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Cache/Local Memories

GP CPUs and embedded systems usually have a small quantity of SRAM used to

speed up the executed programs. The SRAM is generally configured as a:

Cache
• Automatic cache management in hardware

• Efficient on general purpose CPUs

Local Memory
• Supported by the user or the compiler

• Fast, predictible, power efficient, smaller area cost

• Many embedded processors, DSPs, GPUs, Cell SPU have local memories (LM)

How to efficiently allocate data to the local memory?
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The Link between LM and Register Allocations

Decoupled register allocation
• Allocation (rely on maxlive, choose register residents) NP-complete

• Assignment (which register for which variable) polynomial under SSA

Decoupling: isolate the hard problem of allocation (spilling)

Decoupled local memory allocation
• Allocation (rely on maxsize, choose local-memory residents) NP-complete

• Assignment (for each array block, where it should reside in the LM)

• Sufficient condition (criterion)?

• Complexity?

This link, discovered by Fabri [Fab’79], thirty years ago, has been under-exploited
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LM Allocation and Weighted Interval Graph (WIG) Coloring

• Given a numbered intermediate representation of a program

• The live range of the arrays approximated as intervals

• The local memory allocation problem for a linearized program is equivalent to
WIG coloring problem called the shipbuilding problem

for i ...
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The Shipbuilding Problem
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• Determining whether χ(Gw ) ≤ k is NP-complete [Golumbic’04]
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The Submarine-building Problem
• Assuming that loads and stores wrap around transparently
• We can design a new variant of the shipbuilding problem: the submarine-building
problem.

• More flexibility to choose the offsets, i.e., to perform the assignment: e.g. IF
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The Submarine-building Problem is NP-complete on WIG
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The Submarine-building Problem is NP-complete on WIG
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The Submarine-building Problem is Linear on Proper Interval Graphs
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Not-So-Proper (NSP) Weighted Interval Graphs

Program points

• The submarine-building problem is linear on the class of proper interval graphs
whereas the shipbuilding problem remains NP-complete on proper interval graphs

• The submarine-building problem is also linear on the class of superperfect graphs
observed in many embedded application [Li’11]

• The class of NSP interval graphs, that generalizes both proper and superperfect
graphs, are used to decouple the local memory allocation
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Live Range Representations

A

for i ...
A[i] =  ...

...

for i …
B[i] = A[i] * ... 

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ...  B[i]

for i ...
A[i] =  ...

...

for i …
B[i] = A[i] * ... 

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ...  B[i]

A Decoupled LM Allocator 12 / 19



Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations

A

Compound 
interval

for i ...
A[i] =  ...

...

for i …
B[i] = A[i] * ... 

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ...  B[i]

for i ...
A[i] =  ...

...

for i …
B[i] = A[i] * ... 

...

for i …
C[i] = A[i] + B[i]

...

for i …
A = C[i] ...  B[i]

A Decoupled LM Allocator 12 / 19



Introduction WIG Coloring NSP LM Allocation Evaluation Conclusion

Live Range Representations
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Approximating a WIG to a NSP WIG

a B c

Program intervals

Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi
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Walk over the list of basic intervals and create a NSP
WIG Gw composed of local memory intervals
For each basic interval bi

• If there is an existing local memory interval that can
receive bi then add bi to the local memory interval

• Else If a freshly local memory interval containing only
bi can be added to the Gw without breaking the NSP
property or making maxSize greater than the LM size
then add it to Gw

• Else either make of bi an off-chip live range or spill or
split some local memory candidates to make room for
bi
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Methodology

Model Parameters

Constant Latency
latency_local_memory 8
latency_main_memory 128

latency_move(sv ) 8+ 2sv
latency_spill(sv ) 128+ 4sv

latency_reload(sv ) 128+ 4sv

Graph Generation
• 1000 of superperfect graphs
• 1000 of arbitrary graphs

Compared Algorithms
• BestFit
• BestFitVariant (LM copy avoidance)
• SuperPerfect (state of the art approach [Li’11])
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SuperPerfect Graphs
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Arbitrary Graphs

BestFitVariant SuperPerfect NSP
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Arbitrary Graphs
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Conclusion and Perspectives

Conclusion
• Submarine-building problem: strong and novel complexity results
• Approximation algorithm
• Decoupling of spill code generation and from assignment
• Experimental evaluation shows very favorable results compared to state-of-the art
allocators

Perspectives
• Extend the work to environments where many threads share the same LM
• Consider programming models like (HMPP, OpenCL) offering more support for
software-controlled local memories to PGAS (Partitionned Global Address Space)
languages requiring more attention to the memory locality
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