A Polynomial Spilling Heuristic: Layered Allocation

Boubacar Diouf^{1 2}. Albert Cohen^{1 2}. Fabrice Rastello^{1 2}

 1 INRIA

² École Normale Supérieure de Paris

³École Normale Supérieure de Lyon

The register allocation problem maps temporary variables to machine registers

The Allocation/Spilling Problem

- The allocation chooses the register residents
- It also aims at minimizing the load/store overhead

• For the moment, let us assume that these two problems can be decoupled

The register allocation problem maps temporary variables to machine registers

The Allocation/Spilling Problem

- The allocation chooses the register residents
- It also aims at minimizing the load/store overhead

Assignment/Coloring

The coloring decides which register is used by which variable

Decoupling

• For the moment, let us assume that these two problems can be decoupled

The register allocation problem maps temporary variables to machine registers

The Allocation/Spilling Problem

- The allocation chooses the register residents
- It also aims at minimizing the load/store overhead

Assignment/Coloring

The coloring decides which register is used by which variable

Decoupling

For the moment, let us assume that these two problems can be decoupled

The register allocation problem maps temporary variables to machine registers

The Allocation/Spilling Problem

- The allocation chooses the register residents
- It also aims at minimizing the load/store overhead

Assignment/Coloring

The coloring decides which register is used by which variable

Decoupling

For the moment, let us assume that these two problems can be decoupled

A bit of Terminology

- Maxlive: the maximum number of simultaneously live variables
- ullet Given V a set of variables of a program and R a number of available registers

Two sub-problems

- The lowering problem finds S, a subset of V, of minimum cost to spill in order to decrease maxive by a small number
- The single layer allocation problem finds A, a subset of V, of maximum cost to allocate to a small number of registers

- \bullet The layered allocation incrementally solves the single layer allocation problem until the sum of the used registers reaches R
- \bullet The incremental lowering incrementally solves the lowering problem until maxlive reaches R

A bit of Terminology

- Maxlive: the maximum number of simultaneously live variables
- ullet Given V a set of variables of a program and R a number of available registers

Two sub-problems

- The lowering problem finds S, a subset of V, of minimum cost to spill in order to decrease maxive by a small number
- The single layer allocation problem finds A, a subset of V, of maximum cost to allocate to a small number of registers

- \bullet The layered allocation incrementally solves the single layer allocation problem until the sum of the used registers reaches R
- \bullet The incremental lowering incrementally solves the lowering problem until maxlive reaches R

000000

A bit of Terminology

- Maxlive: the maximum number of simultaneously live variables
- ullet Given V a set of variables of a program and R a number of available registers

Two sub-problems

- The lowering problem finds S, a subset of V, of minimum cost to spill in order to decrease maxlive by a small number
- ullet The single layer allocation problem finds A, a subset of V, of maximum cost to allocate to a small number of registers

- \bullet The layered allocation incrementally solves the single layer allocation problem until the sum of the used registers reaches R
- \bullet The incremental lowering incrementally solves the lowering problem until maxlive reaches R

A bit of Terminology

- Maxlive: the maximum number of simultaneously live variables
- Given V a set of variables of a program and R a number of available registers

Two sub-problems

- ullet The lowering problem finds S, a subset of V, of minimum cost to spill in order to decrease maxlive by a small number
- The single layer allocation problem finds A, a subset of V, of maximum cost to allocate to a small number of registers

- The layered allocation incrementally solves the single layer allocation problem until the sum of the used registers reaches R
- The incremental lowering incrementally solves the lowering problem until maxlive reaches R

000000

- \bullet Let us assume that we have a program P
- When R+1 registers are available, let us call $SPILL_{R+1}^P$ the optimal set of variables to spill to make a coloring possible
- For most programs, $SPILL_{R+1}^P \subset SPILL_R^P$
- \bullet Hence, for most programs, $ALLOC_R^P \subset ALLOC_{R+1}^P$

Approach	Complexity	Quality
Allocation/Spilling	NP-complete	Optimal
Layered Allocation	Polynomial	Close to optimal
Incremental lowering-optimal	NP-complete	???
Incremental lowering-heuristic	Polynomial	Not-optimal

Approach	Complexity	Quality
Allocation/Spilling	NP-complete	Optimal
Layered Allocation	Polynomial	Close to optimal
Incremental lowering-optimal	NP-complete	???
Incremental lowering-heuristic	Polynomial	Not-optimal

- The Allocation problem is NP-complete
- The Layered allocation is a heuristic that is close to optimal allocation
- We are not turning an NP-complete problem into a polynomial one

Approach	Complexity	Quality
Allocation/Spilling	NP-complete	Optimal
Layered Allocation	Polynomial	Close to optimal
Incremental lowering-optimal	NP-complete	???
Incremental lowering-heuristic	Polynomial	Not-optimal

- The Allocation problem is NP-complete
- The Layered allocation is a heuristic that is close to optimal allocation
- We are not turning an NP-complete problem into a polynomial one

Approach	Complexity	Quality
Allocation/Spilling	NP-complete	Optimal
Layered Allocation	Polynomial	Close to optimal
Incremental lowering-optimal	NP-complete	???
Incremental lowering-heuristic	Polynomial	Not-optimal

- The Allocation problem is NP-complete
- The Layered allocation is a heuristic that is close to optimal allocation
- We are not turning an NP-complete problem into a polynomial one

Outline

Introduction

Layered Approach

Layered-Heuristic Allocation: General Graphs Layered-Optimal Allocation: Chordal Graphs

Experimental Evaluation

Conclusion

Input:

- 1. A register allocation problem where each variable has an estimated spill cost
- 2. A number of available registers

Objective:

We want to perform an allocation that minimizes the cost of all the spilled variables

Two graph-based solutions:

- The general approach: Layered-Heuristic Register Allocator
- The SSA-based approach: Layered-Optimal Register Allocator

Given an interference graph of a program and R available registers (colors)

- 1. Assume that we have one register
- 2. We approximate the set of nodes of maximum cost/weight to allocate with one register: a layer. This layer is an independent set.
- 3. Remove the nodes of the layer from the graph at the next iteration

Repeat these instructions until we reach R or we allocate all the variables

Variables sorted by decreasing cost: a, e, c, b, d, f

Variables sorted by decreasing cost: a, e, c, b, d, f

I-Set-1: {a

Variables sorted by decreasing cost: e, c, b, d, f

I-Set-1: {a,e}

Variables sorted by decreasing cost: c, b, d, f

I-Set-1: {a,e}

Variables sorted by decreasing cost: b, d, f

I-Set-1: {a,e}

I-Set-2: {c,

Variables sorted by decreasing cost: b, d

I-Set-1: {a,e}

I-Set-2: {c,f}

Variables sorted by decreasing cost:

I-Set-1: {a,e}

I-Set-2: {c,f}

I-Set-3: {b,d}

Variables sorted by decreasing cost:

I-Sets sorted by decreasing cost: I-Set-1, I-Set-3, I-Set-2

Variables sorted by decreasing cost:

I-Set-1: {a,e}

I-Set-2: {c,f}

I-Set-3: {b,d}

I-Sets sorted by decreasing cost: I-Set-1, I-Set-3, I-Set-2

2 available registers

The cost of the allocation is 5

How the Layered-Heuristic Works

Variables sorted by decreasing cost:

I-Sets sorted by decreasing cost: I-Set-1, I-Set-3, I-Set-2

2 available registers

The cost of the allocation is 5

Outline

Introduction

Layered Approach

Layered-Heuristic Allocation: General Graphs
Layered-Optimal Allocation: Chordal Graphs

Experimental Evaluation

Conclusion

SSA-based Interference Graphs

The interference graph of an SSA-based program is chordal

- 1. The allocation problem can be decoupled from the coloring problem thanks to maxlive
- 2. Hence, the maximum weighted independent set can be found optimally [Frank'75]

The Maximum Weighted Independent Set Algorithm

Weighted graph

The Maximum Weighted Independent Set Algorithm

 iteration
 a
 f
 d
 e
 b
 g
 c
 red vertices

 1
 6
 5
 2
 2
 1
 2
 Ø

The Maximum Weighted Independent Set Algorithm

Weighted graph

iteration	а	f	d	е	b	9	С	red vertices
-	1	6	5	2	2	1	2	Ø
1		5	4	2	2	1	2	α

The Maximum Weighted Independent Set Algorithm

Weighted graph

iteration	а	f	d	е	b	9	С	red vertices
-	1	6	5	2	2	1	2	Ø
1		5	4	2	2	1	2	α
2			-1	-3	2	1	2	f, a
5						-1	0	b,f,a

Red vertices

The Maximum Weighted Independent Set Algorithm

Weighted graph

iteration	а	f	d	е	b	9	С	red vertices
-	1	6	5	2	2	1	2	Ø
1		5	4	2	2	1	2	α
2			-1	-3	2	1	2	f, a
5						-1	0	b,f,a

iteration	red vertices	blue vertices
-	b,f,a	Ø

Red vertices

Blue vertices

The Maximum Weighted Independent Set Algorithm

Weighted graph

iteration	а	f	d	е	b	9	С	red vertices
-	1	6	5	2	2	1	2	Ø
1		5	4	2	2	1	2	α
2			-1	-3	2	1	2	f, a
5						-1	0	b,f,a

iteration	red vertices	blue vertices
-	b,f,a	Ø
1	f,a	Ь

Red vertices

Blue vertices

The Maximum Weighted Independent Set Algorithm

iteration С red vertices Ø а -3 f, a 5 *-1* 0 b,f,a

iteration	red vertices	blue vertices
-	b,f,a	Ø
1	f,a	b
2	Ø	b, f

Red vertices

Blue vertices

A First Improvement: Weights Bias

Allocated variables: {f, b, d, g} Allocation-Cost = 14

Allocated variables: {f, b, d, g} Allocation-Cost = 14

Allocated variables: { }

Allocated variables: {f, b, d, g} Allocation-Cost = 14 Allocated variables: {f, c}

000000

Allocated variables: {f, b, d, g} Allocation-Cost = 14 Allocated variables: $\{f, c, d, b\}$

Allocated variables: {f, b, d, g} Allocation-Cost = 14

Allocated variables: {f, c, d, b} Allocation-Cost = 15

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

A Second Improvement: A Fixed Point Iteration

Outline

Experimental Evaluation

Evaluating the Layered-Heuristic Allocator

Architectures

• x86

Benchmarks extracted from JikesRVM

SPEC JVM 98

Algorithms

- LS: the linear scan implemented in JikesRVM
- BLS: a variant of the Belady's furthest -first
- · GC: the Chaitin-Briggs optimistic graph coloring
- Optimal: an ILP-based Allocator
- LH: Layered Heuristic

Evaluating the Layered-Heuristic Allocator

Evaluating the Layered-Heuristic Allocator

Evaluating the Layered-Optimal Allocator

Architectures

- ARMv7
- ST231

Benchmarks

- eembc
- lao-kernels
- SPEC CPU 2000int

Algorithms

- GC: the Chaitin-Briggs optimistic graph coloring
- Optimal: an ILP-based Allocator
- L: our baseline Layered-Optimal approach
- BL: the biased variant of our Layered-Optimal
- FPL: the fixed-point variant of our Layered-Optimal
- BFPL: the biased and fixed-point variant of our Layered-Optimal

Evaluating the Layered-Optimal Allocator

Evaluating the Layered-Optimal Allocator

Outline

Introduction

Layered Approach

Layered-Heuristic Allocation: General Graphs Layered-Optimal Allocation: Chordal Graphs

Experimental Evaluation

Conclusion

Conclusion

Contributions

- Layered allocation: polynomial and close to optimal allocation
- Iteratively allocate instead of (classical) iteratively spilling
- The approach works on general graphs and on SSA-based graphs

Approach	Graph-based	Program-based
UsefulNess	Not easy	Easy
Profitability	Easy	Difficult

Approach	Graph-based	Program-based
UsefulNess	Not easy	Easy
Profitability	Easy	Difficult

Assuming we have three available registers

Approach	Graph-based	Program-based
UsefulNess	Not easy	Easy
Profitability	Easy	Difficult

Assuming we have three available registers

Approach	Graph-based	Program-based
UsefulNess	Not easy	Easy
Profitability	Easy	Difficult

Why a Spill Everywhere Problem?

- 1. A solution of a spill everywhere problem can play the role of an oracle
- The cost of the store favors spilling entire live range instead of two sub-ranges of different variables
- The queuing mechanism is highly sensitive to the number of simultaneously spilled variables
- 4. The case where a store is considered to have no cost is equivalent to a spill everywhere formulation