Cryptanalysis of Forkciphers

Augustin Bariant, Nicolas David and Gaëtan Leurent

Inria de Paris

October 24, 2020

Tweakable block ciphers

• New parameter : the **tweak**.

$$\widetilde{E}: \{0,1\}^k \times \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n.$$

- The encryptions under different tweaks should be independant.
- Allows to encrypt blocks from the same plaintext with small collision probability.
- Independant family of block ciphers.

- Based on AES-128.
- 64-bit tweak XORed to the first two rows of the state, each round.
- New attacker model: the attacker can choose the tweak.
- No security loss compared to the AES according to the designers.
- However, most attacks on AES-128 reach one more round in KIASU-BC.

Authenticated encryption

• A TAG is added : the **MAC** (Message Authentification Code).

- The TAG is checked upon reception of the message.
- Impossible to generate the MAC without the key.

- Family of authenticated block ciphers.
- Efficient for very short messages.
- Based on existing block ciphers.
- A forkcipher outputs two ciphertexts C_0 et C_1 :

$$\widetilde{F}: \{0,1\}^k \times \{0,1\}^t \times \{0,1\}^n \to \{0,1\}^n \times \{0,1\}^n.$$

- The second ciphertext can be interpreted as a MAC.
- The receiver checks if both ciphertexts correspond to the same plaintext.

Description of the framework

- The plaintext goes through r_i rounds of blockcipher.
- The state is duplicated.
- The forked state goes through respectively r_0 et r_1 , with different roundkeys.
- Both ciphertexts C_0 et C_1 are returned.

• ForkAES is a forkcipher based on KIASU-BC, with $r_0 = r_1 = r_i = 5$.

A new attacker model

- The attacker can chose a ciphertext C_0 , a tweak and the oracle returns the corresponding C_1 .
- The path from C_0 to C_1 consists of 5 decryption rounds followed by 5 encryption rounds.

Best attacks on AES and KIASU-BC

Algorithm	Attack Type	Rounds	Data	Time	Memory
AES-128	Impossible Diff.	7	$2^{106.2}$	$2^{110.2}$	2 ^{90.2}
AES-128	Meet in the Middle	7	2 ⁹⁷	2 ⁹⁹	2 ⁹⁸
KIASU-BC	Impossible Diff.	8	2 ¹¹⁸	$2^{120.2}$	2 ¹⁰²
KIASU-BC	Boomerang	8	2^{103}	2^{103}	2 ⁶⁰
KIASU-BC	Meet in the Middle	8	2^{116}	2^{116}	2 ⁸⁶

Best attacks on ForkAES

Version	Attack type	Data	Time	Memory	Probability
ForkAES-*-4-4	Impossible Diff.	2 ^{39.5}	2 ⁴⁷	2 ³⁵	1
ForkAES-*-4-4	Reflection Diff.	2 ³⁵	2 ³⁵	2 ³³	1
ForkAES-*-5-5	Truncated Diff.	2 ⁷³	2 ⁷³	2 ⁵⁸	2 ⁻³²
ForkAES-*-5-5	Truncated Diff.	2 ^{97.6}	2 ^{117.6}	2 ⁸⁵	2 ^{-5.4}
ForkAES-*-5-5	Truncated Diff.	2 ^{104.6}	2 ^{123.6}	2 ⁹⁶	0.38

Introduction to Differential Paths Maths and Notations

1 Analyzed primitives

2 Preliminary

- Introduction to Differential Paths
- Maths and Notations

3 A weak key attack on ForkAES

Upgrade the attack

Introduction to Differential Paths Maths and Notations

Differential paths

- Idea : Track the difference between a pair of messages.
- Probability of the entire differential path : Product of the probabilities to go from difference δ_i to δ_{i+1} through the round function **f**.

Introduction to Differential Paths Maths and Notations

Truncated differential paths

- Set of differential paths.
- We keep track of bytes with no difference.
- Allows to significantly increase the probability of the path.
- We represent differences on a 4x4 matrix :

Active difference on the first byte.

Introduction to Differential Paths Maths and Notations

Notations

- Bytes are elements of a 256-element field. Operations operate in this field.
- State bytes are numbered from 0 to 15, according to the following matrix :

0	4	8	12
1	5	9	13
2	6	10	14
3	7	11	15

Introduction to Differential Paths Maths and Notations

Properties of S-boxes

P(δ_i, δ_o) is the probability that the output difference of the S-box is δ_o if the input difference is δ_i.

Introduction to Differential Paths Maths and Notations

Properties of S-boxes

- P(δ_i, δ_o) is the probability that the output difference of the S-box is δ_o if the input difference is δ_i.
- Properties of \mathcal{P} for AES S-box:
 - For any non-zero δ_i , there exists a unique δ_o so that $\mathcal{P}(\delta_i, \delta_o) = 2^{-6}$.
 - For any non-zero δ_i , there exist precisely $2^7 1$ values δ_o so that $\mathcal{P}(\delta_i, \delta_o) \neq 0$.
 - For any non-zero δ_i and δ_o , $\mathcal{P}(\delta_i, \delta_o) \in \{0, 2^{-7}, 2^{-6}\}$.

Introduction to Differential Paths Maths and Notations

Properties of S-boxes

- P(δ_i, δ_o) is the probability that the output difference of the S-box is δ_o if the input difference is δ_i.
- Properties of \mathcal{P} for AES S-box:
 - For any non-zero δ_i , there exists a unique δ_o so that $\mathcal{P}(\delta_i, \delta_o) = 2^{-6}$.
 - For any non-zero δ_i , there exist precisely $2^7 1$ values δ_o so that $\mathcal{P}(\delta_i, \delta_o) \neq 0$.
 - For any non-zero δ_i and δ_o , $\mathcal{P}(\delta_i, \delta_o) \in \{0, 2^{-7}, 2^{-6}\}$.
- If δ_i and δ_o are randomly picked, there is in average one solution x to the following equation:

$$SB(x) \oplus SB(x \oplus \delta_i) = \delta_o$$

Introduction to Differential Paths Maths and Notations

Properties of S-boxes

- P(δ_i, δ_o) is the probability that the output difference of the S-box is δ_o if the input difference is δ_i.
- Properties of \mathcal{P} for AES S-box:
 - For any non-zero δ_i , there exists a unique δ_o so that $\mathcal{P}(\delta_i, \delta_o) = 2^{-6}$.
 - For any non-zero δ_i , there exist precisely $2^7 1$ values δ_o so that $\mathcal{P}(\delta_i, \delta_o) \neq 0$.
 - For any non-zero δ_i and δ_o , $\mathcal{P}(\delta_i, \delta_o) \in \{0, 2^{-7}, 2^{-6}\}$.
- If δ_i and δ_o are randomly picked, there is in average one solution x to the following equation:

$$SB(x)\oplus SB(x\oplus\delta_i)=\delta_o$$

• $\Theta[0]$ is chosen so that $\mathcal{P}(\Theta[0], \Theta[0]/2) = 2^{-6}$.

Key hypothesis Development of the attack An efficient filter Attack complexity

1 Analyzed primitives

2 Preliminary

- 3 A weak key attack on ForkAES
 - Key hypothesis
 - Development of the attack
 - An efficient filter
 - Attack complexity

Upgrade the attack

Key hypothesis Development of the attack An efficient filter Attack complexity

- $k_5 + k_{11}$ has a zero diagonal (the key corresponding to the junction of both branches).
- Probability 2⁻³².
- $\bullet\,$ Differential attack with complexity $<2^{96}$

Key hypothesis Development of the attac An efficient filter Attack complexity

Ideas of the attack

• Differential path with probability *p*.

Key hypothesis Development of the attack An efficient filter Attack complexity

- Differential path with probability p.
- We define four functions P_0, P_1, P'_0 and P'_1 : $\{0,1\}^{96} \rightarrow \{0,1\}^{128}$ so that, for any pair of 96-bit vectors (u, v):

Key hypothesis Development of the attack An efficient filter Attack complexity

- Differential path with probability p.
- We define four functions P_0, P_1, P'_0 and $P'_1 : \{0,1\}^{96} \rightarrow \{0,1\}^{128}$ so that, for any pair of 96-bit vectors (u, v):
 - If (P₀(u), P₁(v)) satisfies the differential path, (P'₀(u), P'₁(v)) also does with probability p' ≫ p.

Key hypothesis Development of the attack An efficient filter Attack complexity

- Differential path with probability p.
- We define four functions P_0, P_1, P'_0 and $P'_1 : \{0,1\}^{96} \rightarrow \{0,1\}^{128}$ so that, for any pair of 96-bit vectors (u, v) :
 - If $(P_0(u), P_1(v))$ satisfies the differential path, $(P_0'(u), P_1'(v))$ also does with probability $p' \gg p$.
 - $(P_0(u), P_1(v))$ and $(P'_0(u), P'_1(v))$ satisfy the differential with probability $p \times p'$.

Key hypothesis Development of the attac An efficient filter Attack complexity

Ideas of the attack

• We generate a large set of 96-bit vectors u_i .

Key hypothesis Development of the attack An efficient filter Attack complexity

- We generate a large set of 96-bit vectors u_i .
- For each vector u_i of the set, we compute $P_0(u_i)$, $P'_0(u_i)$, $P_1(u_i)$, $P'_1(u_i)$.

Key hypothesis Development of the attack An efficient filter Attack complexity

- We generate a large set of 96-bit vectors u_i .
- For each vector u_i of the set, we compute $P_0(u_i)$, $P'_0(u_i)$, $P_1(u_i)$, $P'_1(u_i)$.
- We look for pairs of 96-bit vectors (u_i, v_j) so that $(P_0(u_i), P_1(v_j))$ and $(P'_0(u_i), P'_1(v_j))$ have the differential output difference.

Key hypothesis Development of the attack An efficient filter Attack complexity

- We generate a large set of 96-bit vectors u_i .
- For each vector u_i of the set, we compute $P_0(u_i)$, $P'_0(u_i)$, $P_1(u_i)$, $P'_1(u_i)$.
- We look for pairs of 96-bit vectors (u_i, v_j) so that $(P_0(u_i), P_1(v_j))$ and $(P'_0(u_i), P'_1(v_j))$ have the differential output difference.
- For each pair of ciphertexts passing the differential path, we deduce key bits. We keep couples (u_i, v_j) if the deduced key bits of both created pairs are compatible.

- (a₀, a₁) is a pair of bytes with difference Θ[0]/2 and SB⁻¹(a₀) ⊕ SB⁻¹(a₁) = Θ[0].
- We denote $b_i = SB^{-1}(a_i)$ and $c_i = SB(b_i + \tau[0])$.
- We guess the first byte of $\widehat{k_{10}}$ and denote it K.

$$P(u, v) = (P_0(u), P_1(v)) = \left(\left(\begin{pmatrix} a_0 + K & u \\ 0 & u \\ 0 & \end{pmatrix}, 0 \right), \left(\begin{pmatrix} a_1 + K & v \\ 0 & v \\ 0 & \end{pmatrix}, \Theta \right) \right)$$
$$P'(u, v) = (P'_0(u), P'_1(v)) = \left(\left(\begin{pmatrix} c_0 + K & u \\ 0 & u \\ 0 & \end{pmatrix}, \tau \right), \left(\begin{pmatrix} c_1 + K & v \\ 0 & v \\ 0 & \end{pmatrix}, \tau + \Theta \right) \right)$$

• If P satisfies the differential path, P' is also inactive during round 7 with probability 1.

•
$$p = 2^{-114}$$
, $p' = 2^{-12}$ so $p_{tot} = 2^{-126}$

• The output difference allows to filter every pair.

Key hypothesis Development of the attack An efficient filter Attack complexity

Efficiency of the filter

- Let us generate a set of 2^{63} 96-bit vectors (2^{126} pairs).
- In average, one couple (P(u, v), P'(u, v)) satisfies the differential path.
- We observe and store collisions between the first column of the ciphertexts of (P₀(u), P₁(u)) and of (P'₀(v), P'₁(v)).
- Each collision represents a pair having the right output difference. This happens with probability 2^{-64} for random pairs.
- \bigcirc In total, we filter out 70 bits, and 2⁵⁶ pairs remain.

Key hypothesis Development of the attack An efficient filter Attack complexity

- The pairs of a couple satisfying the path must have a common key candidate per column.
- A random couple has a common key candidate for each column with probability $2^7\times 2^7/2^{32}=2^{-18}$
- In total, we had 2⁵⁶ pairs we filter 2⁵⁴, so there remains 2², for a total of 102 guessed key bytes.
- We end with a exhaustive search on remaining key bytes.

Key hypothesis Development of the attack An efficient filter Attack complexity

Attack complexity

• The complexity of the attack in (Data, Time, Memory) is:

$$(D, T, M) = (2^{73}, 2^{73}, 2^{58}).$$

One change: the middle rounds Attacking more keys

Analyzed primitives

2 Preliminary

3 A weak key attack on ForkAES

Opprade the attack

- One change: the middle rounds
- Attacking more keys

5 Conclusion

One change: the middle rounds Attacking more keys

• Difference in states y_6 and y_{11} are exactly the same.

$$SB(x_6[i]) + SB(x_6'[i])) = (y_6 + y_6')[i]$$

$$SB(k[i] + x_6[i]) + SB(k[i] + x_6'[i]) = (y_6 + y_6')[i].$$

- $(x_6[i], x'_6[i])$ and $(k[i] + x_6[i], k[i] + x'_6[i])$ are two pairs with the same difference, and their output difference through the S-box SB is the same.
- For some values of k[i] and of $(y_6 + y'_6)[i]$, these equations have no solution.

One change: the middle rounds Attacking more keys

- There is a 1/16 probability that the key is compatible with the tweak difference (1/2 per diagonal byte).
- In this case, probability to satisfy round 6 and 11 is 2^{-28} instead of 2^{-32} .
- This result has not been found by authors of "Cryptanalysis of ForkAES", who constructed a similar characteristic with a unique tweak difference.

One change: the middle rounds Attacking more keys

- New hypothesis : $k_5 + k_{11}$ has a zero diagonal byte (probability 2^{-6}).
- The tweak and the key are compatible with probability 2^{-3} .
- Middle rounds are satisfied with probability $2^{-(24-3)}2^{-21}$.
- The probability that both pairs pass the differential characteristic is 2^{-168} .
- We need 2^{84} vectors of 96 bits.
- The same filter is applied.
- The same key recovering technique is applied.

One change: the middle rounds Attacking more keys

Complexity and probability of success of the second attack

- There exists three difference of $\Theta[0]$ so that $\mathcal{P}(\Theta[0], \Theta[0]/2) = 2^{-6}$.
- We can perform this attack by rotating the columns.
- $\bullet\,$ We have a probability 1/12 of having a tweak compatible with the key.
- Probability of success : $3/2^{-7}$.
- Complexity in (Data, Time, Memory) :

 $(D, T, M) = (2^{97.6}, 2^{117.6}, 2^{85}).$

One change: the middle rounds Attacking more keys

Attacking even more keys

- No hypothesis on $k_5 + k_{11}$.
- We add an intermediate filter.
- Probability of success: 0.38.
- Complexity in (Data, Time, Memory) :

$$(D, T, M) = (2^{104.6}, 2^{123.6}, 2^{96}).$$

- KIASU-BC is less secure than AES-128.
- ForkAES is far less secure than KIASU-BC.
- Forkciphers need to be carefully analysed, as they give an extra angle of attack to the attacker.
- ForkSkinny,

Thank you for your attention