
Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

A Decoupled Local Memory Allocator

Boubacar Diouf12

Can Hantaş3, Albert Cohen12, Özcan Öztürk4, Jens Palsberg5

1INRIA

2École Normale Supérieure de Paris

3Georgia Institute of Technology

4Bilkent University

5UCLA

A Decoupled LM Allocator 1 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Cache/Local Memories

GP CPUs and embedded systems usually have a small quantity of SRAM used to

speed up the executed programs. The SRAM is generally configured as a:

Cache
• Automatic cache management in hardware

• Efficient on general purpose CPUs

Local Memory
• Supported by the user or the compiler

• Fast, predictible, power efficient, smaller area cost

• Many embedded processors, DSPs, GPUs, Cell SPU have local memories (LM)

How to efficiently allocate data to the local memory?

A Decoupled LM Allocator 2 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Link between LM and Register Allocations

Decoupled register allocation
• Allocation (rely on maxlive, choose register residents) NP-complete

• Assignment (which register for which variable) polynomial under SSA

Decoupling: isolate the hard problem of allocation (spilling)

Decoupled local memory allocation
• Allocation (rely on maxsize, choose local-memory residents) NP-complete

• Assignment (for each array block, where it should reside in the LM)

• Sufficient condition (criterion)?

• Complexity?

This link, discovered by Fabri [Fab’79], thirty years ago, has been under-exploited

A Decoupled LM Allocator 3 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Outline

Introduction

Weighted Interval Graph Coloring

LM Allocation through NSP WIG Coloring

Experimental Evaluation

Conclusion

A Decoupled LM Allocator 4 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

LM Allocation and Weighted Interval Graph (WIG) Coloring

• Given a numbered intermediate representation of a program

• The live range of the arrays approximated as intervals

• The local memory allocation problem for a linearized program is equivalent to
WIG coloring problem called the shipbuilding problem

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 5 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

LM Allocation and Weighted Interval Graph (WIG) Coloring

• Given a numbered intermediate representation of a program

• The live range of the arrays approximated as intervals

• The local memory allocation problem for a linearized program is equivalent to
WIG coloring problem called the shipbuilding problem

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A

A Decoupled LM Allocator 5 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

LM Allocation and Weighted Interval Graph (WIG) Coloring

• Given a numbered intermediate representation of a program

• The live range of the arrays approximated as intervals

• The local memory allocation problem for a linearized program is equivalent to
WIG coloring problem called the shipbuilding problem

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A B C

A c

B

A Decoupled LM Allocator 5 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

LM Allocation and Weighted Interval Graph (WIG) Coloring

• Given a numbered intermediate representation of a program

• The live range of the arrays approximated as intervals

• The local memory allocation problem for a linearized program is equivalent to
WIG coloring problem called the shipbuilding problem

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A B C

A c

B

2

2

1

A Decoupled LM Allocator 5 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Shipbuilding Problem

B d

c e

F

A G2

1 1

2

12 2

• Determining whether χ(Gw) ≤ k is NP-complete [Golumbic’04]

A Decoupled LM Allocator 6 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Shipbuilding Problem

0 1 2 3 4 5 6

IA IB Ic Id

Ie IF IG

Interval coloring
with 6 colors

B d

c e

F

A G2

1 1

2

12 2

• Determining whether χ(Gw) ≤ k is NP-complete [Golumbic’04]

A Decoupled LM Allocator 6 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Shipbuilding Problem

0 1 2 3 4 5 6 0 1 2 3 4 5

IA IB Ic Id

Ie IF IG

IA IB Ic

IeId IF

IG

Interval coloring
with 6 colors

Interval coloring with the
chromatic number: 5 colors

B d

c e

F

A G2

1 1

2

12 2

• Determining whether χ(Gw) ≤ k is NP-complete [Golumbic’04]

A Decoupled LM Allocator 6 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Shipbuilding Problem

0 1 2 3 4 5 6 0 1 2 3 4 5

IA IB Ic Id

Ie IF IG

IA IB Ic

IeId IF

IG

Interval coloring
with 6 colors

Interval coloring with the
chromatic number: 5 colors

B d

c e

F

A G2

1 1

2

12 2

• Determining whether χ(Gw) ≤ k is NP-complete [Golumbic’04]

A Decoupled LM Allocator 6 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem
• Assuming that loads and stores wrap around transparently
• We can design a new variant of the shipbuilding problem: the submarine-building
problem.

• More flexibility to choose the offsets, i.e., to perform the assignment: e.g. IF

IAIB

Ic

Id
Ie

IF

IG

0

2

3 1

B d

c e

F

A G2

1 1

2

12 2

A Decoupled LM Allocator 7 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

Ship (Gw,k)

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

Ship (Gw,k)

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

Ship (Gw,k) Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h
1

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

Ship (Gw,k) Submarine (Gw,k+1)

0 1 2 3 4 5

IA IB Ic

IeId IF

IG

Color intervals

B d

c e

F

A G2
1 1

2

12 2 12 2

G 2

B d

c e

F

A2
1 1

h
1

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

0 1 2 3 4 5

IA IB Ic

IeId IF

IG

Ship (Gw,k)

0

3

1

24

5

IB

IA

Ic

Id

Ie

IG

IF

Color intervalsColor intervals

1
Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

0 1 2 3 4 5

IA IB Ic

IeId IF

IG

Ship (Gw,k)

0

3

1

24

5

IB

IA

Ic

Id

Ie

IG

IF

Color intervalsColor intervals

Ih

1
Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

Ship (Gw,k)

0

3

1

24

5

Color intervals

Ih

1
Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

Ship (Gw,k)

0

3

1

24

5

Color intervals

Ih

0 1 2 3 4 5

Color intervals

1
Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

0 1 2 3 4 5

Ship (Gw,k)

0

3

1

24

5

IB

IA

Ic

Id

Ie

IG

IF

Color intervalsColor intervals

2

Ih

1
Submarine (Gw,k+1)

G 2

B d

c e

F

A2
1 1

12 2

h

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is NP-complete on WIG

B d

c e

F

A G2
1 1

2

12 2

1

0 1 2 3 4 5

IA IB Ic

IeId IF

IG

Ship (Gw,k) Submarine (Gw,k+1)

0

3

1

24

5

IB

IA

Ic

Id

Ie

IG

IF

Color intervalsColor intervals

G 2

B d

c e

F

A2
1 1

12 2

h

Ih

A Decoupled LM Allocator 8 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

0

2

3 1

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

0

2

3 1

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

IA

0

2

3 1

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

IA

0

2

3 1
IB

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

IA

0

2

3 1
IB

Ic

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

The Submarine-building Problem is Linear on Proper Interval Graphs

B d

c E

F

A2

1 2

12 2

Color intervals

0

1

2

3

4

5

6

7

8

A B c d E f

Program points

IA

0

2

3 1
IB

Ic

Id

IEIF

A Decoupled LM Allocator 9 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Not-So-Proper (NSP) Weighted Interval Graphs

Program points

• The submarine-building problem is linear on the class of proper interval graphs
whereas the shipbuilding problem remains NP-complete on proper interval graphs

• The submarine-building problem is also linear on the class of superperfect graphs
observed in many embedded application [Li’11]

• The class of NSP interval graphs, that generalizes both proper and superperfect
graphs, are used to decouple the local memory allocation

A Decoupled LM Allocator 10 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Not-So-Proper (NSP) Weighted Interval Graphs

Program points

• The submarine-building problem is linear on the class of proper interval graphs
whereas the shipbuilding problem remains NP-complete on proper interval graphs

• The submarine-building problem is also linear on the class of superperfect graphs
observed in many embedded application [Li’11]

• The class of NSP interval graphs, that generalizes both proper and superperfect
graphs, are used to decouple the local memory allocation

A Decoupled LM Allocator 10 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Not-So-Proper (NSP) Weighted Interval Graphs

Program points

• The submarine-building problem is linear on the class of proper interval graphs
whereas the shipbuilding problem remains NP-complete on proper interval graphs

• The submarine-building problem is also linear on the class of superperfect graphs
observed in many embedded application [Li’11]

• The class of NSP interval graphs, that generalizes both proper and superperfect
graphs, are used to decouple the local memory allocation

A Decoupled LM Allocator 10 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Outline

Introduction

Weighted Interval Graph Coloring

LM Allocation through NSP WIG Coloring

Experimental Evaluation

Conclusion

A Decoupled LM Allocator 11 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

Compound
interval

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

bi2

bi1

bi3

bi4

Compound
interval

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

bi2

bi1

bi3

bi4

Compound
interval

Basic
intervals

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

bi2

bi1

bi3

bi4

Compound
interval

Basic
intervals

Memory
 live intervals

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

bi2

bi1

bi3

bi4

Local memory
live interval

Compound
interval

Basic
intervals

Memory
 live intervals

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

bi2

bi1

bi3

bi4

Off-chip live
intervals

Local memory
live interval

Compound
interval

Basic
intervals

Memory
 live intervals

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

for i ...
A[i] = ...

...

for i …
B[i] = A[i] * ...

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ... B[i]

A Decoupled LM Allocator 12 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi

A Decoupled LM Allocator 13 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Outline

Introduction

Weighted Interval Graph Coloring

LM Allocation through NSP WIG Coloring

Experimental Evaluation

Conclusion

A Decoupled LM Allocator 14 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Methodology

Model Parameters

Constant Latency
latency_local_memory 8
latency_main_memory 128

latency_move(sv) 8+ 2sv
latency_spill(sv) 128+ 4sv

latency_reload(sv) 128+ 4sv

Graph Generation
• 1000 of superperfect graphs
• 1000 of arbitrary graphs

Compared Algorithms
• BestFit
• BestFitVariant (LM copy avoidance)
• SuperPerfect (state of the art approach [Li’11])

A Decoupled LM Allocator 15 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

SuperPerfect Graphs

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2

A
v

e
ra

g
e

 O
f

N
o

rm
a

li
ze

d
 A

ll
o

c
a

ti
o

n

A Decoupled LM Allocator 16 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Arbitrary Graphs

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2

3

A
v

e
ra

g
e

 O
f

N
o

rm
a

li
ze

d
 A

ll
o

c
a

ti
o

n

A Decoupled LM Allocator 17 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Arbitrary Graphs

BestFitVariant SuperPerfect NSP

M
axSize/16

M
axSize/8

M
axSize/4

M
axSize/2

M
axSize*3/2

M
axSize*2

M
axSize*3

M
axSize*4

Size Of The Local Memory

0

1

2

3

4

5

6

7

8

N
o

rm
a

li
z

e
d

 A
ll

o
c

a
ti

o
n

A Decoupled LM Allocator 17 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Outline

Introduction

Weighted Interval Graph Coloring

LM Allocation through NSP WIG Coloring

Experimental Evaluation

Conclusion

A Decoupled LM Allocator 18 / 19

Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Conclusion and Perspectives

Conclusion
• Submarine-building problem: strong and novel complexity results
• Approximation algorithm
• Decoupling of spill code generation and from assignment
• Experimental evaluation shows very favorable results compared to state-of-the art
allocators

Perspectives
• Extend the work to environments where many threads share the same LM
• Consider programming models like (HMPP, OpenCL) offering more support for
software-controlled local memories to PGAS (Partitionned Global Address Space)
languages requiring more attention to the memory locality

A Decoupled LM Allocator 19 / 19

	Introduction
	Weighted Interval Graph Coloring
	LM Allocation through NSP WIG Coloring
	Experimental Evaluation
	Conclusion

