

Proceedings of the 5th Australasian Document Computing Symposium,
Novotel, Twin Waters Resort, Australia,
December 1, 2000.

An Experiment in Light Workflow

Stewart Baillie, Anthony Bennett, Anne-Marie Vercoustre, Ross Wilkinson

 Division of Mathematical and Information Science
 CSIRO
 723 Swanston St, Carlton 3053, Australia

[Stewart.Baillie, Anthony.Bennett, Anne-Marie.Vercoustre, Ross Wilkinson]@cmis.csiro.au

Abstract

Workflow tools have been successfully applied to
automate work in many situations where the work is
well regulated, there is a stable pattern of work, and
there is a sufficiently high volume or sufficiently high
importance to justify the cost of automating the
activities. In many other circumstances there is a very
mixed story of success and failure of workflow
implementation. The Web also has changed work
practices and increased the role of electronic
documents, in particular, forms, as a support for
many distributed tasks. In this paper we explore using
a workflow approach based on fully self descriptive
documents, that embed the information and
instructions necessary to support processing the
document, within the document. The traditional
workflow engine or server that is typical of current
workflow tools is discarded, but the document still
allows a full work process to be applied, without
necessarily enforcing the process. Ideally one would
need a Web browser, and an email client, and no
workflow system at all. This paper shows how this is
not quite possible, but one can build a very small
supporting application to achieve light workflow.

Keywords Workflow, Document Flow, Web-based
Workflow, XML, XSLT, Co-operative work.

 1 Approaches to Workflow

There are various ways companies implement their
internal procedures to effectively accomplish their
routine tasks. These range from manual approaches to
fully automated, and can involve one person or
several.

In a manual approach, a task is modelled or at least
described in a procedural manual. Workers take
responsibility to carry out the steps described in the
manual, and use standard office tools - word
processor’s, email and web browsers - to carry out the
work. Often this works well, but it relies on human
validation and execution, which is prone to error.

The aim of a workflow system is to automate in some
part critical business processes within an
organization. According to the Workflow
Management Coalition, workflow is:
‘The automation of a business process, in whole or
part, during which documents, information or tasks
are passed from one participant to another for action,
according to a set of procedural rules’1.

There are numerous workflow products on the
market, some of them now quite mature [4], [8], [9],
[10]. The approaches taken by these products can be
placed in one of three classes [11]:

- E-mail or Message based. These systems only

require a pre-existing e-mail system to operate.
Generally, tasks are mailed to the next person in
the process, along with any relevant documents
for them to complete the task. Once their stage is
complete, the information is mailed back to the
server.

- Web Based. These systems make use of a web
server, and a browser to perform the workflow
This gives the advantage that users may access
the workflow system from essentially anywhere.
The main problem with the system is that client’s
must log in to receive the list of tasks that need to
be completed.

- Monolithic and proprietary based (production
based). Applications in this category are
generally quite large. Users access the system
through customised client software, which
attaches through custom communication
techniques (ie not e-mail or http protocol) to a
server. These systems attempt to cover every
scope of current workflow technology.

Common to all products is a server for controlling the
workflow and a commercial database system on the
server side for the storing of information. They also
all require substantial process modelling, then a
workflow description to support that model.

1 www.aiim.org/wfmc/standards/docs/glossy3.pdf

In order to exploit the potential of the Web, many
companies now provide a Web interface to their
Workflow Management System and a notification
through e-mails, e.g. [8], [9], which results in systems
that may cross over the boundaries of the classes
defined above.

In addition to workflow approaches it is also worth
mentioning the cooperative work approach, where a
group work together to carry out an information task,
using tools to make relevant information available, as
well as tools that help the group cooperate. This work
might still require workers to use a manual, but may
better support work in an ad hoc environment when
the process is not clear, even though the outcome may
be. The cooperative approach tends also to move
towards a Web-centred approach [1], [3]. The
cooperative approach may benefit the introduction of
light workflow in order to improve the coordination
of work carried in these environments.

In this paper we will concentrate on support for those
information tasks that can be carried out by the
production and manipulation of documents. Thus we
concentrate on document flow.

2 The Need for Light Workflow
Commercial workflow tools are based around a
complex, and often sizeable server. This server acts as
the hub for executing processes, including the storing
of process data, view generation and the enforcing of
rules, by data validation, and forwarding.

This approach works very well for workflow
types that are frequently executed and static in
approach. However, as workflow types become less
frequently executed, an increased requirement for ad-
hoc processing arises, or a need to cross company
boundaries appears, systems taking this approach
become less effective.

Effectiveness can be compromised for a number
of reasons, including cost, human behaviour and
incompatibilities with other workflow products.

In order to support more distributed workflows,
and those less well catered for by current tools, a
system needs to be smaller (and thus more cost-
effective), cross platform compatible, and be simple
enough to use so that ad-hoc processing is actually
effective.

A typical example is the Conference paper review
process which is often carried out via a central server
where reviewers enter their review through a form.
The drawback is that reviewers are not always
connected to Internet when making their review and
may also wish to keep a copy of their review for
future use or in case the review is lost. They would
rather connect to the server to get the form on their
computer, complete the form using their local
browser, save it locally, and send it when they are

later connected, by opening it again and clicking on a
submit button.

For this we propose a system of light workflow,
where much of the server functionality is removed,
such as the enforcing of flow rules, and is
implemented in a self descriptive ‘transaction
document’. This document moves from client to
client, providing everything that is needed to process
the document on the client side.

In order to develop the idea of light workflow, we
will first present an example application appropriate
for this approach, and our system that implements this
example.

3 An Example Application – The Paper
Submission Process
In order to test the concept of light workflow, a test
application was needed. Chosen was the CSIRO
process for getting a paper approved for submission
to publication. This becomes a ‘workflow type’ (often
referred to as a process or business process). Broadly
speaking, the paper submission process (if executed
in correct order) consists of the following steps:

- Gain approval to write the paper from project

leader (providing paper title, abstract, etc).
- Write paper
- Obtain reviews of the paper.
- Make changes according to the reviews, and

submit paper for acceptance.
- Determine what to do if paper not accepted.
- Obtain copyright agreement and modify

according to CSIRO guidelines.
- Make changes to the final paper and submit.
- Send copy of final paper to publications officer,

and record the publication on the publications
database.

Why do this electronically? Often, many steps of

the process are left out, especially those that are of no
direct consequence to the author(s). This leaves
scattered records of papers that have been accepted
for publication. By doing this process electronically,
we may make automatic records of accepted
publications, and provide a record of the transactions
that took place to get the paper published, should this
ever be needed.

The other reason is in terms of light workflow,
this process consists of some challenging points to
consider:

- Some steps are simply document uploads. These
need to be supported in an attractive manner, so
that users will still want to upload these
documents (to form a permanent record). Users
need to see the value of recording such
documents.

Figure 2a - Compromise made due to issues with
browser security

User

Browser

Open URL
in Browser

Client
Side

Server
Side

Email
Client

Server

Modified Files &
Emails

Sends Email

Instance
Retrieved

- The process requires flexibility. Firstly, for some
steps, users complete them in multiple ways. This
is typical of reviews. The system must make it
easy as possible for users to complete such steps
in the manner they are used to. Secondly, ad-hoc
processing is required – not all steps will
necessarily be completed, and may also be
completed out of order. This needs to be
supported.

In order to use this as a test platform, we created a
detailed step-by-step breakdown of an appropriate
process. This involved discussions with researchers
(users) to obtain a model of how they approach the
process of writing a paper, and what would be
important to them in a system. This resulted in a
detailed step-by-step breakdown of the process.

Using this, work could begin on the actual light
workflow system.

4 A Light Workflow System
The light workflow approach provides a system that
is document-centric, as opposed to the data driven
approach of most commercial tools. This technique
aims to provide a portable, workflow enabled
document. The design of this approach keeps in mind
the following points:

- The system should be document-centric (self-

descriptive).
- Clean abstraction of document data, views and

flow.
- Web standards should be used, to allow the

workflow to function on any client with a
modern browser. (XML, Javascript, Mail).

- Ad-hoc/flexible processing is required.
- Processing is moved from the server to the client,

to remove the need for a server.
- User of standard data model and public API for

data processing (XML/DOM, XSLT).

Instead of a server acting as the hub of activities,

the ‘transaction document’ becomes the central
component. The transaction document stores both the
data and the instructions that describe the processing
of each step, such as data validation and storing, and
the relationship between steps.

When a step is completed, the entire transaction
document is forwarded to the next person in the flow.
As is the characteristic of workflow applications, the
transaction document produces a differing view of
itself for each different step. Additionally, processing
instructions may or may not check which step was
executed previously (and thus check if it is their turn
or not) thereby allowing for ad-hoc processing, by
being able to complete any step at any time. To utilise
this ability, some form of ‘step selector’ is available,
allowing quick navigation and examination of each of

the steps available (as seen in the left frame of figure
4).

Figure 1 illustrates an architecture for light
workflow. A browser is used to parse the transaction

document. The transaction document is rendered
according to the step, and the user interacts with this.
Data is input to the system, and the instructions for
that step process this data, modifying the transaction
document as appropriate. When processing is
completed, the updated document is sent to the next
person in the process.

A server is still presented in this architecture, but
is optional. However, often is important for a user to
be able to find the current state of a process, or a need

to analyse logs of workflow usage will arise. In this
case, the server acts as a ‘message board’ for this
data. If this functionality is not needed, then it can be
left out.

However, when attempting to implement this
architecture, we needed to make some concessions.
Figure 2a illustrates these concessions, whilst Figure
2b illustrates the implementation architecture.

Technically, the architecture presented in 2a & 2b
differs greatly to the architecture presented in figure
1, but conceptually, they are similar.

User

Flow Instructions
Data (and/or

attatched binary
documents)

Flow State

Flow Log

Document

Browser
Read byManipulates

Client
Side

Server
Side

Server

Updates log and State

Logs States

Email
Client

Receive
Document

Send
Document

Optional

Figure 1 - A simple Architecture for a light
workflow system

The primary reason for differences in architecture
is the default security level in browsers. It is not
possible to do any sort of file manipulation on the
client (other than loading XML documents), nor is it
possible to automatically send an e-mail. It is possible
to set non-default security to circumvent these
problems, but this creates additional tasks to allow
functionality, and users may not be happy with this
scenario, given the recent high profile of internet
scripting viruses. Thus the server is now used for two
additional tasks – storing the transaction documents
(and related files), and sending e-mails.

The server, shown in Figure 2a, runs on top of an
Apache web server, which is equipped with the Jserv
module to allow it to run Servlets. Three separate
items are served from this:

1. Workflow Engine – This is not technically an
engine, but a collection of small utilities. Users
connect to this to create a new workflow
instance, to specify which instance they want
opened, (and to what step) and to view the status
of other instances, and log files.

2. Servlets – These allow the transaction documents
to access the facilities of the server to create new
instances, send e-mails and save modified
instances back to their original location.

3. Instances Folder – This folder stores the
templates and the running workflow instances.
The template is a transaction document that
represents a particular workflow type. Copies of
these templates are made each time a new
workflow is created. These are referred to as

workflow instances.
The transaction document is constructed from two

files, an XML document and an XSL document. The
XML document consists of the workflow data, and
the instructions for each step. The instructions
currently are specified in JavaScript, for interpretation
by a web browser. Figure 3 shows the structure of
such a transaction document, in this case for the paper
submission process.

This document is broken into two parts – the
workflow data, and the transaction document data.
The former is specific to the workflow type. For the
paper submission process, there is an element
(people) for storing data about the people involved in
the process, and another for storing data about the
paper itself (paper details).

The second part to the document structure is the
process data. Each workflow type has this structure,
completed according to the particular flow. The

Jserv Module

Servlets

Email Server

Web Server

Sends emails
via

XML & XSLT
Support

Email Client

Web Browser

Instances
Folder

Template Instance 1

Manipulates

Workflow
Engine Files

Serves

Links to
Instance

Instance Obtained,
and rendered on Client

Modified instance,
Updated tracking
document and
e-mails to send.

Manipulates
View Engine, to
Create new instance

Server Side Client Side

System Level
Servers

Program
Level

Data
Level

User

Uses

Receives

Figure 2b– The architecture of a implementation of a light workflow system.

Figure 3 – Structure of the Transaction
Document, from the sample workflow type.

stagePresentation tag (under the process tag)
represents all data that is needed for displaying a step,
except for the forms, and the actual appearance
(which is handled by the XSL document). Therefore
for each step, it contains the processing instructions,
text to be displayed to the user, the contents of e-
mails and the explanation to be displayed to the user
once processing is completed. The Log tag records
each step that takes place, when and what data
changed. Owner represents the creator of the process,
and
completedStates records the states that have
completed fully.

The XSL document consists of display
information. By interpreting a parameter provided to
it at display time, the XSL creates a display
appropriate to the step to be viewed. The appropriate
text and code is extracted and formatted into the
display, and then the appropriate form inserted.

Figure 4 shows an example screen of the paper
submission process running. The left hand ‘frame’
shows the stage selector structure. Clicking on any of
the stages automatically opens it on the right hand
side. The right hand side has been totally rendered
from the transaction document, and is displaying the
contents that specify each field.

The user can also be prompted by e-mail to open
an URL. When the URL is clicked on, the appropriate

transaction document is opened, rendered and
displayed to the client according to the step specified.

It is important to realise that despite the reliance
on a server, conceptually, the two different
architectures are almost the same. If you were to
remove browser security, then only minor
adjustments would be required for the system to work
purely client side. The transaction document carries
everything with it to describe the workflow.

5 Discussion
We have argued that workflow systems are valuable
for some activities in a workplace, but that there are
times in which a fully prescribed workflow is not
possible, or a commercial workflow tool is not
effective. We thus designed and created a light
workflow system to address some of these needs. In
order to evaluate this system, we can analyse the

approach against the following criteria:
- Does the paper submission process work?
Yes. The system has been used successfully to gain
permission to write a paper, right through to
publication.

- Is the effort needed to create a new application

too high?
At this stage, yes. For a typical process of 8 – 10

relatively different steps, it took us several months to

Figure 4 – Screen shot from running paper submission system.

fully complete a new process. This will no doubt
improve as expertise is gained, and generic libraries
of functions are obtained. However, the development
time is still likely to be too high. Most current
workflow applications include a graphical tool for
specifying workflows, and we should assume such a
graphical tool to be built for our system. Prior to this,
we need to develop a language, preferably in XML
for specifying the processing details for each step.
This language should include XML form definition
and manipulation[5], variables, and calls to DOM
functions

- Can a workflow be easily changed?

Freedom to change and alter the system depends
largely on the level of change required, but generally
it is not an easy task. For example, adding a new data
field may require updating the DTD, altering several
forms, and including the new data field into
processing code. Identifying where changes need to
be made, and then testing them, is likely to take
several hours. This is again a call for a process
creation tool – without it the cost of defining and
maintaining a flow becomes too high.

- We haven’t been able to get away with just using

a browser, email clients and “smart” documents.
Is the system still actually light?

Needing a server to complete basic tasks is a
compromise on the original design. However, we
believe this is still a light workflow system. Firstly, to
its current stage, it has not taken very long to
implement. None of the complexity that you might
find in a commercial workflow tool is present.
Secondly, very few changes would be needed to
allow the system to run purely on the client side, and
we could even do this now on a machine running
Outlook. (We could easily reduce security on
browsers, and if necessary just use a public e-mail
server, which does not really comprise the design).

- What are the limitations of this approach?

There are a number of limitations of this approach
that need to be considered.
- Without a server, this approach will not support

central functionality such as stage and audit
tracking for workflows.

- Since we do not enforce a flow, we rely on the
users to use the system correctly. We have less of
a guarantee that the process will be completed, or
completed correctly. A commercial workflow
app enforces the rules more rigorously, and has
the capacity to send out reminders, set deadlines
etc. However, if we don’t display a stage
selector, the flow is then enforced, so enforcing
of rules may become an option that can be
selected when a new instance is created.

- Since the XML is processed on the client side,
we can’t easily prevent users tampering with data

that they should not. A ‘trust’ system is worked
on, where it is assumed that users will have no
interest in completing a stage that is not theirs, or
changing data that they should not. In an
environment where this is not the case, we may
need to extend the system to allow for user
authentication, placing an increasing need on a
central server, or support the use of digital
signatures on sections of the document.

- Data is inherently less secure, since it may be
located on multiple clients, thus making it easier
for unauthorised individuals to obtain data.

6 Conclusions

We have demonstrated the feasibility of a light
workflow based on a document that carries all the
data and instructions necessary to its processing.
Should the ability to save locally, and send e-mails
without user intervention arrive, then we can have a
totally client side workflow system. This is what
makes the major difference of our approach with
current Web-based Workflow systems such as Lotus
Notes and others. Another advantage is the use of
standard Web languages and processors, such as
XML, XSLT, and Javascript that allows the
transaction document to be reused and further
processed by new or external applications, which is
not possible with a proprietary format.

We believe that this system can be effective for
workflow types that are distributed, infrequently
executed, require flexibility (ad-hoc) or are driven by
documents. This system has the advantage that any
client with a modern browser will be able to
participate in the flow. This allows company
boundaries to be easily crossed, e.g. the purchase
order to an occasional supplier, or where an ad-hoc
group has formed, e.g. a conference review process.

However, it is unlikely that we can ever move
totally away from requiring a server, unless we
change the base technologies and go away from using
only standard technology. If we used our own custom
technique, we would need our own client side
parser/viewer.

There are times where light workflow is less
appropriate, and a centralised approach is best. As
noted, these are times where the flow is frequent, and
unchanging, or the process is data driven. Central
systems also have improved security, and allow the
generation of complex statistics on usage. This may
be important for improving efficiency of processes,
through identification of sections of the process that
result in a delay.

Finally, there are also times where no form of
workflow automation may be best. Such situations
might be in collaborative work, where group-ware
type systems are more appropriate, and situations
where for legal or security reasons, only hardcopy is
acceptable.

Further testing of the paper submission process, as
well as other types of workflows will be conducted to
more fully assess the capabilities of this approach.

References
[1] Natalie Glance, Antonietta Grasso, Uwe M.

Borghoff, Dave Snowdon and Jutta
Willamowski, Supporting Collaborative
Information Activities in Networked
Communities, In: Bullinger, H.-J., Ziegler, J.
(eds.): Proc. 8th Int'l Conf. on Human-Computer
Interaction (HCI'99), Munich, Germany, August
22-27, 1999.

[2] Koch, T.: XML in practice: the groupware case,

in Proceedings of IEEE WET ICE Workshop
1999, Stanford University.

 http://bscw.gmd.de/Papers/wetice99/wetice99.pdf

[3] Bentley, R., Horstmann, T., Trevor, J., The

World Wide Web as enabling technology for
CSCW: The case of BSCW, in Computer-
Supported Cooperative Work: Special issue on
CSCW and the Web, Vol. 6 (1997), ©Kluwer
Academic Press.

[4] Microsoft Exchange 2000 Worflow Engine,

http://msdn.microsoft.com/msdnmag/issues/0700/
exchange/exchange.asp

[5] Anders Kristensen, Formsheet and the XML

Forms Language XML Forms reference, in
Proceedings of the WWW8 Conference, Toronto,
1999.

[6] Charles K. Ames, Scott C. Burleigh, and Stephen

J. Mitchell,WWWorkflow: World Wide Web
Workflow, in Proceedings of the 30th Hawaii
International Conference on System Sciences
(HICSS-30)

[7] John S. Davies, IBM MQSeries Workflow: Staff

Assignment Techniques, White paper.

[8] Lotus Notes, http://www.lotus.com/

[9] Oracle, SQLFlow Workflow Management

System, http://170systems.com/SQ/flow.htm

[10] GFI – Email Flow - www.emailflow.com

[11] GFI, Workflow Technology – an introduction

(www.workflowsoftware.com/workflowwp.pdf).

