A Decoupled Local-Memory Allocator

Boubacar Diouf, INRIA

Can Hantas, Georgia Institute of Technology

Albert Q_ohen, INRIA and Ecole Normale Supérieure de Paris
Ozcan Ozturk, Bilkent University

Jens Palsberg, ucLA

Compilers use software-controlled local memories to provide fast, predictable, and power efficient access to
critical data. We show that the local-memory allocation for straight-line, or linearized programs is equiv-
alent to a weighted interval-graph coloring problem. This problem is new when allowing a color interval
to “wrap around,” and we call it the submarine-building problem. This graph-theoretical decision problem
differs slightly from the classical ship-building problem, and exhibits very interesting and unusual complex-
ity properties. We demonstrate that the submarine-building problem is NP-complete, while it is solvable in
linear time for not-so-proper interval graphs, an extension of the the class of proper interval graphs. We
propose a clustering heuristic to approximate any interval graph into a not-so-proper interval graph, de-
coupling spill code generation from local memory assignment. We apply this heuristic to a large number of
randomly generated interval graphs reproducing the statistical features of standard local memory allocation
benchmarks, comparing with state-of-the-art heuristics.

Categories and Subject Descriptors: D.3.4 [Programming languages]: Processor — Compilers, Optimiza-
tion

General Terms: Compiler, Algorithms, Performance
Additional Key Words and Phrases: Local memory, scratchpad memory, memory allocation, compiler

ACM Reference Format:

Diouf, B., Hantas, C., Cohen, A., Palsberg, J., Ozturk, O. 2012. A Decoupled Local Memory Allocator ACM
Trans. Architec. Code Optim. V, N, Article A (January 2013), 23 pages.

DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION

Compilers use software-controlled local memories to provide fast, predictable, and
power efficient access to critical data. Predictability to data access and power con-
sumption efficiency are often essential to real-time and embedded applications. Most
ARM processors have an on-chip local memory [ARM 1998], and more generally, it is
typical for DSPs and embedded processors to have local memories, also called scratch-
pad memories [Motorola 1998; Instruments 1997]. More specialized processors also
utilize local memories, including stream-processing architectures such as graphical
processors (GPUs) and network processors [NVIDIA 2008; Burns et al. 2003]. Most
processor(s) may directly access the main memory —typically off-chip DRAM— re-
sources, but few exceptions exist. The IBM Cell broadband engine’s synergistic pro-
cessing units (SPU) [Kahle et al. 2005] which rely exclusively on DMA for instruction

This work is supported by the European Commission through the FP7 project TERAFLUX id. 249013.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2013 ACM 1544-3566/2013/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:2

and data transfers with main memory. Our approach is compatible with such memory
models.

In systems with local memories, data transfers between the main memory and the
local memory are inserted into the generated code by the compiler or the application.
Previous studies addressed local memory management from different angles, target-
ing for both application/code and data. These efforts considered both static [Avissar
et al. 2002; Sjodin and von Platen 2001; Steinke et al. 2002] and dynamic methods
[Udayakumaran and Barua 2003; Li et al. 2009]. Static methods either place an array
in the local memory or in the off-chip memory during the whole execution of a program.
Dynamic methods place an array in the local memory at a certain moment and in the
off-chip memory at a different moment depending on its access frequency. Dynamic
methods take into account the dynamic behavior of the program.

In this paper, we consider an approach to local memory management that decouples
spill code generation from local memory assignment. We show that the local memory
allocation for straight-line programs or linearized programs, where the live ranges of
variables or arrays are represented as intervals, is equivalent to a weighted interval-
graph coloring problem that we call the submarine-building problem. The submarine-
building problem differs slightly from the classical ship-building problem [Golumbic
2004] by allowing a color interval to “wrap around.” We show that the submarine-
building problem is NP-complete, while it is solvable in linear time for not-so-proper
interval graphs, an extension of the the class of proper interval graphs. We propose a
novel approach to approximate any interval graph into a not-so-proper interval graph,
decoupling spill code generation from local memory assignment. We apply this heuris-
tic to a large number of randomly generated weighted interval graphs reproducing the
statistical features of standard local memory-allocation benchmarks. We compare our
approach with state-of-the-art heuristics.

2. MOTIVATION

In a previous paper [Diouf et al. 2009], based on recent progress in register allocation,
we considered a decoupled approach to local memory allocation, and we experimentally
validated this decoupling. This paper takes a more theoretical stand point and seeks
to better understand the optimization problem of local memory management.

Recent research in register allocation leverage the complexity and performance ben-
efits of decoupling its allocation and assignment phases [Appel and George 2001,
Pereira and Palsberg 2005; Hack et al. 2005; Bouchez et al. 2006b; Brisk et al. 2006].
The allocation phase decides which variables to spill and which to assign to registers.
The assignment phase chooses which variable to assign to which register.

The allocation phase relies on the maximal number of simultaneously living sub-
variables, called MAXLIVE, a measure of register pressure. When enough live-range
splitting is done, it is sufficient that MAXLIVE is less or equal to the number of avail-
able registers to guarantee that all the sub-variables will be allocated and the forth-
coming assignment phase can be done without further spill. In many cases, assignment
can even be achieved in linear time [Hack et al. 2006; Bouchez et al. 2006b]. If at some
program point the pressure exceeds the number of available registers, MAXLIVE needs
to be reduced through spilling.

This decoupled approach permits to focus on the hard problem, namely the spilling
decisions. It also improves the understanding of the interplay between live-range split-
ting and the expressiveness and complexity of register allocation. This is best illus-
trated by the success of SSA-based allocation [Bouchez et al. 2006a; Hack et al. 2006;
Bouchez et al. 2006b; Bouchez et al. 2007; Braun and Hack 2009].

The intuition for decoupled register allocation derives from the observation that live-
range splitting is almost always profitable if it allows to reduce the number of register

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:3

spills, even at the cost of extra register moves. The decoupled approach focuses on spill
minimization only, pushing the minimization of register moves to a later register co-
alescing phase [Appel and George 2001; Hack et al. 2006; Bouchez et al. 2008]. Here
again, SSA-based techniques have won the game. Specifically, they collapse the regis-
ter coalescing with the hard problem of getting out of SSA [Hack et al. 2006; Boissinot
et al. 2009; Pereira and Palsberg 2009], as one of the last backend compiler passes.

The domain of local memory management tells a very different story. Some heuris-
tics exist [Udayakumaran and Barua 2003; Udayakumaran et al. 2006; Kandemir
et al. 2001; Li et al. 2009] but little is known about the optimization problem, its
complexity and the interplay with other optimizations. The burning hot question is
of course: does the decoupled approach hold for the local memory management prob-
lem? Surprisingly, the state-of-the-art of local memory management completely under-
exploit all the advances in register allocation. When focusing on arrays, the similarity
between register and local memory allocation is obvious nonetheless:

Local memory allocation. Deciding which array blocks to spill to main memory and
which array blocks to allocate to the local memory. Spilling is typically supported
by DMA units.

Local memory assignment. Deciding at which local memory offset to assign which
allocated array block.

In the context of local memory management, the maximum size of simultaneously
living arrays', called MaxSize, gives a measure of local-memory pressure. Again, like
for register allocation, live-range splitting helps to reduce the local-memory pressure.
Since arrays are frequently accessed inside loops, local memory management algo-
rithms often split arrays at loop-entry points , we call these points: decision points.
Decision points can also be chosen in a finer manner, after loops or before array ac-
cesses. Local-memory pressure can also be reduced by loop-transformations like strip-
mining, tiling which reduce the portion of accessed arrays. For all these reasons, the
study of a decoupled approach in the local memory management context seems very
appealing.

3. FROM LOCAL MEMORY MANAGEMENT TO WEIGHTED GRAPH COLORING
This section sets the terminology and definitions used in the rest of the paper.

3.1. Weighted Graphs

A graph G = (V| E) consists of two sets, V' the set of vertices, and F the set of edges.
Every edge (v1,v2) of E has two end points v; € V and vy € V. We consider undirected
graphs only, i.e., we do not make difference between the edges (v1,v2) and (va,vy).

A graph G is called an interval graph if its vertices can be put into one-to-one corre-
spondence with a set of intervals I of a linearly ordered set such that two vertices are
connected by an edge of G if and only if their corresponding intervals have a nonempty
intersection.

Assuming each vertex v of G = (V, E) is associated with a non-negative number w(v),
the weight of a subset S C V is expressed as:

veS
The graph G associated with the function w is called a weighted graph and denoted
G. Moreover, G, is a weighted interval graph if G is an interval graph.

1 Not the number of simultaneously living arrays.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A4

(a)
IA IB Ic Id IA IB Ic
o 1t 2 3 4 5 6 o 1 2 3 4 5
I, I, I, I, I, I,
IG
(b) (©)

Fig. 1. Two colorings of a weighted graph.

An interval coloring of a weighted graph G,, is a function I mapping each vertex
v € V onto an (open) interval I, of w(v) + 1 consecutive integers of the real line, such
that adjacent vertices are mapped to disjoint intervals; that is, (vi,v2) € E implies
I,, N 1,, = 0. We say that I is a k-coloring of G, if I, € {0, ..., k}, Vv € V. The chromatic
number x(G,,) is the smallest k for which we can find a k-coloring of G,,.

Figure 1(b) and Figure 1(c) show two colorings of the weighted graph shown in Fig-
ure 1(a). Figure 1(b) presents a 6-coloring of the weighted graph and Figure 1(c) shows
a 5-coloring of the weighted graph. The chromatic number of this graph is 5.

3.2. Straight-Line Programs And Linearized Programs

Given an intermediate representation of an arbitrary program, the intermediate rep-
resentation pseudo-instructions can be numbered according to some order. We define a
linearized program as a program for which such kind of numbering has been performed
and for each variable v in this program, we represent its live range as the live interval
[i, 7], ¢ being the number of the first instruction where v is first defined and j being the
number of the instruction where v is last used. There can be some pseudo-instructions
between i and j where v is not live, but with a successful live-range splitting this prob-
lem can become marginal. In the context of just-in-time compilation where compilation
is critical, linearizing programs can pay off because it is fast to linearize a program and
hopefully the produced code could be of relative good quality [Sarkar and Barik 2007].

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A5

3.3. Two Sides Of The Coin

We demonstrate the equivalence between allocating the local memory for a linearized
program and coloring a weighted interval graph.

From linearized programs to weighted interval graphs. From a linearized program
we construct a corresponding weighted graph called interference graph. For each vari-
able in this program, we create a vertex and associate the size of the variable to this
vertex. We create an edge between two vertices if there is a point in the program where
the two variables are simultaneously live. Thus, an edge connects a pair of vertices if
and only if the variables are simultaneously live. The constructed weighted graph is a
weighted interval graph because each vertex corresponds to an interval defined by the
definition point and the end point of the variable.

From weighted interval graphs to linearized programs. We use a method similar to
the one presented by Lee et al. [Lee et al. 2008] to show that, for any weighted interval
graph, we can exhibit a corresponding linearized program.

Chen [Chen 1992] and Saha [Saha et al. 2007] et al. have shown how to convert
an interval graph with ¢ intervals to an isomorphic program like interval graph in
O(q log ¢) time. An interval graph is program-like if the intervals representing the
vertices of the graph have start points and end points that are all different, and the
start points and end points of the intervals form a set {1, ..., 2¢}, where ¢ is the number
of intervals.

From a program-like weighted interval graph G,,, we construct in O(q) time the
following straight-line program (with pseudo-C syntax) which consists of a set of 2¢
statements:

typeI vy = -,

where sizeof (type;) = w(I),

Vie{l,...,2¢) if the interval I of weight w([/) begins at ¢

= vy,

if the interval I ends at i.

4. WEIGHTED GRAPH COLORING

Thirty years ago, in her seminal paper [Fabri 1979], Fabri already envisaged to model
the so-called problem of “automatic storage allocation” as a weighted graph coloring
problem. She mentions the investigation of special subclasses of weighted graphs that
are likely to occur. We construct a weighted graph G, from a given linearized program.
Finding an allocation for variables of the linearized program within a local memory of
size k corresponds to finding a k-coloring of GG,,.

This section introduces the ship-building problem which is related to weighted inter-
val graph coloring. It also defines a new variant of the ship-building problem, called the
submarine-building problem, very well suited to the local memory allocation problems
on modern processors, and exhibiting interesting complexity results and approxima-
tion heuristics.

4.1. The Ship-Building Problem

We report here the ship-building problem as presented in the book of
Golumbic [Golumbic 2004]. In certain shipyards the sections of a ship are constructed

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:6

on a dry dock, called the welding plane, according to a rigid time schedule. Each sec-
tion s requires a certain width w(s) on the dock during construction. Can the sections
be assigned space on a welding plane of total width £ so that no spot is reserved for
two sections at the same time?

Let the sections be represented by the vertices of a graph G and connect two vertices
if their corresponding sections have intersecting time intervals. Thus G, is a weighted
interval graph. An interval coloring of GG, will provide the assignment of the sections
to spaces, of appropriate size, on the welding plane. This assignment will be consistent
with the intersecting time restrictions. The reader must be careful to distinguish be-
tween the time intervals which produced the edges of G, and the color intervals which
provide a solution to the assignment of space on the dock.

A weighted graph built from a linearized program associated with a number k (cor-
responding to the size of the local memory) is an instance of the ship-building problem.
For a graph G, and a number &, we call ship(G.,, k) an instance of the ship-building
problem.

Determining whether x(G,,) < k is an NP-complete problem [Golumbic 2004; Lee
et al. 2008]2, even if G is an interval graph and the weight function w is restricted to
the values 1 and 2. It follows that the ship-building problem is also NP-complete.

4.2. The Submarine-Building Problem

Since the local memory size is generally power-of-two, it is common to mask the ad-
dresses (in software or hardware) to let loads and stores wrap around to the local
memory transparently. The submarine-building problem is a new variant of the ship-
building problem. Like in the ship-building problem, a vertex must occupy a contiguous
color-interval, but a circular allocation scheme can be adopted permitting to a color-
interval to wrap around. It extends the ship-building problem’s interval coloring to
circular interval coloring. It follows that a solution of the ship-building problem is a
solution to the submarine-building problem, but the converse is not generally true. Fig-
ure 2 shows an example of submarine coloring for the weighted graph in Figure 1(a).
The inner circle represents the colors and each circular arc I, represents a color inter-
val assigned to the vertex v. The color interval I wraps around.

For a weighted graph G,, and a number &, we call submarine(G,, k) an instance of
the submarine-building problem. For the rest of the paper we say that G, is k-ship-
colorable, if ship(G, k) has a solution, and we also say that G, is k-submarine-colorable,
if submarine(G,, k) has a solution.

To the best of our knowledge, this variant of the ship-building problem has never
been carefully studied, and it has not been applied to the decoupling of the spilling
and assignment problems in local memory management. Many open questions about
fragmentation, optimality, complexity and feasibility are tied to this new variant of the
ship-building problem.

Unfortunately, the submarine-building problem is also NP-complete on weighted in-
terval graphs as we demonstrate below.

THEOREM 4.1. The submarine-building problem is NP-complete.

Proof. To show that the submarine-building problem is NP-complete, we first show
that it is a problem in NP, and we then show how to build from an instance ship(G, k) of
the ship-building problem an instance submarine(G,,, k+ 1) of the submarine-building
problem.

2This has been previously proved by Stockmeyer, but to the best of our knowledge, the proof of Lee et al. is
the first publicly available one [Lee et al. 2008].

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A7

Fig. 2. An example of a 4-submarine-coloring.

A problem in NP. The submarine-building problem is in NP because a solution of
the problem can be verified polynomially.

Reduction. From an instance ship(G,, k) of the ship-building problem, we build an
instance submarine(G,, k + 1) of the submarine-building problem. Let f and ¢ be re-
spectively the minimum of the start points of all intervals in G,, and the maximum of
the end points of all intervals in G,,. The graph G/, consists of all intervals of G,, and
the interval 5: [f, ¢] of weight one.

Let 6 be a solution of ship(G,,k); 6 maps each interval of G,, to a color interval
between 0 and k. We define ¢, a function mapping each interval a of G/, to a color
interval between 0 and & + 1:

;| 0 () =0(a) ifa € Gy
Va € G, { 0'(a) = [k k+1] ifad Gy
It follows that ¢’ is a solution of submarine(G,,, k + 1).
Now, we study the converse case. Let 6’ be a solution of submarine(G.,,,k + 1). We
define for a color interval [s, e[, an integer k, and the functions § and mod:

6([s,e[,d) = [s+d,e+d]|
mod([s, e[) [s mod (k+1),e mod (k + 1)[

Let ¢/(8) = [s,s + 1] (B is of weight one). We define for each interval « of G, the
function 6:

0(a) = mod (§(0' (), k — s))
The interval 8 of G, is live from f to ¢, therefore there is no other interval of G!

that occupies the color interval [s, s+ 1[. 6([s, s+ 1[) = [k, k + 1], and the value on which
function 0 is equal to [k, k + 1[is [s, s + 1[. Thus, 0 assigns to each interval a of G,, an
interval of some color between 0 and k. If two interfering intervals o and o’ have two
non-overlapping color intervals ¢ and ¢’ then («) and 6(a’) are non-overlapping too. It

follows that 6 is a solution of ship(G,,, k) if ¢’ is a solution of the submarine(G,,, k+1).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:8

5. WEIGHTED PROPER INTERVAL GRAPH COLORING

We study the properties of weighted proper interval graphs, a subclass of weighted
interval graphs. This class is interesting because we will show the submarine-building
problem is solvable in linear time for this class: any instance G,, of this class is col-
orable with w(G,,) colors and in linear time. For this subclass, we also have a sufficient
criterion permitting to decouple the ship-building problem.

5.1. Proper Interval Graph

Fig. 3. An example of a weighted proper interval graph.

An interval graph G is a proper interval graph if it is constructed from a family of
intervals such that no interval properly contains another [Golumbic 2004]. An interval
graph is a unit interval graph if all of its intervals have the same length. It has been
shown that the classes of proper interval graphs and the unit interval graphs coincide.
A weighted graph G, is a weighted proper interval graph if G is a proper interval
graph. Figure 3 shows properly ordered weighted-intervals of the real line and their
corresponding weighted proper interval graph.

5.2. Proper Ordering

Let us consider the representation of G,,, a weighted proper interval graph, on the
real line, where the vertices of GG, correspond to intervals on the real line. Let us sort
these intervals according to their start points. If two intervals ¢ and i’ start at the same
point, we can place either : before i’ or i’ before i. This kind of ordering can be found
for any weighted proper interval graph, and is called proper ordering in our approach.
A proper ordering of the graph in Figure 3 is: A, B,¢,d, E, F'. Based on this ordering,
we say that ¢ < ¢/, if 7 is before 7'.

LEMMA 5.1. If ¢ < ¢ then, either i ends before i’ or i and i’ start and finish at the
same time.

Proof. i < i’ implies that either i starts before i’ or i andi’ starts at the same time:

— i starts before i’. Since 7 cannot properly contain ¢’, then ¢ ends before ’.
—i and ¢’ start at the same time. Since, none of these two intervals cannot properly
contain the other, then they end at the same time.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A9

5.3. Decoupled Submarine-Building Problem

Algorithm 1 performs a k-submarine-coloring of intervals of a weighted proper interval
graph G,,. It takes as input a sequence of intervals of G, sorted according to a proper
ordering. It assigns to every interval a color interval contiguous to the color interval
assigned to the previous interval (according to the proper ordering) in a clockwise
manner. Finally, it gives a k-submarine-coloring of the graph as output.

Algorithm 1 SUBMARINEASSIGNMENTALGORITHM

Input: intervals: an array of properly ordered intervals

Var: index < 0;

Var: map: an array associating to each interval an offset
1: for all i € intervals do
2: maplil< index mod k;

3: index = index + weightO f(i);

4

5

: end for
: return map

THEOREM 5.2. For any weighted proper interval graph G, Algorithm 1 guarantees
a k-submarine-coloring if and only if w(G,,) < k.

Proof.

Direct. k-submarine-coloring of G,, — w(G,,) < k.
Any k-submarine-coloring of G, must assign color intervals that do not overlap to
the intervals of a clique of weight w(G,,) and this is only possible if w(G,,) < k.

Reciprocal. w(G,,) < k = k-submarine-coloring of G,,.

We will call a point, the moment an interval starts. Let P be the following property:
“at point n, the live intervals i;,7;41,...,i, (sorted according to the proper ordering)
are assigned to contiguous color intervals that do not overlap in a clockwise manner, in
this order: color(i;),color(ij+1),...color(i,)”. The property P is an invariant at every
point of Algorithm 1. If the graph contains m nodes, we have consequently m intervals
and m points. The proof will be done inductively on points.

Just before the point 1, where the first interval i; starts, none of the color intervals
are used. At point 1, algorithm 1 assigns to 7; a color interval starting at 0 and property
P is trivially satisfied.

Suppose that property P is satisfied from point 1 to point n, and let us see if property
P is satisfied at point n + 1 (we assume that we have at least n + 1 intervals in the
graph). We call d the number of dead intervals between n and n + 1 (d can be zero, or
n — j), we prove four claims successively:

(1) ij4q is live. Indeed, if i;, 4 was dead then all intervals preceding it would also be
dead. Therefore, we would have d+1 intervals that are dead, which contradicts the
definition of d.

(2) All the intervals between ;.4 and i,, are live too. If an interval i, between i,,4 and
in is dead then i, 4 is also dead because 7,4 < ix; this leads to a contradiction with
the first claim.

(3) From the two first claims and the satisfaction of proposition P at point
n, we deduce that all live intervals i;iq,%j1d+1,...,%, are assigned to con-
tiguous colors that do not overlap, in a clockwise manner, in this order:
color(ij+q),color(ijtat1), . .. color(iy).

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:10

(4) Algorithm 1 assigns to the new interval i,,.; a color interval contiguous to the last
used color interval (the color of i,,) in a clockwise manner. Therefore, the color inter-
vals assigned to live intervals are contiguous in a clockwise manner, in this order:
color(ij1q),color(ijrqt), .. .color(iy),color(in+1). The colors do not overlap because
they are all contiguous and they do not exceed w(G,,) which does not exceed k.

From the fourth claim, we conclude that at the point n + 1 the property P is again
verified.

Hence, using algorithm 1 guarantees that at every point, all the live intervals are
assigned to contiguous color intervals that do not overlap, and the next starting inter-
val will be assigned to a color interval. Thus, a k-submarine-coloring can be found for
Gy ifw(Gy) < k.

As far as we are aware, this is the first time a decision problem is shown to be
NP-complete on interval graphs and polynomial on unit interval graphs (which are
equivalent to proper interval graphs).

6. WEIGHTED NOT-SO-PROPER INTERVAL GRAPHS
We say that two intervals A and B properly interfere if A interferes with B such that
A strictly starts before B and B strictly ends after A or vice versa.

We define a weighted Not-So-Proper (NSP) interval graph as a weighted interval
graph, where each pair of properly interfering intervals A and B, is such that A and B
must not be contained in any other interval of the graph.

Fig. 4. An example of weighted NSP graph.

(a) (b)

Fig. 5. Two graphs that are not weighted NSP graphs.

Figure 4 shows an example of a weighted NSP graph (weights have been omitted
in the figure), whereas Figure 5 illustrates two weighted graphs that are not NSP.
The light gray lines represent intervals that are not contained in other intervals, the
solid black lines represent intervals that are contained, and the black dashed lines
represent the intervals we do not want to have in weighted NSP graphs.

The weighted NSP graphs are the class of graphs that includes the weighted proper
interval graphs and the superperfect graphs defined by Li et al. [Li et al. 2011]. Thus,
when the submarine assignment problem is considered, the weighted NSP interval
graphs are guaranteed to be MaxSize-colorable.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:11

Algorithm 2 NSPASSIGNMENTALGORITHM

Input: intervals: a list of intervals sorted by increasing start point
Var: map: an array associating to each interval an offset
Var: stack: a stack used to keep track of contained intervals

1: offset < 0

2: container < 1

3: for all i € intervals do

4: if container = 1 V -(CONTAINS(container,i)) then

5 container < i
6: end if
7.
8
9

while stack # () do
if -(CONTAINS(PEEK(stack),i) then
: contained < POP(stack)
10: offset < (offset + MAXSIZE — WEIGHTOF (contained)) mod MAXSIZE

11: else
12: break out of the loop
13: end if

14: end while

15: if container # i A (CONTAINS(container,i)) then
16: PUSH(stack,)

17: end if

18: maplil< index mod k

19: index = index + WEIGHTOF(4)

20: end for

21: return map

Algorithm 2 performs a submarine assignment for a weighted NSP graph on a lo-
cal memory of size MaxSize. It receives as input intervals, a list of intervals sorted by
increasing start point, and returns at the end map, a map that associates to each in-
terval an offset into the local memory. This algorithm differentiates between intervals
that are not contained in any other interval, called containers and those contained
in an interval. The contained intervals are stocked into stack. The variable container
keeps track of the last starting container. When a new interval, i, starts, it is verified
for containment — the function CONTAINS(container, i) returns true, if i is contained
in container and false otherwise — and if it is not contained in the currently live in-
tervals, it is set as the new container. Then, all the dead intervals are removed from
stack and the offset is updated. The function WEIGHTOF (i) returns the weight of the
interval i. If 7 is contained into another interval, it is pushed onto stack. Finally, 7 is
assigned to the current offset, which is then updated.

7. LOCAL MEMORY ALLOCATION THROUGH WEIGHTED NSP GRAPH COLORING

As explained in the section 3, from a linearized program it is possible to construct
a corresponding weighted interval graph. If the resulting graph is a weighted NSP
interval graph, when the submarine assignment problem is considered, it is always
possible to use MaxSize as a criterion to ensure that the assignment phase is feasible
without spills. Thus, the allocation algorithm can be decoupled thanks to the MaxSize
criterion. For arbitrary interval graphs, the problem is NP-complete and a heuristic-
based solution should be envisaged.

We devised a solution that takes advantage of our submarine assignment algorithm.
This solution that decouples the allocation and assignment, performs the two following
steps:

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:12

(1) it approximates an arbitrary weighted interval graph into a weighted NSP graph
through spilling and splitting.
(2) it performs a submarine assignment with Algorithm 2.

7.1. Live Ranges Representation

Each array of a program is represented by a live interval (compound interval) start-
ing from its first definition to its last use. Within the compound interval, it may exist
some idle sub-intervals where the array is not accessed at all and other sub-intervals
where the array is frequently accessed. The latter are called basic intervals. These
basic intervals often correspond to loops, because arrays are generally frequently ac-
cessed through loops. Figure 6 shows an example of compound interval (ci;) and and
the basic intervals (biy, bis, bis, biy) that compose ci. Usually it is not recommended to
split the live interval of an array inside a loop, because the incurred memory transfer
cost will be too high, hence in our approach we do not split a compound interval inside
one of its basic interval.

ci
bi, bi, bi, bi,
— — — —
pemnmmnme e [fomeeenes !
ocli, Imli ocli

Fig. 6. An example of live intervals.

During the execution of a program, an array may occupy different locations in mem-
ory. The sub-live range — a sub-interval of the array’s compound interval — during
which the array occupies a specific location in memory, is called a memory live in-
terval. A memory live interval is composed of a set of successive basic intervals of the
compound interval. All the basic intervals in a memory live interval belong to the same
compound interval. But, on the other hand, two basic intervals of the same compound
interval may belong to different memory live intervals. If the array occupies a unique
location in memory during all its compound interval, the memory live interval is the
same as the compound interval. If the array is located in the local memory during the
memory live interval, it is called a local-memory live interval. In contrast, if it is in the
off-chip memory, it is called off-chip live interval. Figure 6 shows an example of con-
figuration that can happen during execution. The array A which has c¢i as compound
interval is in the local memory during the interval Imli, a local memory live interval.
A is in the off-chip memory during ocli; and ocliz, two off-chip live intervals.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:13

7.2. The approximation algorithm

Algorithm 3 APPROXIMATE

Input: basics: an array containing all the basic intervals of the program sorted by
increasing start point

Input: Im _size: the size of the local memory

Var: active: a list that keeps track of local-memory live interval currently live

Var: map: an array associating to each compound interval its current mem-li

Var: loc-mem-lis: a list containing all the local-memory live intervals

: for all bi € basics do
EXPIREOLDLOCALMEMORYLIVEINTERVALS(active, bi.start)
FINDMEM-LI(bi, active, map, loc-mem-lis, Im size)

end for

return loc-mem-lis

Based on the notions of local-memory live interval and off-chip live interval, we
devise an approximation algorithm which transforms a weighted interval graph into a
weighted NSP interval graph composed of local-memory live intervals through spilling
and splitting of the live intervals. This approximation is performed by Algorithm 3.

Algorithm 3 receives as input basics, an array containing all the basic intervals of
the program sorted by increasing start point, and [m _size the size of the local memory.
It then creates two variables, active and map. At every moment, active keeps track
of the local-memory live intervals that are live and map associates to each compound
interval its latest computed memory live interval. For each basic interval, bi , Algo-
rithm 3 first removes from active the local-memory live intervals of a compound in-
terval whose end point is lower than the start point of bi. Afterwards, Algorithm 3
attempts to add bi into a local-memory live interval. If this is impossible bi becomes
part of an off-chip live interval. When all of the basic intervals of the program are pro-
cessed, Algorithm 3 returns loc-mem-lis, the list of all the local-memory live intervals
which are the intervals of the approximated weighted NSP interval graph.

The weighted NSP interval graph is computed iteratively with Algorithm 4. Algo-
rithm 4 aims to assign bi’s array to a location in the local memory based on the cur-
rently active local-memory live interval. It first retrieves the latest memory live in-
terval of bi’s compound interval (bi.compound) into mem-Ii. Three different cases can
happen:

(1) mem-li does not correspond to any value. It means that this is the first time
the array of the compound interval is accessed. In this case Algorithm 4 creates
new_mem-li, a temporary new local-memory live interval with i, and checks, with
the function ALLOCATEORNOT(), if it can be added to active. If it is the case,
new_mem-li is added to active and to loc-mem-lis, and bi’s compound is is asso-
ciated to new_mem-li. Otherwise, bi will be part of off-chip_mem-Ii, an off-chip live
interval, and bi’s compound is associated to off-chip_mem-Ii.

(2) mem-li corresponds to an off-chip live interval. If the cost of loading bi’s array
is lower than the cost of accessing it from the off-chip memory — the function
ISBENEFICIALTOLOAD() returns true— and there is enough room for it — the
function ALLOCATEORNOT() returns true — then mem-Ii’s end point is set to bi’s
start point, new_mem-Ii is added to active and to loc-mem-lis, and bi’s compound is
associated to new_mem-Ii. Otherwise, bi will be part of mem-Ii, which is an off-chip
live interval in this case.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:14

Algorithm 4 FINDMEM-LI

Input: bi: the starting basic interval
Input: active: a list that keeps track of local-memory live interval currently live
Input: map: an array associating to each compound interval its current memory live
interval
Input: loc-mem-lis: a list containing all the local-memory live intervals
Input: /m _size: the size of the local memory
1: mem-li < map[bi.compound]
2: // If it is the first time when the compound of bi appears
3: if mem-li = | then

4: new_mem-li + CREATENEWLOC-MEM-LI(b1)

5: if ALLOCATEORNOT(new _mem-li,active,lm size,loc-mem-lis,map) then
6: Add new_mem-Ii to active

7 Add new_mem-Ili to loc-mem-lis

8: maplbi.compound] < new_mem-li

9: else

10: off-chip_mem-li < SPILL(bi.start, new_mem-li, active)

11: maplbi.compound)| + off-chip_mem-li

12: end if

138: // If bi.compound was previously in the off-chip memory
14: else if mem-Ii is a off-chip-li then
15: new-mem-li <+ CREATENEWLOCALMEMORYLIVEINTERVAL(bi)
16: if ISBENEFICIALTOLOAD(mem-li, bi)

A ACCEPT(new_mem-li,active,lm size,loc-mem-lis, map) then
17: mem-li.end < bi.start

18: Add new_mem-li to active

19: Add new _mem-Ili to loc-mem-lis

20: map|bi.compound] <+ new_mem-li

21: else

22: Mark that bi is also represented by mem-li

23: end if

24: /] If bi.compound was previously in the local memory
25: else

26: Mark that bi is also represented by mem-Ii

27: end if

(3) mem-li corresponds to a local-memory live interval. In this case, Algorithm4 marks
that bi will be part of mem-Ii, which is a local-memory live interval in this case.

The function ALLOCATEORNOT() used in Algorithm 4 is described by Algorithm 5.
This algorithm spills or splits either the active local-memory live intervals or spills
new_mem-li which corresponds to transforming it into an off-chip live interval. When
Algorithm 5 is invoked, it checks if the sum of the weights of new_mem-Ii and the
local-memory live intervals currently in active — given by the function WEIGHTOF()
— is lower than Im _size, the size of the local memory. In this case, it returns true to
report that new _mem-Ii can be added to active. Otherwise, Algorithm 5 considers three
possibilities:

(1) First, it computes the cost of splitting the local-memory live intervals when
new_mem-li starts. Note that the local-memory live intervals, currently used at
that moment, which have a basic interval that contains the start point of new_mem-
li, could not be split at that moment. Algorithm 5 computes the cost of spilling

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:15

Algorithm 5 ALLOCATEORNOT

Input: new_mem-Ii: the new memory live interval
Input: active: a list that keeps track of local-memory live intervals currently live
Input: map: an array associating to each compound interval its current memory live
interval
Input: loc-mem-lis: a list containing all the local-memory live intervals
Input: /r: a local-memory live interval we want to add to active if possible
Input: Im _size: the size of the local memory
1: if WEIGHTOF (active) + new_mem-li.weight < Im _size then
2: return TRUE
3: else
4: splitting cost + COSTOFSPILLBEFORESPLIT(Ir:start, active)
5. spilling_cost + COSTOFSPILL(Irstart,active)
6: Ir_spill_cost < COSTOFSINGLESPILL(r)
7.
8
9

min <+ MINIMUM(splitting cost,spilling cost,lr_spill cost)
if min = splitting cost then
: SPILLBEFORESPLIT(Ir.start, active, loc-mem-lis, map)
10: else if min = spilling cost then

11: SPILL(Irstart,active, loc-mem-lis, map)
12: else

18: SINGLESPILL(lr, map)

14: end if

15: end if

these local-memory live intervals first, then if some space is still needed to hold
new_mem-li, it computes the cost of breaking some local-memory live interval into
a local-memory live interval which stops now, at the moment when new_mem-Ii
starts, and an off-chip live interval from now. It breaks the local-memory live in-
tervals until new_mem-Ii can fit.

(2) It computes the cost of spilling some local-memory live intervals until new_mem-
li can fit. Algorithm 5 walks over the local-memory live intervals in the order of
increasing spill cost.

(3) It computes the cost of spilling new_mem-Ii.

Algorithm 5 selects the possibility that is the cheapest and updates accordingly the
variables map, active, and loc-mem-lis.

8. EXPERIMENTAL EVALUATION

To evaluate our approach we have generated 2000 graphs (1000 superperfect graphs
and 1000 arbitrary interval graphs) with various properties. We compared our ap-
proach with the polynomial allocator of Li et al. [Li et al. 2009] which is the closest
work to ours. We also compare our approach with the classical best-fit allocator and to
a variant of the best-fit which aims to reduce copies. Notice both best-fit algorithms are
exponential in the size of the local memory: they are very effective for a few hundreds
of kilobytes, but they may not scale to larger allocation problems such as those arising
on the local memories of GPU accelerators.

The results collected so far are very encouraging and indicate that the proposed
approach competes with the best-fit, and may outperform it on the harder allocation
problems with a small local memory size.

We start with the survey of our experimental methodology, then we provide an ex-
perimental evaluation of our heuristic and discuss the results.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:16

Table I. Model parameters.

\ Constant | Latency |

latency local . memory | 8
latency_main_memory | 128
latency _move(sy) 8 + 25y
latency _spill(sy) 128 + 45,
latency reload(sy) 128 + 4s,

8.1. Methodology

Our comparison are based upon randomly generated graphs that attempt to reproduce
the characteristics of real life applications. We were inspired by the common charac-
teristics found in representative numerical benchmarks, such as those we used in our
previous work [Diouf et al. 2009] (BMCM [Berry et al. 1988], MXM, EDGE_DETECT [Lee 1998]
and FFT [Lee 1998]) and the Polybench [Pouchet 2012]. These graphs have been used
to evaluate our decoupled approach to the local memory allocation problem.3

Table I lists the parameters that model the local memory used in our experiments.
We modeled a typical DDR memory with burst/pipelined and random-access latencies.
Varying these ratios will change the overall benefits of local memory allocation, but
not the relative performance of the different heuristics/algorithms.

Before we present the results of our evaluation, we first explain how we proceed to
generate the random graphs, then we give a description of the compared algorithms,
and finally we depicts the details of our experimental evaluation.

8.1.1. Graph Generation. We generate interval graphs, selecting start (left) and end
(right) points at random. We also try to reproduce the control and data structures
found in real life applications, adding specific constraints and limits on these graphs.
We control the number of intervals, the minimum length of an interval, the maximum
number of concurrently live intervals and weight of intervals. Although there is no spe-
cific limit on maximum number of data structures that can be used in an application,
in practice it is not usual to see hundreds of data structures in a single application.
Also data structures in applications are usually not intended to be created and used
at the same line of code. That is when a data is created it is meant to be used for some
time, they are created, used and removed from memory when they are no longer re-
quired. By giving a bound on interval length we have ensured that the virtual data
structures created within an application are used for a minimum length of time and
the maximum number of live intervals within the graph is used to limit the maximum
number of data elements concurrently used in an application.

Our graphs are composed of compound intervals which are in turn composed of basic
intervals which have been introduced in Section 7. Each compound interval represents
the whole live range of an array, and the basic intervals represent the sub-intervals of
the compound interval where the array is frequently accessed. These basic intervals
are called hot portions in the approach of Li et al. [Li et al. 2011]. Usually the array
are accessed frequently through loops and in our implementation, each basic interval
corresponds to an access to an array through a loop. A basic interval begins at the start
point of a loop where an array is accessed and ends at the end point of that loop. Thus
to generate the basic intervals, we first generate some loops that can be imbricated
or not. Each loop has a start point and a end point that differs from start points and
end points of other loops. A loop [;, that contains a loop [», starts before [, and ends

3Extracting these graphs from real code would strengthen the experimental evaluation, assuming the ex-
traction method implements loop transformations to improve data locality and to partition arrays into small,
homogeneous blocks. Interference graphs may then be built from the live ranges of these array blocks [Diouf
et al. 2009]. How to perform these steps automatically and profitably remains a largely open problem.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A7

Table Il. Parameters for graph generation.

Parameter | Value |
maximal loop nest 4
number of loops 20
minimal number of outerloops 5
maximal number of outerloops 5
number of compound intervals 30
maximal number of basic intervals per compound interval 3
The number of different array’s size 10

after /5. For each array A, we randomly choose some loops where A will be frequently
accessed. A basic interval bi of A corresponds to a chosen loop /. The start point and
the end point of bi are set to the start point and end point of /. When choosing the basic
intervals of A, when two basic intervals are such that the one is contained in the other,
we consider that the A is accessed in the containing basic interval. Each bi is associated
to a randomly generated frequency and is defined as being a write, meaning that A is
modified within bi , or a use, meaning that A is only read within bi. After all the basic
intervals of A are chosen, we define ci, the compound interval of A: it contains all the
basic intervals of A, starts with the ourtermost loop containing the first basic interval
of A, and ends with the outermost loop containing the last basic interval of A.

To make the generation of interval graphs as generic as possible we use the param-
eters presented in Table II. We were inspired by the frequent characteristics found in
representative numerical benchmarks, such as the 4 above mentioned kernels and the
Polybench [Pouchet 2012]. The parameters allow to control the number of intervals in
the graph, the number of loops, the maximum depth of a loop, the maximum number
of basic intervals of a compound interval, etc.

8.1.2. Algorithms. We use the randomly generated graphs to evaluate our approach by
comparing it with three other approaches:

Classical Best fit. This algorithm, denoted BestFit, walks over the list of basic in-
tervals and attempts to assign every basic interval bi to a portion of the local mem-
ory(in facts, it is the array of this i which is assigned). If there is enough space to
hold bi, it chooses the space where bi fits the best. Otherwise either b: is spilled or
some previously assigned basic intervals are spilled to make room for bi.

Best fit variant. This is a variant of of the best-fit, denoted BestFitVariant. When-
ever a basic interval bi ends, it is checked if b: is the last basic interval of its com-
pound interval ci. If so, bi is removed from the local memory. Otherwise, bi is left in
the local memory until this space is needed for another basic interval bi’ of another
compound interval ci’ (another array) or the next basic interval of ci starts. The
aim of this technique is to assign, if possible, different live ranges of an array to
the same offset in the local memory in order to avoid copy costs.

Superperfect. This is our implementation of the approach of Li et al [Li et al. 2011]
denoted here SuperPerfect. In this implementation the live range splitting is nat-
urally performed because the frequently accessed portions (called hot portions by
authors of the approach) of array’s live ranges are exactly the basic intervals. Thus,
the set of candidates subject to allocation are composed of the compound intervals
and their basic intervals. The allocation algorithm will consider either the com-
pound interval or each of its individual basic intervals for allocation, but not both
at the same time. To approximate a given graph into a superperfect graph, we go
through the loops in their increasing start points, and we mark all the intervals
(the candidates, the basic and compound intervals) defined at the same point as
containing related, notice that two different loops have start points and end points
that differ. When at a start point, an interval j starts when another interval i is

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:18

already defined and still live, and 7 and j are not containing related, we extend i to
the end of j. After this approximation the new formed interval graph is superper-
fect.

8.1.3. Evaluation Details. Our evaluation was conducted on different local memory
sizes. We varied the size of the local memory in accordance with MaxSize when perform-
ing the experiments; MaxSize — the maximum size of simultaneously living arrays —
can vary significantly between two graphs. Thus, we do think that it is not very rele-
vant to compare two allocation algorithms on graphs with MaxSize that widely differs
when using a local memory with a fixed size. We focus here on the interesting case
where MaxSize is the maximum size of simultaneously living basic intervals and not of
the compound intervals, which is larger and thus make the problem easier to solve.

We based our comparison on the cumulative memory access latency incurred by each
method. The allocation of the best quality is the allocation with the lowest access la-
tency. For every interval graph the cost of the allocation performed by BestFitVariant,
SuperPerfect and our approach, denoted NSP, have been normalized with respect to
BestFit. For a given size of the local memory and a given algorithm, an associated
bar shows the average (Figure 7 and Figure 9) and how the individual allocations are
statistically distributed in the normalized allocation space (Figure 8 and Figure 10), of
all the normalized allocation cost of the given algorithm.

To perform an allocation with our approach we feed Algorithm 3 with the list of
basic intervals of each weighted interval graph. Algorithm 3 will then return a Not-
So-proper interval graph composed of local-memory live intervals. The MaxSize of the
resulting graph is less than or equal to the size of the local memory, hence all its
associated array blocks can be placed in the local memory using Algorithm 2.

8.2. Results and Discussion

We provide here an evaluation of our approach, on 1000 of randomly generated super-
perfect graphs and 1000 of randomly generated arbitrary interval graphs. The results
presented in this section show the performance of BestFitVariant variant (light gray
bars), SuperPerfect allocator (gray bars) and our approach denoted NSP (black bars).

N

Average Of Normalized Allocation
o L

]

]

]

]

)))) Q S S
KOS KOS KOS KON KON KOS KOS KON
<o e e . <o o o o
s ® b4 G e/e 2 @ b4

Size Of The Local Memory

‘ BestFitvariant m SuperPerfect m NSP‘

Fig. 7. Average of normalized allocation w.r.t. best fit on superperfect graphs.

Figure 7 and Figure 8 present the results obtained on superperfect graphs. For all
local memory sizes, our approach is better than SuperPerfect approach. Since the

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:19

3.00 o
2.75
§250
=2.25 o
(8]
©2.00 o

<:(1.75 °

- 1.50 oo

b4 oo 00

8125 - - o

mé.gg e = = = EE% Eli == ===

50

=z 0.50
0.25

0.00

Q e& e@ e@
i % >

? ?
%S, s, s,

x Ox x
I < @
%

Size Of The Local Memory
‘D BestFitVariantlSuperPerfeclINSP‘

Fig. 8. Distribution of normalized allocation w.r.t. best fit on super perfect graphs.

graphs are superperfect, there is no need of approximation for both approaches. Thus,
the difference here is on the choice of allocated arrays. This shows that, on the gen-
erated graphs, our approach performs a better allocation. When the size of the lo-
cal memory is lower or equal to MaxSize/4, our approach is better than BestFit and
BestFitVariant. For local memory size of MaxSize/2, MaxSize, MaxSize X 3/2, BestFit
and BestFitVariant gives better results. For a size of the local memory going from
MaxSize x 2 to MaxSize x 4, BestFitVariant, SuperPerfect and NSP give similar results
with small standard deviation. Algorithms produce approximately the same allocation
because the size of the local memory is big enough to allow a good allocation. Since the
three algorithms try to assign to the basic intervals, of a same array, the same place
in the local memory, avoiding thus extra copies, they give better results compared to
BestFit. But the small improvements suggest that these copies does not have a big
impact on the global allocation cost.

w

N

Average Of Normalized Allocation

=
=
—

Size Of The Local Memory

‘ BestFitVariant m SuperPerfect m NSP‘

Fig. 9. Average of normalized allocation w.r.t. the best fit on arbitrary graphs.

Figure 9 and Figure 10 show the results obtained on arbitrary graphs. Here again,
for all local memory sizes, our approach gives better results than SuperPerfect ap-

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:20

o)

~
00000
ococoo0

°

00 00

o

00 00

o

Normalized Allocation

L N w B (5] (2]
|
B

HE—L
|
e
|

& HIS

HEll— 2o
B
i
i
i
13
i
B
i

SO I

i

D S
[Ox
< &

g
Size Of The Local Memory
‘DBestFitVariantlSuperPerfectINSP‘

Fig. 10. Distribution of normalized allocation w.r.t. the best fit on arbitrary graphs.

proach, and on arbitrary graphs. Our approach, like BestFit and BestFitVariant,
performs on average allocations twice better than the allocations performed by
SuperPerfect algorithm. This performance degradation, of the SuperPerfect algo-
rithm, is mostly due to its approximation algorithm which is not meant to be used
on graphs that are not quasi-superperfect, that are interval graphs that have most
of their intervals matching the containment property. Comparing with BestFit and
BestFitVariant, our approach gives similar results to those presented in Figure 8, but
with a slightly higher variability.

9. RELATED WORK

Strong links between register allocation and local memory management have been
discovered for more than 30 years by [Fabri 1979]. Fabri’s seminal paper also studied
the interplay between local memory management and the loop transformations. Since
then it has been ignored in the field of local memory management and register alloca-
tion [Appel and George 2001; Hack et al. 2006; Bouchez et al. 2006b; Quintio Pereira
and Palsberg 2008]. While previous studies addressed local memory management from
different angles, targeting both code and data, we are especially interested in data
management [Kandemir et al. 2001; Issenin et al. 2007; Dominguez et al. 2007]. We
target dynamic methods which are superior to static ones except when code size is
extremely constrained [Udayakumaran and Barua 2003]. We elaborate on two recent
series of results targeting stack and global array management in local memories, em-
bracing the analogies with register allocation. The first approach [Li et al. 2005] uses
an existing graph coloring technique to perform memory allocation for arrays. It par-
titions the local memory for each array size, performs live range splitting and uses a
register allocation framework to perform memory coloring. The second approach [Avis-
sar et al. 2002; Udayakumaran and Barua 2003; Udayakumaran et al. 2006] allocates
data onto the scratch-pad memory between program regions separated by specific pro-
gram points. More specifically, allocation is based on the access frequency-per-byte of
a variable in a region (collected from profile data). Program points are located at the
beginning of a called procedure or before a loop entry.

The closest work to ours is [Li et al. 2011], where authors observed that in many
embedded applications most arrays present a specific live range behavior. Specifically,
for any two array, live ranges are either disjoint or one of the arrays is contained by
the other one (containment property). They showed that, for the tested benchmarks,

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:21

it is extremely rare to have two live ranges interfere with one another without con-
tainment. They extend the live range of one of the arrays to contain the other When
this happens. Authors proved that the interference graph of an application with such
a property is a comparability graph which is a superperfect graph and hence optimal
interval-coloring for this array interference graphs is possible. Based on this observa-
tion, they rely on the maximum weighted clique to guarantee the optimal colorability
of generated interference graph. When the maximum weighted clique exceeds the size
of the local memory, they use heuristics to spill or split some of the live ranges. While
this work is interesting, it is restricted to applications where most arrays satisfy the
containment property. On the other hand, our work leverages the decoupled alloca-
tion/assignment approach, allowing scalable and more effective algorithms. Moreover,
it offers much more flexibility in terms of integration of architecture constraints and
performance models.

10. CONCLUSION

We implemented a novel compilation-time local memory management approach
through decoupling spill code generation and local memory assignment. We repre-
sent the live range intervals of variables and arrays as a weighted interval graph.
We defined a new decision problem called the submarine-building problem, a variant
of the ship-building problem. The submarine-building problem corresponds to coloring
a weighted interval graph with a cyclic set of colors (corresponding to a wrap-around
local memory). We demonstrate important complexity results on this problem, some
of which particularly original in graph theory. We provide a new clustering heuris-
tic to approximate interval graphs into not-so-proper interval graphs, on which the
submarine-building problem can be decided in linear time. This approximation effec-
tively decouples the generation of spill code from the local memory assignment prob-
lem. Our preliminary experiments demonstrate the practicality of the approach, and
very favorable allocation results compared to state-of-the-art allocators.

Acknowledgments. This work was partly supported by the European FP7 project
TERAFLUX id. 249013.

REFERENCES

APPEL, A. W. AND GEORGE, L. 2001. Optimal spilling for CISC machines with few registers. In PLDI’01.
Snowbird, Utah, USA, 243-253.

ARM. 1998. Document No. ARM DDI 0084D, ARM Ltd. ARM7TDMI-S data sheet.

AVISSAR, O., BARUA, R., AND STEWART, D. 2002. An optimal memory allocation scheme for scratch-pad-
based embedded systems. ACM Trans. Embed. Comput. Syst. 1, 1, 6-26.

BERRY, M., CHEN, D., Koss, P.,, Kuck, D., Lo, S., PANG, Y., POINTER, L., ROLOFF, R., SAMEH,
A., CLEMENTI, E., CHIN, S., SCHNEIDER, D., FoX, G., MESSINA, P., WALKER, D., HSIUNG, C.,
SCHWARZMEIER, J., LUE, K., ORSZAG, S., SEIDL, F., JOHNSON, O., AND GOODRUM, R. 1988. The
perfect club benchmarks: Effective performance evaluation of supercomputers. International Journal of
Supercomputer Applications 3, 5-40.

BOISSINOT, B., DARTE, A., DE DINECHIN, B. D., GUILLON, C., AND RASTELLO, F. 2009. Revisiting out-of-
SSA translation for correctness, code quality and efficiency. In CGO’09. 114-125.

BOUCHEZ, F., DARTE, A., GUILLON, C., AND RASTELLO, F. 2006a. Register allocation: What does the NP-
completeness proof of Chaitin et al. really prove? In WDDD’06 (July). Boston, MA.

BOUCHEZ, F., DARTE, A., GUILLON, C., AND RASTELLO, F. 2006b. Register allocation: What does the NP-
completeness proof of Chaitin et al. really prove? or revisiting register allocation: Why and how. In
LCPC’06 (Nov.). LNCS. Springer Verlag, New Orleans, Louisiana.

BOUCHEZ, F., DARTE, A., AND RASTELLO, F. 2007. On the complexity of register coalescing. In CGO’07
(Mar.).

BOUCHEZ, F., DARTE, A., AND RASTELLO, F. 2008. Advanced conservative and optimistic register coalesc-
ing. In CASES’08. 147-156.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A:22

BRAUN, M. AND HACK, S. 2009. Register spilling and live-range splitting for ssa-form programs. In Com-
piler Construction. Lecture Notes in Computer Science Series, vol. 5501. Springer Berlin / Heidelberg,
174-189.

BRISK, P., DABIRI, F., JAFARI, R., AND SARRAFZADEH, M. 2006. Optimal register sharing for high-level
synthesis of ssa form programs. Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on 25, 5, 772 — 779.

BURNS, M., PRIER, G., MIRKOVIC, J., AND RETHER, P. 2003. Implementing address assurance in the Intel
IXP.

CHEN, L. 1992. Optimal parallel time bounds for the maximum clique problem on intervals. Inf. Process.
Lett. 42, 4, 197-201.

Di1ouF, B., OZTURK, O., AND COHEN, A. 2009. Optimizing local memory allocation and assignment through
a decoupled approach. In The 22nd International Workshop on Languages and Compilers for Parallel
Computing (LCPC 2009). Newark, Delaware, USA.

DOMINGUEZ, A., NGUYEN, N., AND BARUA, R. K. 2007. Recursive function data allocation to scratch-pad
memory. In CASES’07. 65-74.

FABRI, J. 1979. Automatic storage optimization. In ACM Symp. on Compiler Construction. 83-91.

GOLUMBIC, M. C. 2004. Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol
57). North-Holland Publishing Co., Amsterdam, The Netherlands, The Netherlands.

HACK, S., GRUND, D., AND G0O0S, G. 2005. Towards register allocation for programs in ssa-form. Tech. Rep.
2005-27, Universitit Karlsruhe. September.

HACK, S., GRUND, D., AND G0OS, G. 2006. Register allocation for programs in SSA-form. In CC’06. 247—
262.

INSTRUMENTS, T. 1997. TMS370Cx7x 8-bit microcontroller, Texas Instruments.

ISSENIN, I., BROCKMEYER, E., MIRANDA, M., AND DUTT, N. 2007. DRDU: A data reuse analysis technique
for efficient scratch-pad memory management. ACM Trans. Des. Autom. Electron. Syst. 12, 2, 15.

KAHLE, J. A., DAY, M. N., HOFSTEE, H. P., JOHNS, C. R., MAEURER, T. R., AND SHIPPY, D. 2005. Intro-
duction to the Cell multiprocessor. IBM Journal of Research and Development 49, 4/5.

KANDEMIR, M., RAMANUJAM, J., IRWIN, J., VIJAYKRISHNAN, N., KADAYIF, I., AND PARIKH, A. 2001.
Dynamic management of scratch-pad memory space. In DAC’01. 690-695.

LEE, C. G. 1998. UTDSP benchmarks.

LEE, J. K., PALSBERG, J., AND PEREIRA, F. M. Q. 2008. Aliased register allocation for straight-line pro-
grams is NP-compl ete. Theoretical Computer Science 407, 258-273. Preliminary version in Proceedings
of ICALP’07, 34th International Colloquium on Automata, Languages and Programming, pages 680—
691, Wroclaw, Poland, July 2007.

L1, L., FENG, H., AND XUE, J. 2009. Compiler-directed scratchpad memory management via graph coloring.
ACM Trans. Archit. Code Optim. 6, 9:1-9:17.

L1, L., GAO, L., AND XUE, J. 2005. Memory coloring: A compiler approach for scratchpad memory manage-
ment. In PACT"05. 329-338.

L1, L., XUE, J., AND KNOOP, J. 2011. Scratchpad memory allocation for data aggregates via interval coloring
in superperfect graphs. ACM Trans. Embed. Comput. Syst. 10, 28:1-28:42.

MOTOROLA. 1998. M-CORE — MMC2001 reference manual, Motorola Corporation.

NVIDIA. 2008. NVIDIA unified architecture GeForce 8800 GT.

PEREIRA, F. AND PALSBERG, dJ. 2009. Ssa elimination after register allocation. In Compiler Construction,
O. Moor and M. Schwartzbach, Eds. Lecture Notes in Computer Science Series, vol. 5501. Springer
Berlin Heidelberg, 158-173.

PEREIRA, F. M. Q. AND PALSBERG, dJ. 2005. Register allocation via coloring of chordal graphs. In In Pro-
ceedings of APLASO05, Asian Symposium on Programming Languages and Systems. 315-329.

POUCHET, L. N. 2012. Polybench/c, the polyhedral benchmark suite. http://www.cse.ohio-state.edu/
~pouchet/software/polybench/.

QUINTAO PEREIRA, F. M. AND PALSBERG, J. 2008. Register allocation by puzzle solving. SIGPLAN
Not. 43, 6, 216-226.

SAHA, A., PAL, M., AND PAL, T. K. 2007. Selection of programme slots of television channels for giving
advertisement: A graph theoretic approach. Inf. Sci. 177, 12, 2480-2492.

SARKAR, V. AND BARIK, R. 2007. Extended linear scan: An alternate foundation for global register alloca-
tion. In CC’07, S. Krishnamurthi and M. Odersky, Eds. Lecture Notes in Computer Science Series, vol.
4420. Springer, 141-155.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

A Decoupled Local Memory Allocator A:23

SJODIN, J. AND VON PLATEN, C. 2001. Storage allocation for embedded processors. In Proceedings of the
2001 international conference on Compilers, architecture, and synthesis for embedded systems. CASES
’01. ACM, New York, NY, USA, 15-23.

STEINKE, S., WEHMEYER, L., LEE, B., AND MARWEDEL, P. 2002. Assigning program and data objects to
scratchpad for energy reduction. In Proceedings of the conference on Design, automation and test in
Europe. DATE ’02. IEEE Computer Society, Washington, DC, USA, 409-.

UDAYAKUMARAN, S. AND BARUA, R. 2003. Compiler-decided dynamic memory allocation for scratch-pad
based embedded systems. In CASES’03. 276-286.

UDAYAKUMARAN, S., DOMINGUEZ, A., AND BARUA, R. 2006. Dynamic allocation for scratch-pad memory
using compile-time decisions. ACM Trans. Embed. Comput. Syst. 5, 2, 472-511.

ACM Transactions on Architecture and Code Optimization, Vol. V, No. N, Article A, Publication date: January 2013.

