
A Polynomial Spilling Heuristic: Layered Allocation

Boubacar Diouf
INRIA and École Normale

Supérieure de Paris
Boubacar.Diouf@inria.fr

Albert Cohen
INRIA and École Normale

Supérieure de Paris
Albert.Cohen@inria.fr

Fabrice Rastello
INRIA and École Normale

Supérieure de Lyon
Fabrice.Rastello@ens-lyon.fr

Abstract
Register allocation is one of the most important, and one of
the oldest compiler optimizations. It aims to map tempo-
rary variables to machine registers, and defaults to explicit
load/store from memory when necessary. The latter option
is referred to as spilling.

This paper addresses the minimization of the spill code
overhead, one of the difficult problems in register allocation.
We devised a heuristic, polynomial approach called layered.
It is rooted in the recent advances in decoupled register
allocation. As opposed to conventional incremental spilling,
our method incrementally allocates clusters of variables. We
demonstrate its quasi-optimiality on standard benchmarks
and on two architectures.

Categories and Subject Descriptors D.3.4 [Programming
languages]: Processors — Compilers, Optimization

General Terms Compilers, Algorithms, Performance

Keywords Register allocation, compilers

1. Introduction
Register allocation is an important compiler optimization.
Its goal is to map temporary variables in a program to either
machine registers or memory locations. Register allocation
is subdivided into two sub-problems: first, the allocation se-
lects the set of variables that will reside in registers at each
point of the program; then, the assignment or coloring picks
a specific register where a variable will reside. Usually, all
the variables of code cannot reside in registers. Variables not
held in registers should reside in memory, these variables
are called spilled variables. The spilling problem [6, 15] de-
cides which variables should be stored in memory to make
the assignment possible; it aims at minimizing load/store

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
CGO’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

overhead. The coalescing [5] and alienation (when repair-
ing is enabled [11]) problems aims at minimizing the over-
head of moves between registers. Spilling and coalescing are
correlated problems and are classically solved in the same
framework. Live-range splitting (adding register-to-register
moves) to reduce register pressure is sometimes considered
in such a framework [12], but it is very hard to control the
interplay between spilling and splitting or coalescing.

Building on the properties of the static single assignment
form (SSA), it is now possible to decouple the allocation
from the assignment. Indeed, the interference graph of a pro-
gram in SSA form is a chordal graph [20]. Since coloring a
chordal graph is easy, it follows that the assignment prob-
lem is also easy. Finding a valid coloring whenever it ex-
ists can thus be solved optimally with a greedy, linear al-
gorithm on chordal graphs, called tree-scan [11]. It follows
the spirit of the linear-scan [22], applied to the dominance
tree instead [24]. Thus, performing register allocation under
SSA has led to new approaches where the remaining diffi-
cult problems, spilling and coalescing, are treated separately.
This decoupled approach is advocated by Fabri [14], Appel
and George [2], and Hack [4, 6, 8, 20].

Existing spilling heuristics rely on a sufficient condition
to guarantee register assignment, and incrementally spill un-
til the condition holds. For programs under SSA, the con-
dition is necessary and sufficient: MAXLIVE, the maximal
number of variables simultaneously live at a program point,
has to be lower than or equal to R. Existing spilling rely on
incremental spilling decisions to satisfy this condition, but
these decisions tend to be overly local and suboptimal. In-
deed, incremental spilling is NP-complete [6], and heuristics
based upon it trade too much their optimality for polynomi-
ality.

In contrast to incremental spilling, we propose to adopt
the symmetric approach: incremental allocation. Intuition
for it emerges from two observations allowing for more
global spilling decisions:

1. Register allocation is pseudo-polynomial in the number
of registers [6], suggesting a heuristic that solves (opti-
mally) roughly R over step allocation problems on step
registers each. The final allocation being the layered of
the stepwise allocations.

2. Stepwise optimality does not guarantee an overall opti-
mal allocation, but we will show that it comes very close
to optimal, even with step = 1. Intuition for this comes
from recent work by Diouf et al. [13], observing that al-
location decisions tend to be a monotonic function of the
number of registers.

This paper proposes a new graph-based allocation heuris-
tic, based on the maximum clique cover to define the
profitability of spilling variables. It exploits the pseudo-
polynomial complexity in the number of registers of the
allocation problem under SSA—as opposed to the symmet-
ric, spilling problem which remains strongly NP-complete.
It addresses the spill-everywhere problem in a decoupled
context and also presents an extension to non-decoupled ap-
proaches. It introduces layered allocation a new strategy that
incrementally allocates variables instead of incrementally
spilling variables. The evaluation performed on standard
benchmarks shows that this new approach is quasi-optimal.

The outline of the paper is as follows. Section 2 details the
rationale for our new approach. Section 3 surveys the impor-
tant concepts and results upon which our approach is built.
Section 4 presents our layered allocator for SSA programs.
Section 5 adapts this scheme into a non-optimal heuristic
for general, non-chordal interference graphs. Section 6 eval-
uates the algorithm. Section 7 discusses related work and
Section 8 concludes the paper.

2. Our Approach to the Spilling Problem
We propose here a graph-based approach to the spilling
problem under SSA. We first give the motivation of a
graph-based approach and explain why we think that the
spill everywhere problem is a relevant one. We then detail
the two key motivations of our approach, i.e. the pseudo-
polynomiality of the allocation problem and the quasi-
optimality of the stepwise allocation scheme.

2.1 A Graph-Based Approach to Spilling
Apart from allowing the design of more efficient coalesc-
ing heuristics [7], the main advantage of the decoupled ap-
proach concerns the spilling problem: checking if the reg-
ister pressure, MAXLIVE, is low enough is much simpler
than checking the colorability of a general graph. This obser-
vation has led several researchers to design program-based
heuristics to lower register pressure, opposing the new de-
coupled approach to the “old” (interference-) graph-based
spilling heuristics. The goal of this section is to compare
both approaches by making the distinction between two as-
pects of the spilling decision: usefulness and profitability.

First, a spilling decision should be useful, in other words
help the assignment problem. Let us illustrate this point, us-
ing the example of Figure 1 with 3 registers. Here, spilling
variable a2 is useless in helping the assignment problem any-
how: while the upper part of the interference graph is not 3-
colorable ({d, e, f, g} require 4 registers), the lower part is.

… = c + 1
e = b + 1
f = e + 1

… = c + 1
e = b + 1
f = e + 1

a2 = a1

h1 = a2 + 1
h2 = h1 + 1

a2 = a1

h1 = a2 + 1
h2 = h1 + 1 g = d + e

 … = d, e, f, g

g = d + e
 … = d, e, f, g

… a2
… a2

livein = {a, b, c, d}

livein = {a1}
livein = {d, e, f}

h3= h1 + 1
h4= h2 + 1
h5= h3 + 1
h6= h4 + 1
h1= h5 + 1
h2= h6 + 1

h3= h1 + 1
h4= h2 + 1
h5= h3 + 1
h6= h4 + 1
h1= h5 + 1
h2= h6 + 1

… …

livein = {a2}

liveout = {Ø}

liveout = {Ø}

a2

h1

h2

h3 h4

h5

h6

a1

c

b

d

e

f

g

Figure 1. Program-based vs. graph-based spilling.

Taking only useful decisions when manipulating a program
is straightforward: a simple heuristic consists in considering
program points one after another, and when the register pres-
sure at the current point is too high, incrementally spilling
some variables to lower it. Here, every program point of the
left-hand part of the control flow graph has register pressure
less than 3, so none of the variables there have to be spilled.
Checking this directly on the graph, is a priori quite hard,
and degree guided heuristics are used in practice: it would
wrongly spill a2 because of its high degree. Actually, a very
elegant graph-based approach, proposed by Pereira and Pals-
berg [21] exists. It uses a maximal clique cover, polynomial
for chordal graphs. For a program under SSA, spilling a vari-
able is useful [20] if it is part of a clique of size greater than
the number of available registers; for non-SSA graphs this
characterization shows to be reasonably accurate. This is es-
pecially interesting as pure SSA form might not always be
possible in practice. In other words, a graph-based approach
that uses the notion of (almost 1) maximum clique cover to
drive the spilling of variable would still work in this more
general context.

Among a set of “useful variables”, which one is the most
profitable to be spilled first? To illustrate this point, let us
consider again the example of Figure 1, but suppose a1 and
a2 have been coalesced into a variable named a. At the en-
try of the region, at least one of the four variables that are
simultaneously live here should be spilled. It is clearly more
profitable to spill a or d which live-ranges include the live-
ranges of b and c. On a single basic-block under SSA, the
furthest first strategy of Belady [3, 6] is clearly optimal but
the existing generalization [8] to a general control flow graph
does not work well: it would wrongly consider a (that tra-

1 if not chordal

verses a loop) to be much more profitable than d. On the
other hand, a graph is very well suited for computing and
updating profitability, an inductive function of the spilling
cost and the probability it avoids the spilling of other vari-
ables. Here d belongs to two maximal cliques of size greater
than 3, while a belongs to only one. In other words graphs
enable more naturally the incremental update of profitability
along the successive removal (spilling) of nodes (variables)
from the graph.

The last motivation toward designing a graph-based ap-
proach is because, as we will see below, a graph allows
to tackle the problem from different points e.g. by start-
ing spilling the most profitable variable. Equivalently, a
program-based approach would start by program points in-
side inner loops which leads to a sophisticated implementa-
tion [19].

2.2 Why Spill Everywhere?
The spilling problem can be considered at different gran-
ularity levels: the highest, so called spill everywhere, corre-
sponds to considering the live range of each variable entirely.
A spilled variable will then lead to a store after the definition
and a load before each use. Of course, in practice, if the vari-
able can stay in a register between two consecutive uses, a
load is saved. The finest granularity, so called load-store op-
timization, corresponds to optimize each load and store sep-
arately. The latter, also known as paging with write back, is
NP-complete [15] on a basic block, even under SSA form.
The spill-everywhere problem is much simpler, applicable
to just-in-time compilation, and many instances are polyno-
mial under SSA form [6]. The algorithms we propose can
be applied to both spill everywhere and load-store optimiza-
tion problems. We focus here on the former for its simplicity,
because our past experience summarized in the 4 following
points tends to confirm the practical effectiveness of the spill
everywhere problem:

1. The complexity of the load-store optimization problem
comes from the asymmetry between loads and stores.
Also, most SSA variables have only one or two uses
in practice, and the cost of the store favors spilling the
entire live range instead of two sub-ranges of different
variables.

2. The queuing mechanism present in most architectures be-
have like a small, extremely fast cache. But it is highly
sensitive to the number of simultaneously spilled vari-
ables.

3. In the other extreme situation where stores have no cost,
a variable can be considered to be either in memory or in
register but not in both. Such a formulation [2] is strictly
equivalent to a spill everywhere formulation where live
ranges are split at every use.

4. Last, a solution to the spill-everywhere problem gives
to a load-store optimization problem the global view
lengthily discussed so-far that existing heuristics lack.

In other words a spill-everywhere solution can play the
role of an oracle.

2.3 Allocation Instead of Spilling
After giving the reasons that support our work on the spill
everywhere problem, let us stress the difference we want to
make here between spilling and allocation. Spilling aims at
finding which variable to evict from registers while alloca-
tion aims at finding which variable to keep in registers. Of
course, one is the dual of the other, so conceptually spilling
and allocation are the same. Now suppose you have a set of
variables and you want to evict (spill) a minimum amount of
them such that MAXLIVE is lowered by just one. As shown
in [6] this problem is NP-complete even for the simplest SSA
program instance. On the other-hand, consider you have al-
ready a set of allocated variables and you aim at allocating a
maximum number of additional ones such that at every pro-
gram point the register pressure LIVE is increased by at most
1. Then as outlined before, this problem is, under SSA, poly-
nomial with a complexity of O(Ωn). Ω being the maximum
simultaneously live variables that remains to be allocated; n
being the size of the program. Hence, in a way allocation is
simpler than spilling. Our approach pushes this distinction
further: conceptually, every variable is initially in memory,
and we evaluate the gain of allocating a given one instead of
considering every variables to be initially in a virtually un-
bounded register file and evaluate the cost of evicting it. As
we will see in this paper, this allows to be much more accu-
rate concerning the modeling of gain/cost that accounts for
ABI and register constraints.

2.4 Stepwise Allocation is Close to Optimal
In a recent paper, Diouf et al. [13] studied the question of the
spill sets inclusion, which is the question to know whether
or not the variables spilled on an optimal allocation with R
registers (R > 0) is included in the set of variables spilled
on an optimal allocation with R − 1 registers. Diouf et al.
showed that, theoretically, the answer to the question of spill
sets inclusion is no, but they experimentally validated that
when varying the number of registers from Rmin, the min-
imum number of registers to enable code generation, to the
number of registers allowing to allocate all the variables, the
inclusion property holds for 99.83% of the SPEC JVM98’s
methods. From the spill sets inclusion, it is straightforward
to see that the variables allocated on an optimal allocation
with R − 1 registers are included in the set of variables al-
located when R registers are available. Thus, the spill sets
inclusion proves, empirically, that the stepwise allocation is
close to optimal.

3. Background
We now summarizes some definitions and results on graphs
and chordal graphs upon which our approach is based.

In the rest of this paper, we assume that an estimated
spill cost has been computed for each variable. A spill cost

represents the access frequency of a variable, it is high when
the variable is frequently accessed and low when it is not.
We denote R the number of available registers.

Programs are usually represented as graphs, within graph
coloring frameworks, and live sets within linear scan frame-
works. Thus the spilling problem is naturally solved over
these two representations. Our approach is compatible for
both representations, but in the rest of this section we will
focus on the graph representation.

3.1 Graphs and Weighted Graphs
A graph G = (V,E) consists of two sets, V the set of
vertices or nodes, and E the set of edges. Every edge (v1, v2)
of E has two end points v1 ∈ V and v2 ∈ V . We say that
v1 and v2 are adjacent(s) or are neighbor(s) if (v1, v2) ∈ E.
The number of neighbors of a vertex v is called the degree
of v. Here, We only consider undirected graphs, i.e., we do
not make difference between the edges (v1, v2) and (v2, v1).

A sequence of vertices [v0, v1, v2, . . . , vl, v0] is called a
cycle of length l + 1 if (vi−1, vi) ∈ E for 1 ≤ i ≤ l and
(vl, v0) ∈ E. A subset A ⊆ V is called a clique of G if
every two distinct vertices of A are adjacent. A clique A is
maximal if it is not properly contained in any other clique
of G. A clique is maximum if there is no clique of G of
larger cardinality. A vertex v of a graph G is simplicial if
its neighbors form a clique in G. In contrast to a clique, a
stable or an independent set is a subset S ⊆ V that does not
contain two vertices that are adjacent.

Assuming each vertex v of G = (V,E) is associated with
a non-negative number w(v), the weight of a subset S ⊂ V
is expressed as:

w(S) =
∑
v∈S

w(v)

The graph G associated with the function w is called
a weighted graph and denoted Gw. For example, on Fig-
ure 2 each vertex labelled with its corresponding variable
is weighted by a number written close to it (e.g. vertex with
f has a weight of 6).

From a graph representation of a program, the allocation
problem becomes equivalent to the problem of finding a col-
orable sub-graph of maximum weight. This problem is NP-
complete on arbitrary graphs (as coloring is NP-complete).

3.2 Chordal Graphs
A code is in static single assignment (SSA) form when every
scalar variable has only one textual definition in the program
code. Most compilers use a particular SSA form, the strict
SSA form, with the additional so-called dominance prop-
erty: given a variable, any path from the entry of a program
to one of its uses goes through its (unique) definition. One
of the useful properties of such a form is the live ranges of
the variables (delimited by the definition and the uses of a
variable) can be viewed as sub-trees of this dominance tree.
The intersection graph of these sub-trees of the dominance

tree represents the interference graph. An important result of
graph theory states that the intersection graph of a family of
sub-trees of a tree is a chordal graph [17]. It follows that the
interference graph of a program in SSA form is chordal.

A graph G is chordal, if every cycle of length four or
more has a chord, a chord being an edge joining two vertices
of the cycle, that are not consecutive. The graph given in
Figure 1 shows a non-chordal graph (circuit [h1, . . . , h6, h1]
has no chord) while Figure 2 shows a chordal graph, for
instance the cycle [c, d, f, e, c] has a chord which is (d, e).

Algorithm 1 MAXIMUMWEIGHTEDSTABLE

Require: [v1, . . . , vn]: list of vertices indexed using a PEO
Require: w: a map associating to each vertex its weight
Require: adj: a map associating to each vertex the list of its neighbors
Var: marked red: a (LIFO) list keeping track of vertices marked red
Var: marked blue: a list keeping track of vertices marked blue
1: for i = 1→ n do
2: if w(vi) > 0 then
3: add vi to marked red
4: for all vj ∈ adj(vi) for j > i do
5: w(vj)← w(vj)− w(vi)
6: end for
7: end if
8: end for
9: while marked red 6= ⊥ do

10: v ← pop the first element of marked red
11: Add v to marked blue
12: remove all the vertices of adj(v) from marked red
13: end while
14: return marked blue

An interesting property, shown by Frank in [16] and
used below in this paper, is that computing the maxi-
mum weighted stable of a chordal graph can be done in
O(|E|+ |V |). The algorithm uses the notion of perfect elim-
ination order. An ordering v1, v2, . . . , vn of the vertices of
a graph G is a perfect elimination order (PEO) if each vi is
a simplicial vertex in G{vi,vi+1,...,vn}, the graph remaining
from G when all the vertices preceding vi in the ordering
have been removed. It is well known that a graph is chordal
if and only if it has a perfect elimination order (PEO) [17].
For instance [a, f, d, e, b, g, c] is a PEO of the chordal graph
given in Figure 2.

Algorithm 1 computes the maximum weighted stable of
a weighted graph Gw. It supposes the n vertices of Gw to be
indexed along a perfect elimination order; the adjacency list
of each vertex is provided through the map adj; finally the
weight is given by the function w. As it traverses the list of
vertices along the PEO (lines 1 to 8), it overwrites the weight
of the upcoming neighbors (w(vj) for vj ∈ adj(vi), j > i)
by reducing it by the current vertex weight (w(vi) with
vi the current vertex). Any vertex that becomes negatively
weighted is bypassed. A list marked red, is used to keep
track of vertices that stay positively weighted, and is then
traversed along the reverse order. This traversal (lines 9
to 13) allows to greedily fill up the marked blue list of non-
interfering nodes (stable) of maximum weight.

d

f

c

a

e

g

b

2 15

2 26

1

iteration a f d e b g c red vertices

- 1 6 5 2 2 1 2 Ø

1 5 4 2 2 1 2 a

2 -1 -3 2 1 2 f, a

5 -1 0 b,f,a

iteration red vertices blue vertices

- b,f,a Ø

1 f,a b

2 Ø b, f

(b) (c)

(a)

Figure 2. Maximum weighted stable with Algorithm 1.

Figure 2(b) and Figure 2(c) depicts the general steps of
Algorithm 1 when applied to the graph given in Figure 2(a).
Figure 2(b) shows how the set of vertices marked red is con-
structed. The column iteration presents the iterations of the
first for-loop of Algorithm 1 that marks red vertices. The
second column keeps track of the updated values of w. The
vertices are ordered according to the given perfect elimina-
tion order. The last column shows how the set of marked
red evolves. The first row shows, before the beginning of the
loop, the values of w for each vertex and the set of vertices
marked red which is empty. At the first iteration, the weight
of a is 1, thus a is marked red and the weights of its neigh-
bors d and f are decreased by 1. At the second iteration, the
weight of f is 5. Thus, f is marked red and the weights of
its neighbors a, d and e are decreased by 5. As the weight of
d and e become negative, the next iterations will skip them.
Finally, we obtain the set of vertices marked red which are
composed of b, f , a.

Figure 2(c) runs the while-loop of Algorithm 1 that builds
the blue list. At the first iteration, the vertex b (the lat-
est inserted) is popped and is inserted in makred blue. At
the second iteration the vertex f is popped and inserted in
makred blue. The vertex a is adjacent to f and cannot be
added to the set of vertices marked blue. Thus, a is removed
from the list of vertices marked red. We then end up with a
set of vertices marked blue composed of f and b of overall
maximum weight 8.

4. Layered-Optimal Register Allocation
This section restricts to the spilling problem for SSA pro-
grams. General graphs will be handled in Section 5.

Based on the two observations explained on Section 2, we
present here our solution which solves the spill minimiza-
tion problem for R registers by stacking optimal allocations
(layers) of simpler sub-problems on few registers. Each of
this simpler problem is considered to have no more than step
available registers. Stepwise optimality does not guarantee
an overall optimal allocation, but we will show that it comes
very close to optimal, even with step = 1.

Algorithm 2 implements layered-optimal allocation. It
takes as input candidates, the list of variables that are candi-
dates to register allocation. It then returns as result alloc list,

Algorithm 2 LAYEREDOPTIMALALLOCATION
Var: candidates: the list of vertices that are candidate to an allocation
Var: alloc list: the list of so far allocated variables
1: count← 0
2: while candidates 6= ⊥ ∧ count < R do
3: step← min(R− count, step)
4: result← OPTIMALALLOCATION(candidates,step)
5: add every vertex of result to alloc list and remove it from candidates
6: count← count + step
7: end while
8: return alloc list

the list of variables that have been allocated with R registers.
Algorithm 2 calls OPTIMALALLOCATION which returns the
optimal allocation set with step registers minimizing the
spill cost among the variables that have not yet been allo-
cated (currently in candidates). This set is added to alloc list
and removed from candidates. In its last step, Algorithm 2
finds the set of variables that minimizes the spill cost among
the variables remaining in candidates.

When the interference graph is chordal, for a step of
one, OPTIMALALLOCATION reduces to finding the maxi-
mum weighted stable set, and can be implemented with Al-
gorithm 1. For step ≥ 2, OPTIMALALLOCATION can be
implemented through dynamic programming [6]. In the fol-
lowing, we restrict ourselves to a step of one. The complex-
ity of the layered allocator is then O(R(|V |+ |E|)).

Algorithm 2 is a solid basis for an incremental allocation,
but it can be improved in two ways: biasing the cost of
the variables, and iterating further on the set of allocated
variables until no more variables can be allocated.

4.1 Biasing the Weights

d

f

c

a

e

g

b

2 15

2 26

1

(a)

d

f

c

a

e

g

b

2 15

2 26

1

(b)

Figure 3. The benefit of biasing the weight.

Before we explain how we bias weights of vertices, let us
first have a look on Figure 3. We assume two registers, a step
of one, and we are looking for the set of variables to allocate
for the weighted graph Gw given in Figure 2(a). Gw has
two stable sets {b, f} and {c, f}, represented using dashed
lines in Figure 3, that have a maximum weight 8. If {b, f}
is chosen, at the next step, Algorithm 2 will look for the
maximum weighted stable set on the graph remaining when
b and f are removed from Gw. This graph is represented
by the plain nodes and edges in Figure 3(a). The maximum
weighted stable set for this graph is {d, g} with a weight
of 6. This leads to spilling variables a, c and e with a spill
cost of 4. In contrast, if we choose c and f , at the next step
the maximum weighted stable of the graph, shown in black
nodes and edges in Figure 3(b), will be {b, d} of weight 7.
This leads to a spill cost of 3.

This example shows that the choice among different max-
imum weighted stable sets has an impact on the next itera-
tions of Algorithm 2. As opposed to the “old” incremental
spilling heuristic that spills variables one by one, the layer-
ing approach allocates variables layers by layers. Thanks to
that, it stresses less the importance of profitability but does
not eliminate it. Our proposal is to consider the maximum
weighted stable set that removes the most interferences in
the graph on non-allocated variables as the most profitable
one. To achieve this, the weight of vertices considered to be
made of positive integers, is biased with its degree using the
following new weight function w′:

w′(v) = w(v)× |V |+ do(v)

where |V | is the number of vertices of the graph and do(v)
the degree of v. For two vertices u and v, as do(u) ≤ |V |−1,
the two following properties will always be verified:{

if w(u) < w(v) then w′(u) < w′(v)
if w(u) = w(v) then w′(u) ≤ w′(v) iff do(u) ≤ do(v)

4.2 Iterating to Fixed Point

d

f

c

a

e b

14

1 21

5

(a) (b)

d

f

c

a

e b

14

1 21

5

da

b

4

2

5

(c) (d)

da

e b

4

1 2

5

Figure 4. The benefit of iterating until a fixed point.

To illustrate the second improvement, let us again con-
sider an example which weighted graph Gw is depicted in
Figure 4(a), and let us assume two registers and a step of one.
Gw has four maximal cliques {a, d, f}, {b, c, e}, {c, d, e},
and {d, e, f}. Figure 4(b) shows in dashed lines the set
{a, b, d} of allocated variables returned by Algorithm 2. The
sub-graph of allocated variable is reported in Figure 4(c). Al-
gorithm 2 ends up with this set of allocated vertices whether
or not the weights are biased. Let us recall that a coloring
with R colors is possible on a chordal graph if the maximum
clique of the graph does not have more than R vertices. If
we focus on the vertex f , we notice that in the graph Gw, f
belongs to a maximal clique composed of a, d and f , which
have 2 vertices already allocated. Thus vertex f cannot be
added to the graph of allocated vertices without adding a
clique of size 3 and then making a coloring with 2 colors
impossible. Unlike f , the vertices c and e are not contained
in a maximal clique that has 2 vertices already allocated. It
follows that either c or e can be added to the graph of al-
located vertices: by adding e, the resulting graph, shown in
Figure 4(d) remains 2-colorable.

Algorithm 3 FIXEDPOINTLAYERED (FPL)
Require: candidates: the list of vertices that are candidate to an allocation
Var: alloc list: the list of variables allocated so far
Var: allowed cliques: the list of cliques that do not have more than R

allocated vertices, it is initialized to the list of maximal cliques
Var: alloc per clique: a map associating to each maximal clique the num-

ber of its allocated vertices
1: count← 0
2: while candidates do
3: result← OPTIMALALLOCATION(candidates, 1)
4: if result = ∅ then
5: break
6: end if
7: add every vertex of result to alloc list
8: remove every vertex of result from candidates
9: count← count + 1

10: if count ≥ R then
11: UPDATE(candidates, result, allowed cliques, alloc per clique)
12: end if
13: end while
14: return alloc list

Algorithm 4 UPDATE
Require: candidates: the list of vertices that are candidate to an allocation
Require: result: a list of newly allocated variables
Var: allowed cliques: the list of cliques that do not have more than R

allocated vertices
Var: alloc per clique: a map associating to each maximal clique the num-

ber of its allocated vertices
1: for all clique ∈ allowed cliques do
2: if clique

⋂
result 6= ∅ then

3: increment alloc per clique(clique) by one
4: if alloc per clique(clique) ≥ R then
5: remove all the vertices of clique from candidates
6: remove clique from allowed cliques
7: end if
8: end if
9: end for

Figure 4 shows that even after allocated R maximal layers
of thickness 1, more variables can still be allocated. Finding
such variables can be done through the cost of maintaining
a set of not already saturated maximal cliques. This task is
performed by Algorithm 4 that Algorithm 3 calls once the
first R layers have been stacked. Algorithm 4 increments, for
each freshly allocated vertex, the number of allocated ver-
tices of each clique which contains it. If a clique is saturated
i.e. has R of its vertices already allocated, it is removed from
allowed cliques (the list of none saturated cliques), and all
its composing vertices are removed from candidates. On the
example of Figure 4(b) after the first two iterations, {a, d, f}
is saturated (so f is removed from candidates), {b, c, e},
{c, d, e}, and {d, e, f} are not. candidates is then restricted
to vertices {c, e}. If e is allocated it saturates all remaining
allowed clique, the loop ends.

4.3 Chads
When a variable is spilled, it does not completely disappear
from the interference graph. It is replaced by a set of short-
lived variables (called chads in [6]) which must be taken

into account. For instance on RISC architectures, memory
can only be accessed through load and store instructions:
before using a variable say v spilled at address a, the value
of v must be loaded from address a into a register. The extra
instructions inserted to reload spilled variables form the spill
code.

Some approaches—like the JikesRVM implementation
of the linear scan—spill locally an allocated variable when
there is no free register to assign a reloaded variable. On
CISC architectures like the x86, we also can take advan-
tage of complex addressing modes to get operands directly
from memory (at most one such operand on x86). On the
other hand, graph coloring heuristics iteratively rebuild in-
terferences after spill. Symmetrically, interferences can be
updated after each new allocation.

5. Layered-Heuristic Allocator
Although the spill minimization problem is only pseudo-
polynomial on SSA programs, the method also applies to
general programs. The layered approach remains applicable,
but Algorithm 1 can not be used anymore as the graphs are
not chordal. The layered-heuristic algorithm that we present
in this section, uses almost the same general scheme, i.e.
stacks layers of allocated variables. The first difference is
that, obviously, each layer is not guaranteed to be maximal:
stables are built using a greedy heuristic. The second differ-
ence, is that instead of stacking layers as they are built, a
set of layers is first built, as if the number of registers were
infinite; then layers are sorted using decreasing weight so
as to allocate the first R of largest weight. The solution ad-
vocated for building each (sub-)maximal weighted stable is
extremely simple: the set grows iteratively using the non-
interfering vertex of maximum weight.

Algorithm 5 SUBMAXIMUMWEIGHTEDSTABLESLIST
Require: candidates: a list of vertices, ordered by decreasing weight
Require: adj: a map associating to each vertex the list of its neighbors
Var: stable list: a list of stables
1: while candidates 6= ∅ do
2: stable← ⊥
3: // add all the vertices of candidates to potentials
4: potentials← candidates
5: while potentials 6= ∅ do
6: remove from potentials its first vertex, called v
7: add v to stable
8: remove all the vertices of adj(v) from potentials
9: end while

10: add stable to stable list
11: remove all the vertices of stable from candidates
12: end while
13: return stable list

Algorithm 5 computes stable list a set of sub-maximum
weighted stables that cover the graph. It starts from candidates,
a list of vertices of a graph sorted by decreasing weight. A
new stable is built at each iteration of the outer while-loop.
In order to compute stable, the new stable, all the vari-
ables still in candidates are added to potentials. The list

potentials keeps tracks, at each round of the inner while-
loop, the vertices that do not interfere with the vertices al-
ready into stable. Every time a vertex v is added to stable, all
the neighbors of v are removed from potentials. At the end
of the inner while-loop, the computed stable is added to the
stable list, and the next round of the outer while-loop starts.
Algorithm 5 ends when every variable is in a stable.

After the stables have been computed, Algorithm 6 de-
cides which stables should be allocated to registers. The R
stables of maximum weight (the weight of stable being the
sum of the weighted of its vertices) are allocated.

Algorithm 6 LAYEREDHEURISTICALLOCATION
Require: candidates: a list of vertices that are candidate to an allocation
Require: R: the number of available registers

stable list← SUBMAXIMUMWEIGHTEDSTABLESLIST(candidates)
sort stable list by decreasing weight
if |stable list| > R then

spill each variable in the last (|stable list|−R) stables from stable list
end if

The worst-case complexity of the layered-heuristic allo-
cation is O(∆ × (|V | + |E|)) were ∆ is the maximum de-
gree of the interference graph. Indeed the algorithm iterates
at most ∆+1 times, the built of a single stable set visits every
neighbor of a node only once. As the experiments will show,
while non restricted to SSA form programs, this extremely
simple heuristic turns out to be quite efficient in practice pro-
viding weights are biased as explained in Section 4.1. On
the other hand, one should outline that the fixed point im-
provement described in Section 4.2 cannot be applied for
this method.

6. Experimental Evaluation
Our approach is very well suited to SSA programs. We
also present excellent results on arbitrary interference graphs
from non-SSA programs.

6.1 Chordal Graphs: SSA Programs
Methodology We evaluated our approach on chordal inter-
ference graphs extracted from the Open64 compiler using
the MinIR intermediate representation [18]. We consider two
different target processors: the ST231 VLIW processor and
the ARM Cortex A8 (ARMv7). For the former, we gener-
ated the interference graphs for the SPEC CPU 2000int, the
lao-kernels (an internal suite from STMicroelectronics) and
the eembc benchmarks. We only used the lao-kernels for the
ARMv7 instruction set.

For each of the considered benchmarks, we computed the
spill costs based on the basic blocks’s frequency and on the
number of accesses to the variables within the basic blocks.
We studied the impact of the register count, ranging from 1
to 32. For each instance of the register allocation problem
and for each configuration, we compared the following al-
gorithms:

GC The Chaitin-Briggs, optimistic graph coloring [9].

Optimal An optimal ILP-based allocator.
NL The naı̈ve layered-optimal allocation method imple-

mented without the two improvements presented in Sec-
tion 4.

FPL The layered-optimal allocation method with the fixed
point improvement presented in Section 4.2.

BL The layered-optimal allocation method with the biased
weights presented in Section 4.1.

BFPL The layered-optimal allocation method including
both fixed points and biased weights improvements.

Results and discussion The results obtained from the eval-
uation of chordal graphs generated from SPEC CPU 2000int,
lao-kernels and eembc benchmarks are very similar.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 register

2 registers

4 registers

8 registers

16 registers

32 registers

A
llo

ca
tio

n
co

st

Number of available registers

GC
NL
BL

FPL
BFPL

Optimal

Figure 5. Allocation cost for SPEC CPU 2000int on ST231.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

1 register

2 registers

4 registers

8 registers

16 registers

32 registers

A
llo

ca
tio

n
co

st

Number of available registers

GC
NL
BL

FPL
BFPL

Optimal

Figure 6. Allocation cost for EEMBC on ST231.

 0

 0.5

 1

 1.5

 2

 2.5

1 register

2 registers

4 registers

8 registers

16 registers

32 registers

A
llo

ca
tio

n
co

st

Number of available registers

GC
NL
BL

FPL
BFPL

Optimal

Figure 7. Allocation cost for lao-kernels on ARMv7.

Figure 5 presents the average of the allocation cost of all
the application of the SPEC CPU 2000int. For the sake of ex-
position, we reported here the results for configuration with
a register count of 1, 2, 4, 8, 16 and 32 registers. For all
the configuration, BL, FPL, BFPL are close to optimal on
average and are better than GC. On configuration with reg-
ister counts up to 8, BL is also quasi-optimal, but for con-
figuration with 16 and 32 registers, we notice a performance
degradation. This is reinforced by Figure 6 and on Figure 7
we also notice a performance degradation, when the register
count is 32, of the FPL approach; it suggests that the biased
improvement is very helpful on the lao-kernels benchmark
suite, which is made of small benchmarks and thus can be
more impacted by a bad allocation choice.

GC NL BL FPL BFPL

1_re
gis

te
r

2_re
gis

te
rs

4_re
gis

te
rs

8_re
gis

te
rs

16_re
gis

te
rs

32_re
gis

te
rs

Number of available registers

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

li
ze

d
 a

ll
o

c
a

ti
o

n
 c

o
s

t

Figure 8. Cost distribution over SPEC CPU 2000int on
ST231.

GC NL BL FPL BFPL

1_re
gis

te
r

2_re
gis

te
rs

4_re
gis

te
rs

8_re
gis

te
rs

16_re
gis

te
rs

32_re
gis

te
rs

Number of available registers

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

li
ze

d
 a

ll
o

c
a

ti
o

n
 c

o
s

t

Figure 9. Cost distribution over EEMBC on ST231.

GC NL BL FPL BFPL

1_re
gis

te
r

2_re
gis

te
rs

4_re
gis

te
rs

8_re
gis

te
rs

16_re
gis

te
rs

32_re
gis

te
rs

Number of available registers

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

N
o

rm
a

li
ze

d
 a

ll
o

c
a

ti
o

n
 c

o
s

t

Figure 10. Cost distribution over lao-kernels on ARMv7.

Figure 8 studies the variability of allocation across in-
dividual interference graphs from the SPEC CPU 2000int,
targeting the ST231. Each allocation result is normalized to
the optimal allocation for the specific benchmark. This fig-
ure depicts the distribution of these normalized allocation

costs. GC, and to a lesser extent NL, show a high variability.
This indicates that some benchmarks yield poor allocations
for these allocators. On the contrary, BL, FPL and BFPL are
consistently successful at computing close-to-optimal allo-
cations. This is confirmed by Figures 9 and 10 on the other
benchmark suites. Notice a slight variability for FPL and
registers on the lao-kernels targeting the ARMv7 instruction
set (Figure 10).

6.2 Extension to Non-Chordal Graphs
Methodology We evaluated our approach on general, non-
SSA programs, studying the SPEC JVM 98 benchmark suite
(a benchmark set to measure the performance of Java virtual
machines). We used the JikesRVM [1] just-in-time compiler;
its intermediate representation is not in SSA, and the inter-
ference graphs are not chordal in general.

We considered different configurations of register count
going from 2 to 16. For each instance of the register alloca-
tion problem and for each configuration, we compared the
following algorithms:

LS The linear scan algorithm as implemented in JikesRVM.
BLS A variant of the linear scan relying on Belady’s furthest-

first strategy to make spilling decisions if their costs are
close enough according to a chosen threshold.

GC The Chaitin-Briggs, optimistic graph coloring.
Optimal The globally optimal allocation implementing an

ILP model proposed by Diouf et al. [13].
LH Our layered-heuristic algorithm.

 0

 0.5

 1

 1.5

 2

 2.5

 3

2 registers

4 registers

6 registers

8 registers

10 registers

12 registers

14 registers

16 registers

A
llo

ca
tio

n
co

st

Number of available registers

DLS
BLS
GC
LH

Optimal

Figure 11. Evaluation of layered-heuristic allocation.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

check

com
press

jess
raytrace

db javac
m

pegaudio

jack
m

trt

A
llo

ca
tio

n
co

st

Benchmark

DLS
BLS
GC
LH

Optimal

Figure 12. Layered-heuristic allocation for 6 registers.

Results and discussion Figure 11 shows the allocation
costs for all SPEC JVM together, normalized over the cost
of the optimal allocation’s cost. Configurations with differ-
ent register counts going from 2 to 16 registers. For al-
most all the register counts, the layered-heuristic allocator
is close to optimal, except for the configurations with 14 and
16 registers. This can be explained by the accumulation of

approximations in the incremental construction of maximal
weighted stables, a consequence of the non-chordality of the
interference graphs.

Figure 12 reports for each individual benchmark the nor-
malized allocation costs when we have a register count of 6
registers. We see that here again, the layered-heuristic allo-
cator performs close to optimal allocations, and outperforms
all the other allocation heuristics. For check, jess, javac,
and jack, the overhead can reach 60% of the optimal, but
the cost is still better than the conventional heuristics.

7. Related Work
Register allocation algorithms often rely on spilling algo-
rithms to perform spill minimization.

In static compilation the dominant approach to register al-
location is the graph coloring in which the spilling and color-
ing (assignment) algorithms are interleaved. During the sim-
plify phase, whenever all the remaining nodes have at least R
degrees, a node needs to be spilled or pushed onto the stack
(optimistic coloring) and removed from the graph. A natural
intuition is to choose a node that has a low spilling cost and
which interferes a lot. Many of the graph coloring variant are
based on this intuition and use the quantity cost(v)/deg(v)
— a global information over the whole program — to choose
the variables to spill [10].

In just-in-time (JIT) compilation, (quasi-)linear complex-
ity remains a driving force in the design of optimization al-
gorithms. The linear scan which is one of the most used reg-
ister allocation algorithm on JIT compilers has a worst case
complexity2 ofO(n×R), where n is the number of variables
in the program and R is the number of available registers on
the target architecture. The original spilling heuristic used in
linear scan [22] is based on the Belady’s furthest first algo-
rithm [3]. This algorithm relies on local information to per-
form spilling: “At a point p where registers are not enough
to hold all the live variables, spill the variables whose live
ranges go farther in the future”. Recent versions of linear
scan use more elaborate algorithms based on variables’ spill
cost estimation and sharing some of the global spilling deci-
sions of graph coloring [25].

The idea of improving the spill minimization in a de-
coupled approach has been explored by Proebsting and Fis-
cher [23], and by Braun and Hack [8]. Braun and Hack gen-
eralized the Belady’s furthest first algorithm — which works
very well on straight-line code — to control-flow graphs.
Their approach, while being applicable as a pre-spill phase
in any compiler, is more adapted to SSA-based register al-
location. They reported a reduction in the number of reload
instructions by 54.5% compared to the linear scan and by
58.2% compared to the graph coloring. Pereira and Palsberg
rely on maximal cliques to drive spilling decisions with sim-
ilar goals on chordal graphs, and generalizability to general

2 Notice that this complexity does not take into account the complexity of
the liveness analysis.

graphs [21]. Like the latter approaches, layered allocation is
fast and can be used in a non-decoupled context for general
programs, in a decoupled context for SSA programs, and as a
pre-spill phase in any compiler. Unlike Braun and Hack, we
show that our layered algorithm performs close-to-optimal
allocations.

8. Conclusion
Combining key observations in SSA-based, decoupled reg-
ister allocation, we designed a new, polynomial approach to
the spill-cost minimization problem: layered allocation. Our
method contrasts with decades of work on register allocation
by incrementally allocating clusters of variables to registers,
while conventional heuristics incrementally spill variables.
The criterion to form these clusters, rooted in the maximal
clique problem (polynomial on chordal graphs), is also origi-
nal. Our algorithm produces allocations that are very close to
optimal on SSA programs, outperforming higher complexity
heuristics such as the graph coloring methods. We also adapt
our method to design an allocation heuristic for general, non-
SSA programs.

These fundamental results pave the way to a simpler and
very effective register allocation framework. Several steps
remain to be taken to integrate it in a production compiler:
studying the interactions with register coalescing and other
downstream optimizations, studying load/store optimization
variants (with transparent, fine-grain live range splitting),
and reducing the number of incremental allocations to com-
pete with the slightly faster linear scan allocators.

Acknowledgments
We would like to thank Taj Muhammad Khan for his com-
ments and help proofreading the paper.

References
[1] B. Alpern and et al. The Jikes RVM project: Building an open

source research community. IBM Systems Journal, 44(2):399–
418, 2005.

[2] A. W. Appel and L. George. Optimal spilling for CISC
machines with few registers. In PLDI’01, pages 243–253,
Snowbird, Utah, USA, June 2001.

[3] L. A. Belady. A study of replacement algorithms for virtual
storage computers. 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, 1966.

[4] F. Bouchez, A. Darte, and F. Rastello. On the complexity of
register coalescing. In CGO’07, 2007.

[5] F. Bouchez, A. Darte, and F. Rastello. On the complexity of
register coalescing. CGO ’07, pages 102–114, Washington,
DC, USA, 2007. IEEE Computer Society.

[6] F. Bouchez, A. Darte, and F. Rastello. On the complexity of
spill everywhere under ssa form. In LCTES’07, pages 103–
112, 2007.

[7] F. Bouchez, A. Darte, and F. Rastello. Advanced conservative
and optimistic register coalescing. In CASES’08, pages 147–
156, 2008.

[8] M. Braun and S. Hack. Register spilling and live-range split-
ting for ssa-form programs. volume 5501 of LNCS, pages
174–189. Springer Berlin / Heidelberg, 2009.

[9] P. Briggs, K. D. Cooper, and L. Torczon. Improvements
to graph coloring register allocation. ACM Trans. Program.
Lang. Syst., 16(3):428–455, 1994.

[10] G. J. Chaitin. Register allocation & spilling via graph col-
oring. In Proceedings of the 1982 SIGPLAN symposium on
Compiler construction, pages 98–105, New York, NY, 1982.
ACM.

[11] Q. Colombet, B. Boissinot, P. Brisk, S. Hack, and F. Rastello.
Graph-coloring and treescan register allocation using repair-
ing. In CASES’11, pages 45–54. IEEE Computer Society, Oct.
2011.

[12] K. D. Cooper and L. T. Simpson. Live range splitting in a
graph coloring register allocator. In CC’98, pages 174–187.
Springer-Verlag, 1998.

[13] B. Diouf, J. Cavazos, A. Cohen, and F. Rastello. Split reg-
ister allocation: Linear complexity without the performance
penalty. In Intl. Conf. HiPEAC’10, LNCS, Pisa, Italy, Jan.
2010. Springer-Verlag.

[14] J. Fabri. Automatic storage optimization. In ACM Symp. on
Compiler Construction, pages 83–91, 1979.

[15] M. Farach-Colton and V. Liberatore. On local register alloca-
tion. J. of Algorithms, 37(1):37–65, 2000.

[16] A. Frank. Some polynomial algorithms for certain graphs and
hypergraphs. Proceedings of the Fifth British Combinatorial
Conference, pages 211–226, 1975.

[17] M. C. Golumbic. Algorithmic Graph Theory and Perfect
Graphs (Annals of Discrete Mathematics, Vol 57). North-
Holland Publishing Co., Amsterdam, The Netherlands, The
Netherlands, 2004. ISBN 0444515305.

[18] J. L. Guen, C. Guillon, and F. Rastello. Minir: a minimalistic
intermediate representation. In Workshop on Intermediate
Representations (WIR’11), Chamonix, France, 2011.

[19] S. Hack. Register Allocation for Programs in SSA Form. PhD
thesis, Universität Karlsruhe, October 2007.

[20] S. Hack, D. Grund, and G. Goos. Register allocation for
programs in SSA-form. In CC’06, pages 247–262, 2006.

[21] F. M. Q. Pereira and J. Palsberg. Register allocation via
coloring of chordal graphs. In APLAS, pages 315–329, 2005.

[22] M. Poletto and V. Sarkar. Linear scan register allocation. ACM
Trans. Program. Lang. Syst., 21(5):895–913, 1999.

[23] T. A. Proebsting and C. N. Fischer. Probabilistic register
allocation. PLDI ’92, pages 300–310, New York, NY, USA,
1992. ACM. ISBN 0-89791-475-9.

[24] H. Rong. Tree register allocation. In International Sympo-
sium on Microarchitecture (MICRO’09), pages 67–77. IEEE
Computer Society, Dec. 2009.

[25] V. Sarkar and R. Barik. Extended linear scan: An alternate
foundation for global register allocation. In CC’07, volume
4420 of LNCS, pages 141–155. Springer, 2007.

