the algebraic degree of MIMC₃.
 - upper bound on the algebraic degree:

$$2 \times \lceil \lfloor \log_2(3^r) \rfloor / 2 - 1 \rceil.$$

- bound tight, up to 16265 rounds.
- iminimal complexity for higher-order differential attack
- ightharpoonup application in music for semiconvergents of $log_2(3)$

See more details on eprint.iacr.org/2022/366

Thanks for your attention

Music in MIMC₃

- ▶ Patterns in sequence $(k_r)_{r>0}$:
 - \Rightarrow denominators of semiconvergents of $\log_2(3) \simeq 1.5849625$

$$\mathfrak{D} = \{ \boxed{1}, \boxed{2}, 3, 5, \boxed{7}, \boxed{12}, 17, 29, 41, \boxed{53}, 94, 147, 200, 253, 306, \boxed{359}, \ldots \} \; ,$$

$$\log_2(3) \simeq \frac{a}{b} \quad \Leftrightarrow \quad 2^a \simeq 3^b$$

- Music theory:
 - ▶ perfect octave 2:1
 - perfect fifth 3:2

$$2^{19} \simeq 3^{12} \quad \Leftrightarrow \quad 2^7 \simeq \left(\frac{3}{2}\right)^{12} \quad \Leftrightarrow \quad 7 \text{ octaves } \sim 12 \text{ fifths}$$

Sporadic Cases

Bound on ℓ

Observation

$$\forall 1 \leq t \leq 21, \ \forall x \in \mathbb{Z}/3^t\mathbb{Z}, \ \exists \varepsilon_2, \dots, \varepsilon_{2t+2} \in \{0,1\}, \ \text{s.t.} \ x = \sum_{j=2}^{2t+2} \varepsilon_j 4^j \ \text{mod} \ 3^t \ .$$

Let: $k_r = \lfloor r \log_2 3 \rfloor$, $b_r = k_r \mod 2$ and

$$\mathcal{L}_r = \{\ell, \ 1 \le \ell < r, \ \text{s.t.} \ k_{r-\ell} = k_r - k_\ell \}$$
.

Proposition

Let $r \geq 4$, and $\ell \in \mathcal{L}_r$ s.t.:

$$^$$
 ℓ = 1, 2,

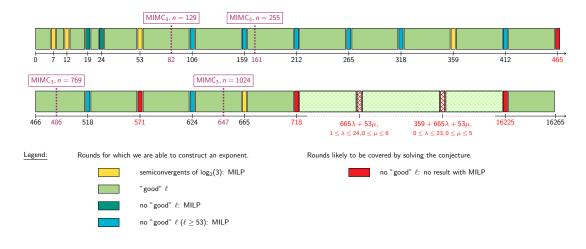
▶ 2 <
$$\ell$$
 ≤ 22 s.t. $k_r \ge k_\ell + 3\ell + b_r + 1$, and ℓ is even, or ℓ is odd, with $b_{r-\ell} = \overline{b_r}$;

♪
$$2 < \ell \le 22$$
 is odd s.t. $k_r \ge k_\ell + 3\ell + \overline{b_r} + 5$

Then $\omega_{r-\ell} \in \mathcal{E}_{r-\ell}$ implies that $\omega_r \in \mathcal{E}_r$.

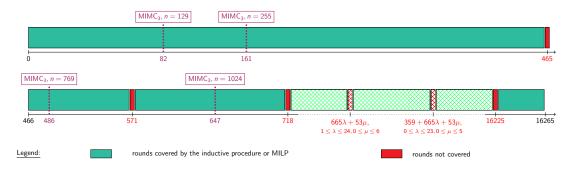
Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.



Covered Rounds

Rounds for which we are able to exhibit a maximum-weight exponent.



MILP Solver

Let

$$\mathsf{Mult}_3: egin{cases} \mathbb{N}^{\mathbb{N}} & o \mathbb{N}^{\mathbb{N}} \ \{j_0,...,j_{\ell-1}\} & \mapsto \{(3j_0) \ \mathsf{mod} \ (2^n-1),...,(3j_{\ell-1}) \ \mathsf{mod} \ (2^n-1)\} \end{cases} \; ,$$

and

$$\mathsf{Cover}: \begin{cases} \mathbb{N}^{\mathbb{N}} & \to \mathbb{N}^{\mathbb{N}} \\ \{j_0,...,j_{\ell-1}\} & \mapsto \{k \preceq j_i, i \in \{0,...,\ell-1\}\} \end{cases} \; .$$

So that:

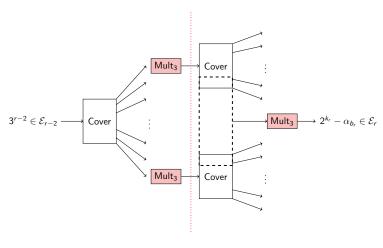
$$\mathcal{E}_r = \mathsf{Mult}_3(\mathsf{Cover}(\mathcal{E}_{r-1}))$$
.

⇒ MILP problem solved using PySCIPOpt

existence of a solution
$$\Leftrightarrow$$
 $\omega_r \in (\mathsf{Mult}_3 \circ \mathsf{Cover})^\ell(\{3^{r-\ell}\})$

With $\ell = 1$:

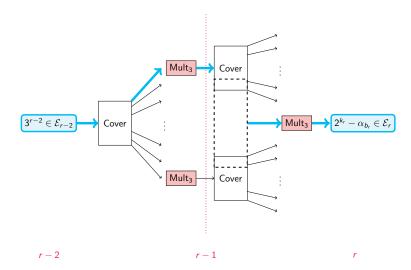
$$3^{r-1} \in \mathcal{E}_{r-1} \longrightarrow \text{Cover} \longrightarrow \text{Mult}_3 \longrightarrow 2^{k_r} - \alpha_{b_r} \in \mathcal{E}_r$$

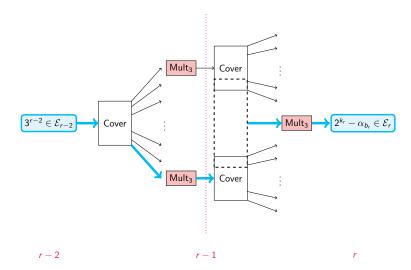


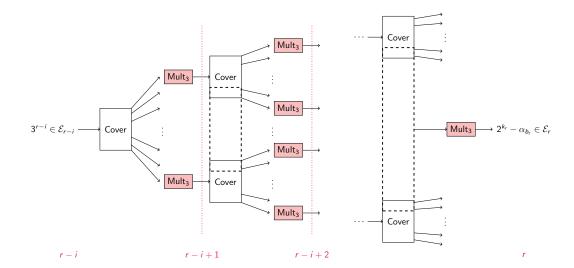
r-2

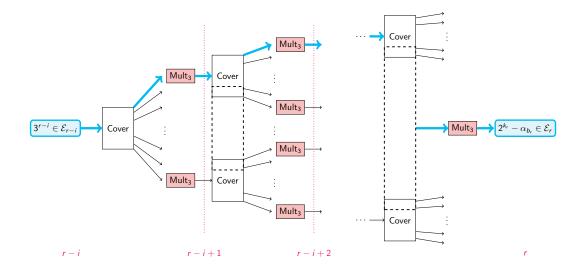
r-1

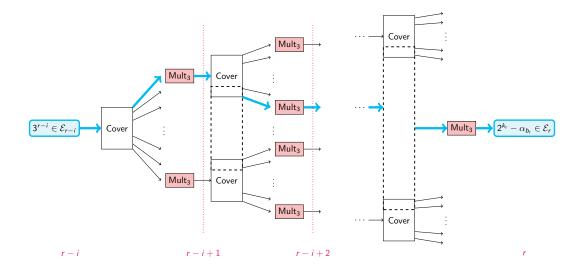
r

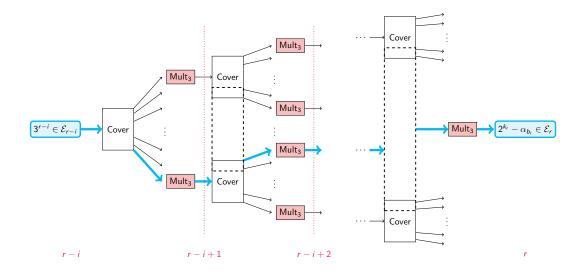


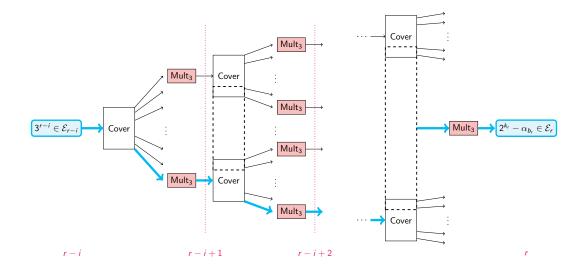


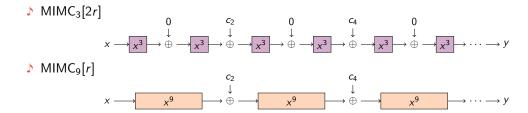


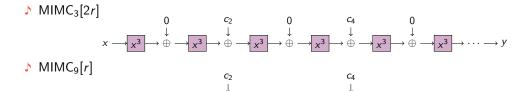




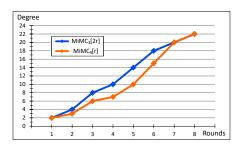




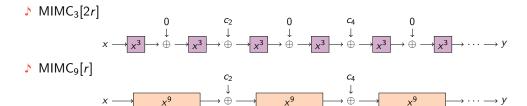


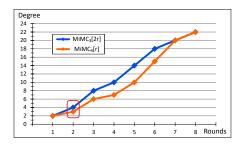


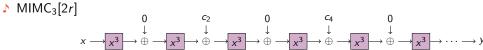
x⁹

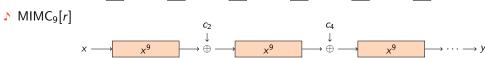


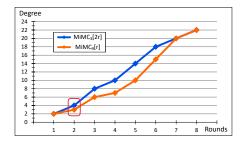
 x^9











Example: coefficients of maximum weight exponent monomials at round 4

$$27: c_1^{18} + c_3^2$$

57 :
$$c_1^8$$

$$30:c_1^{17}$$

75 :
$$c_1^2$$

51 :
$$c_1^{10}$$

75 :
$$c_1^2$$

$$54: c_1^9 + c_3$$

Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

$$\forall i \in \mathcal{E}_r, i \mod 8 \in \{0,1\}$$
.

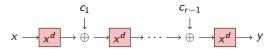
Other Quadratic functions

Proposition

Let \mathcal{E}_r be the set of exponents in the univariate form of MIMC₉[r]. Then:

$$\forall i \in \mathcal{E}_r, i \mod 8 \in \{0,1\}$$
.

Gold Functions: x^3 , x^9 , ...



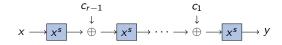
Proposition

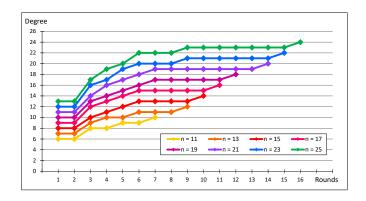
Let \mathcal{E}_r be the set of exponents in the univariate form of $\mathsf{MIMC}_d[r]$, where $d=2^j+1$. Then:

$$\forall i \in \mathcal{E}_r, i \mod 2^j \in \{0,1\}$$
.

Algebraic degree of $MiMC_3^{-1}$

Inverse: $F: x \mapsto x^s, s = (2^{n+1} - 1)/3 = [101..01]_2$





Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- Round 1: $B_s^1 = wt(s) = (n+1)/2$
- Round 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Some ideas studied

Plateau between rounds 1 and 2, for $s = (2^{n+1} - 1)/3 = [101..01]_2$:

- Round 1: $B_s^1 = wt(s) = (n+1)/2$
- Nound 2: $B_s^2 = \max\{wt(is), \text{ for } i \leq s\} = (n+1)/2$

Proposition

For $i \leq s$ such that $wt(i) \geq 2$:

$$wt(is) \in \begin{cases} [wt(i) - 1, (n-1)/2] & \text{if } wt(i) \equiv 2 \mod 3 \\ [wt(i), (n-1)/2] & \text{if } wt(i) \equiv 0 \mod 3 \\ [wt(i), (n+1)/2] & \text{if } wt(i) \equiv 1 \mod 3 \end{cases}$$

Next rounds: another plateau at n-2?

$$r_{n-2} \ge \left\lceil \frac{1}{\log_2 3} \left(2 \left\lceil \frac{n-1}{4} \right\rceil + 1 \right) \right\rceil$$