
IEEE TRANSACTIONS ON COMPUTERS 1

Energy-Efficient Task Mapping for Data-driven
Sensor Network Macroprogramming

Animesh Pathak, Member, IEEE, and Viktor K. Prasanna, Fellow, IEEE.

Abstract—
Data-driven macroprogramming of wireless sensor networks

(WSNs) provides an easy to use high-level task graph repre-
sentation to the application developer. However, determining an
energy-efficient initial placement of these tasks onto the nodes
of the target network poses a set of interesting problems. We
present a framework to model this task-mapping problem arising
in WSN macroprogramming. Our model can capture placement
constraints in tasks, as well as multiple possible routes in the
target network. Using our framework, we provide mathematical
formulations for the task-mapping problem for two different
metrics — energy balance and total energy spent. For both
metrics, we address scenarios where a) a single or b) multiple
paths are possible between nodes. Due to the complex nature
of the problems, these formulations are not linear. We provide
linearization heuristics for the same, resulting in mixed-integer
programming (MIP) formulations. We also provide efficient
heuristics for the above. Our experiments show that our heuristics
give the same results as the MIP for real-world sensor network
macroprograms, and show a speedup of up to several orders of
magnitude. We also provide worst-case performance bounds of
the heuristics.

Index Terms—Sensor Networks, Task-Mapping, Macropro-
gramming.

I. INTRODUCTION

APPLICATIONS executing on parallel and distributed
systems can often be represented as tasks running on

the constituent nodes of the system, interacting to produce the
result. The efficient mapping of these tasks to the system nodes
is a well-studied problem in classical parallel and distributed
computing research. Wireless Sensor Networks (WSNs) are
rapidly emerging as a new class of distributed system, with
features that are different from traditional systems. Various
high-level programming abstractions have been proposed to
assist in application development for WSNs. Data-driven
macroprogramming [1] refers to the general technique of
specifying the WSN application from the point of view of
data-flow. In sense-and-respond applications such as traffic
management [2], building environment management [3], target
tracking [4] etc., the system can be represented as a set of tasks
running on the system’s nodes – producing, processing and
acting on data items or streams to achieve the system’s goals.
The motivation of our work (explained further in Section II-A)
comes from the fact that WSNs have certain interesting
properties (large scale, heterogeneity, energy-deficient nodes,
etc.) which make the mapping of these tasks onto the nodes
of the underlying system (details of which are known at
compile time) an important part of the compilation of the
macroprogram, and open the way for optimizations to be

A. Pathak and V. K. Prasanna are with the University of Southern California.

performed at this stage to make the resulting WSN more
efficient.

We note that task mapping in this context differs from
the traditional task-mapping problems seen in parallel and
distributed computing in several aspects:

1) The task graph here is constrained in the sense that some
tasks have a one-to-one correspondence with the nodes
in a system, while the placement constraint of others
may not be as strict. For example, a temperature sam-
pling task can be placed only on nodes with temperature
sensors attached to them, while the task that computes
the average of temperature readings in a room has much
relaxed mapping constraints.

2) Often in the classical task-mapping scenarios, tasks are
assumed to be independent of each other and do not
communicate. In cases where they do, a point-to-point
link is usually assumed between all nodes. In the case
where routing is involved, the intermediate nodes only
introduce delays, but are not affected otherwise. On the
other hand, the WSN applications studied by us consist
entirely of communicating tasks. This communication
of data between tasks on different nodes in a WSN
affects other nodes in the system as well, since the nodes
involved in routing also spend energy in the process.

3) In cases where routing is involved, classical task-
mapping algorithms either have full control over routing,
or assume a specific routing. Since our goal is for
the macroprogramming framework to be modular, our
techniques do not assume a certain routing protocol.
Instead, our modeling framework allows an interface
for developer to specify certain facts about the routing
protocol being used.

4) While the most common constraint in traditional parallel
and distributed systems is latency, i.e., the time taken for
the tasks to complete execution, most sensor networking
applications are designed to sense-and-respond for long
periods of time. On the other hand, metrics such as
system life time and energy spent at the node and system
level are much more important in WSNs. We focus on
two measures of energy-efficiency in this paper.

Additionally, although the initial information (positions,
energy levels) about the target nodes is known, during the
lifetime of the WSN, changing conditions, either external
(variations in the environment) or internal (nodes running out
of energy) may change the circumstances. Our algorithms do
not address these unpredictable situations, and instead aim to
provide a “good” initial mapping of tasks. We assume that
during the lifetime of the system, remapping of tasks will

IEEE TRANSACTIONS ON COMPUTERS 2

occur to face these circumstances, for example, a distributed
task-remapping algorithm can be triggered when the energy at
any node goes below a certain fraction of its initial energy
level. Our work attempts to utilize the global knowledge
available at compile-time to obtain efficient results.

We introduced the mathematical framework for solving such
a task-mapping problem in [5], and briefly summarized a
mathematical formulation and some heuristics for the same.
This paper extends the work with a detailed description of
our model and the techniques used to solve the task-mapping
problems, in addition to addressing the case when multiple
routes are possible between nodes. Overall, we make the
following contributions:
• In Section II we provide a framework to model the

problem of task-mapping for data-driven sensor network
applications, with tasks subject to placement constraints
and channels annotated with data-rates.

• In Section III we propose a mixed integer programming
(MIP) formulation to obtain task mappings in order
to optimize for the energy balance and total-energy
minimization goals, both in the cases where a single
route is available between each pair of nodes. Since the
formulation is non-linear, we provide substitution-based
techniques to linearize the MIPs.

• Although the MIP formulations give optimal results, they
may take inordinately large times to terminate for large
real-world scenarios. In Section IV, we provide greedy
heuristics for the two problem instances, along with their
worst-case performance analysis.

• In Section V, we provide formulations of the above prob-
lem instances when there are multiple routes available
between each pair of nodes in the system. We provide
(linearized) MIP-based and greedy techniques to solve
these generalized problems.

Our experimental results, discussed in Section VI, show
the performance comparison between the techniques, using
realistic applications and deployment scenarios. Our greedy
heuristics are shown to obtain the optimal solution for most
of these scenarios, while gaining significant speedups over the
MIP technique. We discuss related work in Section VII and
conclude in Section VIII.

II. PROBLEM FORMULATION

A. Motivation

As an example of data-driven macroprogramming represen-
tation, consider the following (simple) application – A room
is instrumented with six wireless nodes, with three nodes
equipped with temperature sensors, and two nodes connected
to actuators for controlling the temperature of the room. We
need to periodically determine the average temperature in the
room, compare it with a threshold, and produce the corre-
sponding actuation. One way of designing such an application
at a high-level using a data-driven approach is shown in the
top part of Figure 1 (Note that the task graph for complex
applications can be an arbitrary directed acyclic graphs). Tasks
T1, T2 and T3 are temperature sampling tasks, which fire at a
rates of f1, f2, f3 and generate ambient temperature readings

of size s14, s24, s34. Task T4 calculates the average of these
readings and feeds it to T5, which determines the action to be
taken. Tasks T6 and T7 act upon the data generated by T5, and
control the actuators. The system for which this application is
being designed is shown in the lower part of the same figure.
The nodes equipped with temperature sensors are marked with
a T, while the ones equipped with actuators are marked with
an A. The mapping of tasks T1 through T7 onto the nodes

?
T1, f1T2, f2 T5, f5 T6, f6T7, f7T3, f3 s14s24s34 s56s57T4, f4 s45

T T A A T
Data-driven Task Graph

Target Network Description?
Fig. 1. Temperature management application - Task graph and target network
description.

of the target network is an instance of the problem faced
while compiling data-driven macroprograms for WSNs. The
placement of the sensing tasks (T1, T2, T3) and the actuating
tasks(T6 and T7) are pre-determined to the nodes with the
relevant capabilities. This fact is shown using curved broken
lines in the figure. However, tasks T4 and T5 can be placed on
any of the nodes in the floor, thus allowing for optimizations
in this process.

Our aim is to capture the following aspects of the problem
in a mathematical formulation:
• The data flow between tasks
• The different firing rates of the tasks
• The placement constraints of tasks onto system nodes
• The heterogeneity between the system nodes, both in

terms of their initial energy capacities, as well as their
ability to host certain tasks

• The heterogeneity between the various network links in
the target system, in terms of energy spent per unit of
data transmitted

• The energy spent at the nodes during sensing, computa-
tion, and communication.

B. Application and System Model

A Network Description N represents the target system of
physical nodes where the WSN application is to be deployed.
Each node k (k = 1, . . . , n) has the following properties:
• its initial energy reserve e0

k. We assume that the system
operates in rounds, and denote the energy remaining at
node k after t rounds by et

k. A round is defined as the

IEEE TRANSACTIONS ON COMPUTERS 3

least time-period after which the system behavior repeats
itself.

A Data-driven Task i represents the sensing, processing or
actuation activity in a WSN, with the following properties:
• its firing rate fi, denoting the number of times it is

invoked in one round. For tasks that are not necessarily
invoked in a regular manner, developers can determine
the firing rates using probabilistic estimates.

A Data-driven Task Graph D = (DT,DE) is a directed
acyclic graph (DAG) consisting of the following:
• A set DT = {1, . . . , i, . . . , m} of data-driven tasks.
• A set DE ⊆ DT × DT of edges. Each edge (i, j) is

labeled with the size sij of the data that task i produces
for task j upon each invocation.

The Task Execution Energy Matrix T is an m× n matrix,
where Tik denotes the energy spent by node k per invocation
of task i, if i is mapped onto node k. T can also be used
to specify placement constraints as in the figure above, by
setting the value of Tik to ∞ in cases where task i cannot be
instantiated on node k.
The Routing Energy Cost Matrix R for N is a n × n × n
matrix, with Rβγk denoting the energy consumed per unit of
data at node k while routing messages from node β to γ. Since
the task mapping algorithms do not control the routing of data
between nodes, R provides an estimate of the energy spent in
routing.
The Task Mapping is a function M : DT → N , designating
task i to be placed on node M(i).

At this moment, we would like to acknowledge that the
above system model includes information that may not be
available in all practical situations. The routing energy cost
matrix R, especially, may not be available for unplanned ad-
hoc WSN deployments, and may indeed change during the
operation of the system depending on ambient conditions.
However, we believe that there are a large number of appli-
cation scenarios, especially where office, home, or industrial
buildings are instrumented with sensors and actuators, where
this model might be valid. In systems where the costs will
change with time, the basic model still holds, and can be used
to design efficient distributed algorithms for task migration.
We summarize the symbols used in our model in Table I.

C. Energy Costs

In a sensor network, the cost that developers are largely
concerned with is the energy spent by the nodes as the system
operates. We therefore use the terms cost to mean the energy
spent at a node throughout this paper, unless otherwise stated.
Using the model defined above, we compute the following
costs1.
Computation Cost: At each node k ∈ N , the computation
cost in each round is given by

Ck
comp =

∑

i:M(i)=k

fi · Tik (1)

1Note that the cost of sensing is included in the Tik of the sensing tasks.

Symbol Meaning
N = {1, . . . , n} Set of nodes in the system (indexed by k)
e0
k Initial energy at node k

n Number of nodes in N
D = (DT, DE) Data-driven task graph
DT = {1, . . . , m} Set of tasks (indexed by i or j)
m Number of tasks in DT
DE ⊆ DT ×DT Edges in task graph
fi Firing rate of task i
sij Size of data transferred from task i to j each

time i fires
Tik Energy spent by node k per invocation of task

i, if assigned
Rβγk Energy consumed by node k while routing one

unit of data from node β to node γ
M : DT → N Mapping of tasks from DT to nodes in N

Ck
comp Computation cost at node k per round

Ck
comm Communication cost at node k per round

TABLE I
SYMBOLS USED IN OUR SYSTEM MODEL

Communication Cost: At each node k ∈ N , the energy spent
in communicating messages in each round is given by

Ck
comm =

∑

(i,j)∈DE

fi · sij · RM(i)M(j)k (2)

Using these node-level costs, complex system-level metrics
can be represented, as discussed below.

D. Performance Metrics

In this paper, we illustrate the use of above modeling
framework to optimize two performance metrics. The first is
energy balance, which we consider to be achieved when the
maximum fraction of energy spent by any node in the system
is minimized. In other words,

OPT1 = min
all Mappings M

max
k∈N

1
e0
k

· (Ck
comp + Ck

comm) (3)

For systems designed using data-driven macroprogramming,
we can assume that the system undergoes a reconfiguration,
resulting in re-computation of the task mapping, and migration
of tasks, once the current energy et

k of any node k goes below
a fraction α(0 < α < 1) of its initial energy e0

k. The time when
this happens is called the Time to Reconfiguration (TTR) for
the task mapping on the sensor network. Since we assume that
the system behavior repeats itself in each round, OPT1 also
maximizes the TTR.

The second performance goal we model using our frame-
work is the more classical total energy spent in the entire
system. Although we believe that energy balance is a better
metric to measure the quality of task placement, we use the
goal of minimizing the total energy spent in the system to
illustrate the modeling power of our framework. In other
words,

OPT2 = min
all Mappings M

∑

k∈N

(Ck
comp + Ck

comm) (4)

For each of the two metrics, a feasible solution is possible
only when all nodes have non-zero energy left at the end of one

IEEE TRANSACTIONS ON COMPUTERS 4

round. If there are no mappings possible for which this holds,
the task-mapping algorithms should report failure. In addition
to the above, our framework can be used to model other
application scenarios also, e.g. when multiple paths between
two nodes are possible, or when the nodes are free to behave
differently in each round.

E. Evaluation Criteria

One area where task graphs describing sensor network
applications are different from those traditionally seen in
parallel and distributed computing is their use for sensing
the environment they are placed in, and reacting to it. This
leads to certain commonly observed relationships between
the data-rates on the edges of the task graphs. Therefore,
while evaluating the algorithms for task mapping the input
graph has to be carefully chosen. The worst-case analysis
technique of testing algorithms against randomly generated
task graphs with arbitrarily chosen inter-task data-rates may
identify certain task mapping techniques as inferior, while
these techniques may yield very good results in real-world
WSN applications. Consequently, it is important that the task
graphs used to evaluate these techniques are drawn from actual
WSN applications.

III. MATHEMATICAL FORMULATIONS FOR TASK MAPPING
ON WSNS

A. Mixed Integer Programming Formulation for OPT1

To formulate the problem as a mixed integer programming
(MIP) problem, we represent task mapping M by an assign-
ment matrix X , where xik is 1 if task i is assigned to node
k, and 0 otherwise.

The problem can then be defined as:

Inputs:
• D = (DT, DE): Data-driven Task Graph
• fi: Firing rate for task i
• sij : Size of data transferred from task i to j on each

invocation of i
• N : Network description
• T : Task execution energy matrix
• R: Routing energy cost matrix

Outputs:
• X: Assignment Matrix. xik is binary.

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (5)

1
e0
k

(
∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk+

m∑

i=1

fi · Tik · xik) ≤ c for k =1, 2, . . . , n

(6)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (7)

0 ≤ c ≤ 1 (8)

The summation terms in (6) denote Ck
comm and Ck

comp
respectively. The final constraint ensures that the MIP fails
if no feasible solution exists. Note that the above is an MIP
since c is real whereas xik are binary integers. Also, it is not
a linear program since product terms xiβ · xjγ appear in the
constraints.

The above problem can be converted to a linear MIP by
replacing each xiβ ·xjγ term with a binary variable yiβjγ , and
adding the following constraints:

yiβjγ − xiβ ≤ 0 (9)

yiβjγ − xjγ ≤ 0 (10)

xiβ + xjγ − yiβjγ ≤ 1 (11)

This linearization techniques is derived from [6]. Intuitively,
constraint (9) denotes that if edge (i, j) is mapped to path
(β → γ), then task i is mapped to node β. Similarly, (10)
denotes the constraint that if (i, j) is mapped to (β → γ),
then task j is mapped to node γ. Finally, (11) denotes the
condition that if task i is mapped to node β, and task j is
mapped to node γ, then (i, j) is mapped to (β → γ).

B. MIP Formulation for OPT2

Using our formulation, the objective of solving the problem
to minimize the total energy spent by the system can be
formulated as follows:

Inputs:
• D = (DT,DE): Data-driven Task Graph
• fi: Firing rate for task i
• sij : Size of data transferred from task i to j on each

invocation of i
• N : Network description
• T : Task execution energy matrix
• R: Routing energy cost matrix

Outputs:
• X: Assignment Matrix. xik is binary.

Optimization Goal:

minimize
n∑

k=1

m∑

i=1

fi · Tik · xik+

∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk

Constraints:
n∑

k=1

xik = 1 for i = 1, . . . , m (12)

∑

(i,j)∈DE

n∑

β=1

n∑
γ=1

fi · sij · xiβ · xjγ · Rβγk+

m∑

i=1

fi · Tik · xik+ ≤ ek
0 for k = 1, . . . , n

(13)

IEEE TRANSACTIONS ON COMPUTERS 5

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (14)

The above also can be converted to a MIP with linear
constraints using the techniques discussed above.

IV. HEURISTIC FOR TASK MAPPING

A. Greedy Algorithms for Task Mapping

Although the MIP formulation leads to optimal results,
solving an MIP can be quite time consuming in practice. Our
greedy heuristic for the goal of minimizing the maximum
fraction of energy spent at a node (OPT1) is detailed in
Algorithm 1. We first sort the edges in the task graph in non-
increasing order of the traffic going on them (step 2). Then,
in steps 3 to 14, it tries to map the still unmapped endpoints
of each edge (i, j) so as to achieve the minimum increase in
the objective function.

Algorithm 1 GreedyMinMax: for OPT1

Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],
s[m][m], eo[n]

Output: M [m]: Task Assignment
1: Initialize M [i] = −1 for i = {1, . . . ,m}
2: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
3: for all (sorted) (i, j) in DE do
4: // Initialize minmaxCost and minPath for this itera-

tion
5: minmaxCost = ∞; minPath = (−1,−1)
6: for all (α, β) such that (i, j) can be assigned to them

do
7: M [i] = α, M [j] = β // Temporarily assign (i, j) to

(α → β)
8: maxCost = maxCost(D,N, T ,R, f, s, e0,M)
9: if maxCost < minmaxCost then

10: // Update minmaxCost and minPath
11: minmaxCost = maxCost; minPath = (α, β)
12: if minmaxCost > 1 then
13: declare failure. stop. // Checking for feasibility
14: M [i] = minPath.α; M [j] = minPath.β
15: return M

Computational Complexity: Each invocation of maxCost
takes θ(n(m + |DE|)) time. During Algorithm 1, the sort-
ing takes O(|DE| log(|DE|)) time, and the main loops in-
vokes Algorithm 2 (in step 8) for evaluating the maxCost
O(|DE|n2) times. The total time complexity of the algorithm
is O(|DE|(log(|DE|) + n3(m + |DE|))). Since |DE| > m
in a DAG and |DE| > log(|DE|), this can be simplified to
O(n3|DE|2).

Algorithm 3 shows our modification to Algorithm 1 for
mapping tasks for OPT2. The algorithm calls totalCost sub-
routine (shown in Algorithm 4) repeatedly (in step 10) to
determine the current total cost of the assignment, and chooses
the end points of the next edge so as to minimize the total
cost. Owing to the similarity in structure, its computational
complexity is also O(n3|DE|2).

Algorithm 2 maxCost: for determining the maximum fraction
of energy spent at a node
Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],

s[m][m], eo[n],M [m]
Output: maxCost: Maximum fraction of energy spent at any

node
1: maxCost = 0 // Initialize max cost
2: for all k ∈ N do
3: cost = 0 // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: // Increment computation cost
7: cost = cost + f [i] · T [i][k]
8: for all (i, j) ∈ DE do
9: if M [i] 6= 1 AND M [j] 6= 1 then

10: // Increment communication cost
11: cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k]
12: if cost/e0[k] > maxCost then
13: maxCost = cost/e0[k]
14: return maxCost

Algorithm 3 GreedyMinTotal: for OPT2

Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],
s[m][m], eo[n]

Output: M [m]: Task Assignment
1: Initialize M [i] = −1 for i = {1, . . . ,m}
2: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
3: for all (sorted) (i, j) in DE do
4: // Initialize mintotalCost for this iteration
5: mintotalCost = ∞
6: minPath = (−1,−1)
7: for all (α, β) such that (i, j) can be assigned to them

do
8: M [i] = α
9: M [j] = β // Temporarily assign (i, j) to (α → β)

10: totalCost = totalCost(D, N, T ,R, f, s, e0,M)
11: if totalCost < mintotalCost then
12: // Update mintotalCost
13: mintotalCost = totalCost
14: minPath = (α, β)
15: maxCost = maxCost(D,N, T ,R, f, s, e0,M)
16: if maxCost > 1 then
17: declare failure. stop. // Checking for feasibility
18: M [i] = minPath.α
19: M [j] = minPath.β
20: return M

B. Worst-case Analysis

Since both GreedyMinMax and GreedyMinTotal are heuris-
tics, we explored the situations when they can give sub-optimal
results. We introduce the notion of the cost of an algorithm
for this purpose – the cost of GreedyMinMax is defined a the
maximum fraction of energy spent in one round at any node
in N , and the cost of GreedyMinTotal is the total energy spent
by all the nodes in N in one round, when tasks are mapped
according to the heuristic.

IEEE TRANSACTIONS ON COMPUTERS 6

Algorithm 4 totalCost: for determining the total energy spent
in the system
Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],

s[m][m], eo[n],M [m]
Output: totalCost: Total energy spent by nodes in N

1: totalCost = 0 // Initialize total cost
2: for all k ∈ N do
3: cost = 0; // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: // Increment computation cost
7: cost = cost + f [i] · T [i][k]
8: for all (i, j) ∈ DE do
9: if M [i] 6= 1 AND M [j] 6= 1 then

10: // Increment communication cost
11: cost = cost + f [i] · s[i][j] · R[M [i]][M [j]][k]
12: totalCost = totalCost + cost
13: return totalCost Placement constraint(other mappings impossible)a b1bυσ b0(σ-ε)(σ-ε)υ copies x y1
Fig. 2. Scenario for worst case performance of GreedyMinMax and
GreedyMinTotal.

Theorem 1. For any integer υ ≥ 1, there are problem instances
for which the cost of GreedyMinMax (GreedyMinTotal) is
arbitrarily close to υ × OPT1 (υ × OPT2).

Proof. Consider a situation as illustrated in Figure 2. Tax =
Tay = 0, and the other tasks can only be placed on the nodes
indicated by the arrows. Let us also assume that fa = 1,
ex
0 = ey

0 = e0, and both nodes in N spend one unit of energy
per unit of data transmitted on the link between them. Finally,
e0 À k À ε > 0. The optimal solution, both for OPT1 and
OPT2, is to place a on node x, thereby causing only the data
on the (a, b0) edge in DE to go on the network, costing k units
of energy to be spent by node x (and the entire system) in each
round. The greedy algorithms, however, start with placing the
costliest edge (a, b0) in the best possible manner, co-locating
a and b0 on node y. This leads to υ × (k − ε) traffic to go
over the y → x link.

We thus get: OPT1 =
1
e0

σ (15)

⇒ cost(GreedyMinMax) =
1
e0

υ × (σ − ε) ≈ υ × OPT1

(16)
Similarly, OPT2 = 2σ (17)

⇒ cost(GreedyMinTotal) = 2υ×(σ−ε) ≈ υ×OPT2 (18)

hence proving the theorem.

Theorem 2. There are problem instances for which
GreedyMinMax and GreedyMinTotal will terminate in failure
although a feasible solution exists.

Proof. Consider the situation as illustrated in Figure 2. How-
ever, in this case, assume that e0 = k À ε > 0. The optimal
solution (given by the MIP formulation) will still place task
a on node y, while the Greedy algorithms will try to place it
on node y. Note that for υ ≥ 2, this will lead to an infeasible
solution, as the nodes end up spending > e0 energy. The proof
follows.

V. TASK MAPPING WITH MULTI-PATH ROUTING

In many WSN applications, multiple routes are possible
between a pair of nodes. In this section, we provide general-
ized versions of our problem formulations to incorporate this
condition. The following changes are made to the model:
• We assume that a constant Φ number of paths are possible

to be taken between any pair of nodes β and γ in N .
• We further assume that for each pair of communicating

tasks (i, j) mapped to nodes β and γ respectively, one
of the Φ β → γ paths (say ρ) is chosen. Note that for
another pair of communicating tasks (s, t) mapped to β
and γ, another β → γ path ρ′ can be chosen.

• To incorporate the above, we redefine the routing energy
cost matrix R to be a n×n×n×Φ matrix, with Rβγkρ

denoting the energy consumed per unit of data at node k
while routing messages from node β to γ, using the ρth
routing option.

• The task-mapping algorithms, apart from determining the
task mapping M , also need to provide the routing path
choice mapping P : DE → {1, 2, . . . , Φ}.

• The communication cost at node k is now given by:

Ck
comm =

∑

e(=(i,j))∈DE

fi · sij · RM(i)M(j)kP (e) (19)

A. MIP Formulation for OPT1 when Multi-Path Routing is
Possible

The problem of task-mapping and route choice to minimize
the maximum fraction of energy spent at a node can thus be
formulated as:

Inputs:
• D = (DT,DE): Data-driven Task Graph
• fi: Firing rate for task i
• sij : Size of data transferred from task i to j on each

invocation of i
• N : Network description
• T : Task execution energy matrix
• R: Routing energy cost matrix, as modified above.

Outputs:
• X: Assignment Matrix. xik is binary.
• Z: Routing Path Choice Matrix. zeρ is binary, and is 1

if the traffic over edge e in DE is routed along the ρth
path.

IEEE TRANSACTIONS ON COMPUTERS 7

Optimization Goal:

minimize c

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (20)

Φ∑
ρ=1

zeρ = 1 for each e (21)

1
e0
k

(
∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

C∑
ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ)+

m∑

i=1

fi · Tik · xik ≤ c for k = 1, . . . , n

(22)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (23)

zeρ ∈ {0, 1} for each combination of (e, ρ) (24)

0 ≤ c ≤ 1 (25)

Note that the above is an MIP since c is real whereas xik and
zeρ are binary integers. Also, it is not a linear program since
product terms xiβ · xjγ · zeρ appear in the constraints.

The above problem can be converted to a linear MIP by
repeatedly applying the techniques discussed in the previous
section. We first absorb each (xiβ , xjγ) pair into a variable
yiβjγ , and then introduce another set of variables, one to
absorb each (yiβjγ , zeρ) pair, to get the following:

yiβjγ − xiβ ≤ 0 (26)

yiβjγ − xjγ ≤ 0 (27)

xiβ + xjγ − yiβjγ ≤ 1 (28)

uiβjγρ − yiβjγ ≤ 0 (29)

uiβjγρ − zeρ ≤ 0 (30)

yiβjγ + zeρ − uiβjγρ ≤ 1 (31)

B. MIP Formulation for OPT2 when Multi-Path Routing is
Possible

Using our formulation, the objective of solving the problem
to minimize the total energy spent by the system can be
formulated as follows:
Inputs:
• D = (DT, DE): Data-driven Task Graph
• fi: Firing rate for task i
• sij : Size of data transferred from task i to j on each

invocation of i
• N : Network description
• T : Task execution energy matrix
• R: Routing energy cost matrix, as modified above.

Outputs:
• X: Assignment Matrix. xik is binary.

• Z: Routing Path Choice Matrix. zeρ is binary.

Optimization Goal:

minimize
n∑

k=1

m∑

i=1

fi · Tik · xik+

∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

Φ∑
ρ=1

(
fi · sij · xiβ ·

xjγ · zeρ · Rβγkρ

)

Constraints:
n∑

k=1

xik = 1 for i = 1, 2, . . . , m (32)

Φ∑
ρ=1

zeρ = 1 for each combination of (e, β, γ) (33)

∑

e=(i,j)∈DE

n∑

β=1

n∑
γ=1

Φ∑
ρ=1

fi · sij · xiβ · xjγ · zeρ · Rβγkρ+

m∑

i=1

fi · Tik · xik ≤ ek
0 for k = 1, . . . , n

(34)

xik ∈ {0, 1} for (i, k) = (1, 1), . . . , (m,n) (35)

zeρ ∈ {0, 1} for each combination of e, β, γ, ρ (36)

Note that the above can be converted to a MIP with linear
constraints using the linearization techniques used by us.

C. Greedy Heuristics for Task-mapping with Multi-Path Rout-
ing

In view of the changed system model, we can modify
the algorithms proposed in Section IV. Our greedy heuristic
for the goal of minimizing the maximum fraction of energy
spent at a node (OPT1) is detailed in Algorithm 5. First, the
algorithm sorts the edges in the task graph in non-increasing
order of the traffic going on them (step 3). Then, for each
still-unmapped endpoints of each edge (i, j), it iterates over
all possible pair of nodes to assign the end points to, and all
possible paths between them (steps 4-23).

and determine the best route to be taken by the data
items transferred between i and j them, so as to achieve the
minimum increase in the objective function.

Computational Complexity: Each invocation of maxCostM
takes θ(n(m + |DE|)) time. During Algorithm 5, the sort-
ing takes O(|DE| log(|DE|)) time, and the main loops in-
vokes Algorithm 6 for evaluating the maxCost O(|DE|n2Φ)
times. The total time complexity of the algorithm is
O(|DE|(log(|DE|) + n3(m + |DE|)Φ)). Since |DE| > m
in a DAG and |DE| > log(|DE|), this can be simplified to
O(n3|DE|2Φ).

Algorithm 7 shows our modification to Algorithm 5 for
mapping tasks for OPT2. The algorithm calls totalCostM
subroutine (shown in Algorithm 8) repeatedly to determine the
current total cost of the assignment, and chooses the end points
of the next edge and the path choice so as to minimize the total

IEEE TRANSACTIONS ON COMPUTERS 8

Algorithm 5 GreedyMinMaxM: for OPT1 with Multi-Path
Routing
Input: D(= DT, DE), N, T [m][n],R[n][n][n][Φ], f [m],

s[m][m], eo[n]
Output: M [m]: Task Assignment, P [|DE|]: Routing Path

Choice
1: Initialize M [i] = −1 for i = {1, . . . ,m}
2: Initialize all entries P [e] = −1
3: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
4: for all (sorted) e = (i, j) in DE do
5: // Initialize minmaxCost for this iteration
6: minmaxCost = ∞
7: minPath = (−1,−1)
8: for all (α, β) such that (i, j) can be assigned to them

do
9: M [i] = α

10: M [j] = β // Temporarily assign (i, j) to (α → β)
11: for ρ = 1 to Φ do
12: // Temporarily choose the ρth routing option
13: P [e] = ρ
14: maxCost =

maxCostM(D,N, T ,R, f, s, e0,M, P)
15: if maxCost < minmaxCost then
16: // Update mintotalCost
17: minmaxCost = maxCost
18: minPath = (α, β, ρ)
19: if minmaxCost > 1 then
20: declare failure. stop. // Checking for feasibility
21: M [i] = minPath.α
22: M [j] = minPath.β
23: P [e][M [i]][M [j]] = minPath.ρ
24: return M, P

cost. Owing to the similarity in structure, its computational
complexity is also O(n3|DE|2Φ).

Worst Case Analysis: Since GreedyMinMaxM and
GreedyMinTotalM are generalized versions of the algorithms
discussed in Section IV, the problem instance discussed in
Section IV-B acts as a special case of the task-mapping
problem with multi-path routing, with the maximum number
of routes Φ = 1. Therefore, the same worst-case bounds hold
for the algorithms discussed in this section also.

VI. EVALUATION

As stated in Section II-E, the proper manner to evaluate
the performance of task-mapping techniques for networked
sensing applications is to use task graphs derived from real
applications, as opposed to randomly generated ones. In this
section, we describe two real-world networked sensing appli-
cation scenarios, and the results obtained by our techniques
on them.

A. Reference Applications

For evaluating our techniques, we use two real-world appli-
cations in this paper. The first is a building environment man-
agement application for monitoring heating, ventilation and

Algorithm 6 maxCostM: for determining the maximum frac-
tion of energy spent at a node
Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],

s[m][m], eo[n],M [m], P [|DE|][n][n]
Output: maxCostM: Maximum fraction of energy spent at

any node
1: maxCostM = 0 // Initialize max cost
2: for all k ∈ N do
3: cost = 0 // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: // Increment computation cost
7: cost = cost + f [i] · T [i][k]
8: for all e = (i, j) ∈ DE do
9: if M [i] 6= −1 AND M [j] 6= −1 AND P [e] 6= −1

then
10: // Increment communication cost
11: cost = cost+ f [i] · s[i][j] ·R[M [i]][M [j]][k][P [e]]
12: if cost/e0[k] > maxCostM then
13: maxCostM = cost/e0[k]
14: return maxCostM

Humidity Sampler Collector HVAC ControllerTemperature Sampler Temperature Sampler... Humidity Sampler...

HVAC Controller.
.
.

Fig. 3. A task graph for HVAC management.

air-conditioning (HVAC), similar in spirit to other applications
in the literature [3]. We consider a set of nodes spread across
a building, with each node possibly attached to a temperature
sensor, a humidity sensor and an actuator that can control the
temperature and humidity of a region. The aim of the system is
to maintain desirable temperature and humidity levels in each
room of the building, by correlating the information from the
sensor installed in the room, and using it to drive actuation.

Figure 3 describes our application as a data-driven task
graph. The Temperature Sampler and Humidity Sampler tasks
– instantiated on the nodes with relevant sensors – sample their
surroundings and generate temperature and humidity readings.
This data is then sent to the Collector task, one of which is
placed in each room. Upon processing the data, the Collector
produces a command for the actuating tasks and sends the data
to the HVAC Controller task, which is placed on all nodes with
an HVAC Actuator and responds to the Action data item by
adjusting the temperature/humidity controls.

The second application, illustrated in Figure 4, describes a
highway traffic management system, similar in spirit to [2]. In
this case, two different sub-goals must be achieved - regulating
the speed of vehicles on the highway by controlling speed
limit displays, and controlling the access to the highway
by means of red/green signals on the ramps. The highway
is divided into sectors, and sensors are deployed on the

IEEE TRANSACTIONS ON COMPUTERS 9

Algorithm 7 GreedyMinTotalM: for OPT2 with Multi-Path
Routing
Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],

s[m][m], eo[n]
Output: M [m]: Task Assignment, P [|DE|]: Routing Path

Choice
1: Initialize M [i] = −1 for i = {1, . . . ,m}
2: Initialize all entries P [e][β][γ] = −1
3: Sort (i, j) ∈ DE in non-increasing order of f [i] · s[i][j]
4: for all (sorted) e = (i, j) in DE do
5: // Initialize mintotalCost for this iteration
6: mintotalCost = ∞
7: minPath = (−1,−1)
8: for all (α, β) such that (i, j) can be assigned to them

do
9: M [i] = α

10: M [j] = β // Temporarily assign (i, j) to (α → β)
11: for ρ = 1 to Φ do
12: // Temporarily choose the ρth routing option
13: P [e] = ρ
14: totalCost =

totalCostM(D,N, T ,R, f, s, e0,M, P)
15: if totalCost < mintotalCost then
16: // Update mintotalCost
17: mintotalCost = totalCost
18: minPath = (α, β, ρ)
19: maxCost = maxCostM(D, N, T ,R, f, s, e0, M, P)
20: if maxCost > 1 then
21: declare failure. stop. // Checking for feasibility
22: M [i] = minPath.α
23: M [j] = minPath.β
24: P [e] = minPath.ρ
25: return M, P

RampSignalCalculator RampSignalDisplayerSpeedLimitCalculator SpeedLimitDisplayerRampSampler AvgQueueLengthCalculator(Sector k)AvgSpeedCalculator(Sector k)RampSampler...SpeedSamplerSpeedSampler.
.
.

AvgSpeedCalculator(Sector k-1)AvgSpeedCalculator(Sector k+1)
AvgQueueLengthCalculator(Sector k-1)AvgQueueLengthCalculator(Sector k+1)

Fig. 4. An task graph for highway traffic management.

highway lanes and ramps to sense the speed and presence
of vehicles, respectively. The sensed data goes through a
multi-stage process where it is first aggregated w.r.t. a single
sector to derive an average measure (AvgSpeedCalculator and
AvgQueueLengthCalculator tasks). The SpeedLimitCalculator
and RampSignalCalculator tasks take the average speeds and
queue lengths produced in the neighboring highway sectors (as
shown in the figure), and compute the desired actions to be sent
to the SpeedLimitDisplayer and RampSignalDisplayer tasks,
which are located on the nodes attached to the corresponding

Algorithm 8 totalCostM: for determining the total energy
spent in the system
Input: D(= DT, DE), N, T [m][n],R[n][n][n], f [m],

s[m][m], eo[n],M [m], P [|DE|]
Output: totalCostM: Total energy spent by nodes in N

1: totalCostM = 0 // Initialize total cost
2: for all k ∈ N do
3: cost = 0; // Initialize node cost
4: for all i ∈ DT do
5: if M [i] == k then
6: // Increment computation cost
7: cost = cost + f [i] · T [i][k]
8: for all e = (i, j) ∈ DE do
9: if M [i] 6= −1 AND M [j] 6= −1 AND P [e] 6= −1

then
10: // Increment comm. cost
11: cost = cost+ f [i] · s[i][j] ·R[M [i]][M [j]][k][P [e]]
12: totalCostM = totalCostM + cost
13: return totalCostM

actuators.

B. Experiments

For evaluating the relative performance of our heuristics,
we applied them on the reference applications discussed in
Section VI-A, by using our algorithms to map their tasks onto
a various simulated target deployments (shown in Figure 5)
to map the tasks onto. For the HVAC application, we placed
an equal number of temperature and humidity sensors in
a grid in a room, and assigned the location of the HVAC
actuators randomly. We also placed extra nodes in the room
for maintaining connectivity. For the traffic application, we
placed forwarding nodes uniformly apart at the edge of the
highway, and randomly distributed the speed sensors on the
four lanes so that each of them was in range of at least another
speed sensor or a forwarding node. Similarly, the presence
sensors were randomly distributed on the ramp so that each
of them was in range of at least one speed sensor or another
presence sensor. The node controlling the ramp signals and the
speed limit displays were placed between different sectors, on
opposite sides of the road. Note that for both the applications,
owing to the placement constraints of the applications, the
number of tasks m is O(n) for our experiments, where n is
the number of nodes.

Experimental Results: In our experiments, we assumed that
all nodes started with a sufficiently high initial energy level
e0. The routing energy cost matrix R was obtained by using a
shortest path algorithm on the network, assuming equal energy
spent by all nodes on a route, and all data items were assumed
to be of unit size (sij = 1). The task execution energy matrix
T was set up to represent placement constraints: Tik = 0 when
task i could be placed on node k, ∞ when it could not. The
tasks which performed sensing and actuating were tied to a
node with the relevant capabilities. Finally, the fi for each task
was computed as follows: For sensing tasks, fi was set to 10,
and for all other tasks j, fj was set to the sum of the firing

IEEE TRANSACTIONS ON COMPUTERS 10

ROOM [Roomi]
T

Forwarding Node ROOM [Roomi+1]
HTH

HTHT
THTH

HTHT
THTH

HTHTTemperature SensorHumidity SensorA A A AAAAA A AHVAC Actuator
(a) HVAC Application

HIGHWAY SECTOR [HSi]
SL

Ramp SignalPresence Sensors on Ramp
Speed Limit DisplaySLForwarding Node

HIGHWAY SECTOR [HSi+1]Speed Sensors
(b) Traffic Application

Fig. 5. Node placement in reference applications.

rates of tasks on the other ends of the incoming edges. This
represented the fact that task j fires whenever there is data
available for it. For the multi-path scenario, we generated the
routing matrix using the generalized Floyd algorithm [7] with
Φ = 3.

We ran our experiments on a PC with a dual-core Pentium
processor running at 1.6GHz, with 2GB of RAM. We imple-
mented our greedy algorithm in Java, and solved the MIPS
using the lp solve [8] linear programming toolkit. The time
taken for computing task placements for both the applications
so as to minimize the maximum fraction of energy spent by
any node (OPT1) is shown in Figure 6. The time taken by the
two techniques for placing tasks so as to minimize the total
energy spent in the system (OPT2) is shown in Figure 7.

In our experiments, the Greedy algorithms obtained sub-
optimal results only while computing task-mappings for mini-
mizing total energy in some of the HVAC application. For the
traffic application, and the for all instances of OPT1 (which
we believe is a better indicator of system lifetime), the solution
given by the greedy algorithm was the same as the one given
by the MIP. Our experiments clearly show that the greedy
algorithms take much less time that the MIP formulation
in finding the mappings. This showcases the efficacy of the
algorithms in solving the task-mapping problem for complex
real-world WSN applications.

In experiments conducted where multiple paths were possi-
ble (shown in Figures 8 and 9), we see that the time taken by
the heuristics still outperforms the MIP solver in terms of time.
Note that the graphs for the traffic management application
denote the fact that the MIP solver did not terminate in a long
time for some instances. As before, the quality of solution
given by our heuristics were found to be as good as that of

0

5000

10000

15000

20000

25000

0 20 40 60 80 100 120

Number of Nodes

T
im

e
T

ak
en

 (
s)

GreedyMinMax

MIP

(a) HVAC Management

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35

Number of Nodes

T
im

e
T

ak
en

 (
s)

GreedyMinMax

MIP

(b) Traffic Management

Fig. 6. Time taken to compute task-mapping for minimizing maximum
energy spent by any node.

the MIP, with the cost of the (few) outliers not being more
than 1.5 times the optimal cost.

In summary, our experimental results support our analysis
that the MIP solver will take much more time to provide
the (optimal) solution to the task-mapping problems than our
heuristics. It is also noteworthy that the solver takes less time
to map the tasks in the (simpler) HVAC task graph (Fig-
ure 5(a)) as compared to the more complex Traffic application
task graph (Figure 5(b)).

VII. RELATED WORK

A large body of work exists, both in the parallel and dis-
tributed computing as well as the wireless sensor networking
domain, on the problem of mapping tasks of an application
onto the nodes of a target system. In this section, we present
some closely related work from various domains.

Parallel and Distributed Computing: The task mapping
problem [9] is a well studied problem is parallel and dis-
tributed computing. In [10], the authors have covered a wide
range of mapping problems in such systems and approached
to solve them. However, they are mostly concerned with
optimizing for latency, i.e., minimizing the computation and
communication time. In addition, the tasks do not have

IEEE TRANSACTIONS ON COMPUTERS 11

0

5

10

15

20

25

0 20 40 60 80 100 120

Number of Nodes

T
im

e
T

ak
en

 (
s)

GreedyMinTotal

MIP

(a) HVAC Management

0

50000

100000

150000

200000

250000

300000

350000

400000

0 10 20 30 40
Number of Nodes

T
im

e
T

ak
en

 (
s)

GreedyMinTotal

MIP

(b) Traffic Management

Fig. 7. Time taken to compute task-mapping for minimizing total energy
spent in the system.

placement constraints. In [11], the authors include placement
constraints in their problem statement using a task preference
matrix. However, they assume that communication costs are
paid only by the end-points, and their optimization goal is the
total cost that the system endures for the application.

Heterogeneous Systems: In [12], the authors present a genetic
algorithm for placing tasks onto a parallel processor. They
also provide an extension for the case where not all tasks
can be run on all nodes, by way of assigning each node to
a class, and associating a class number with each task. Their
algorithm is designed to work for a range of metrics, and
they focus on the minimize total execution time metric in the
paper. However, unlike our work, they assume full control over
the message routing. In [13], the authors present algorithms
based on the best-first A* technique from artificial intelligence
for optimal task placement on heterogeneous systems. The
placement constraint is specified as a placement cost metric
for mapping a task to a particular node. Subject to these costs,
the nodes are assumed to be capable of executing any task in
the application. However, unlike our work, their optimization
goal is to minimize the turnaround time. Also, they assume
a dedicated interconnection network, and there are no routing
overheads for intermediate nodes. Similarly, recent work such

0

100

200

300

400

500

600

700

800

900

1000

0 20 40 60 80 100

Number of Nodes

T
im

e
T

ak
en

 (
s)

.

GreedyMinMaxM

MIP

(a) HVAC Management - Multipath

0

50000

100000

150000

200000

250000

0 5 10 15 20 25 30 35

Number of Nodes

T
im

e
T

ak
en

 (
s)

.

GreedyMinMaxM

MIP

(b) Traffic Management - Multipath

Fig. 8. Time taken to compute task-mapping for minimizing maximum
energy spent by any node (MultiPath).

as that in [14] focus on scheduling jobs on grids by a Multi-
Resource Scheduling (MRS) algorithm using virtual maps and
resource potentials. However, they also assume a completely
connected network, and no routing costs.

Wireless Sensor Networks: A wide variety of work exists in
sensor networks to maximize lifetime by reducing the energy
spent, mostly using distributed algorithms for sleep-wake
scheduling [15]. The work in [16] achieves energy-balance
during data-propagation by deciding in each step whether to
propagate data one-hop towards the final destination (the sink),
or to send data directly to the sink. This randomized choice
ensures that the average per sensor energy dissipation is the
nearly the same for all sensors in the network. Task placement
on sensor networks has also been addressed recently. One of
the early works on this topic is [17], where the authors propose
an energy-balanced task allocation for collaborative processing
in WSNs. However, unlike our work, they focus on single-hop
networks only. Further, our system model is more general than
theirs in some respects, since they only consider the case where
two tasks cannot share the same node. In [18], the authors
have provided task placement approaches for unconstrained
task graphs with optimization goals such as minimizing total
energy. In addition, they also provide the routes taken by mes-

IEEE TRANSACTIONS ON COMPUTERS 12

0

100

200

300

400

500

600

700

0 20 40 60 80 100

Number of Nodes

Ti
m

e
T

ak
en

 (
s)

 .
GreedyMinTotalM

MIPMinTotal

(a) HVAC Management - MultiPath

0

10000

20000

30000

40000

50000

60000

0 10 20 30 40

Number of Nodes

Ti
m

e
Ta

ke
n

(s
)

.

GreedyMinTotalM

MIP

(b) Traffic Management - Multipath

Fig. 9. Time taken to compute task-mapping for minimizing total energy
spent in the system (MultiPath).

sages. Finally, efforts such as [19] approach the task-mapping
problem for WSNs from a protocol-centric point of view,
whereas we take a high-level perspective of the problem to
determine a good initial task mapping. Most recently, the work
in [20] proposed a scheduling algorithm for achieving energy-
balance while assigning tasks with precedence constraints on a
heterogenous sensor network. However, unlike our work, they
focus only on a single-hop network.

WSN Macroprogramming: With the advent of macropro-
gramming, several approaches have addressed this problem
as it arises due to the high-level of applications divided into
tasks. [21] proposes a greedy solution to the service placement
problem, which is applicable to our context of compiling
macroprograms. Similar to our case, their application also
has task placement constraints, where certain tasks can be
placed only on certain nodes. However, they focus only on
task graphs that are trees, and not general graphs. Further, their
algorithm’s goal is to minimize the total energy of the system,
and does not guarantee that a single node will not be over-
penalized. The work in [22] solves the generic role assignment
problem, where task placements are specified using roles.
Their algorithm allows ILP solutions of role assignment onto
the nodes of the target system, based on a global optimization

criteria represented in terms of the number of nodes with a
particular role. Unlike their case, our heuristics are meant for
solving an offline version of the problem, and the optimization
goals more tied to the energy-consumption at the nodes.

In the recent past, several macroprogramming languages
have been proposed, covering a wide range of programming
styles. Kairos [23] (and later, Pleiades [24]) provide an im-
perative approach to task the nodes in the WSN. However,
they address the problem of distribution actions onto nodes
by dividing the program’s control flow graph (CFG) into
nodecuts, and then placing them on individual nodes. Their
heuristic aims to minimize the total number of edges in
a program’s CFG that cross from one nodecut to another.
However, unlike our work, it is not clear what underlying
routing costs they are assume, and how they address placement
constraints. Regiment [25] is a macroprogramming system
using which application developers can specify their programs
in a Haskell-like functional programming manner. However,
since their underlying routing mechanism uses only spanning-
trees, the mapping problem they solve during compilation is
different from ours. In their work on COSMOS [26], the
authors have presented the mPL macroprogramming language
and the mOS operating system which can be used to program
WSNs by way of task graphs. This is similar to our work, and
indeed, our system abstraction and techniques can be used
during the compilation process in COSMOS also. However,
Figure 1 in [26] seems to suggest that they currently address
only the case where all nodes of a single type have the same
set of tasks running on them. Finally, MacroLab [27] provides
a Matlab-like interface to WSN application developers, so
that they can use operations such as addition, max, and
find on sensor data addressed as macrovectors. Since this
paradigm focuses on accessing and operating on data presented
in matrix form, sometimes using different implementations
(centralized versus distributed) of the same operation (e.g.
max), the task-mapping problem they address is different from
the one discussed in our work.

To summarize, although task-mapping as a general problem
has been studied for a long time, its application in sensor
network macroprogramming is relatively new, and brings in
several new aspects. To the best of our knowledge, no existing
work addresses the problem of mapping task graphs with
placement constraints on arbitrary heterogenous networks with
known routing costs so as to achieve energy balance.

VIII. CONCLUDING REMARKS

In this paper, we formalized the problem of mapping tasks
with placement-constraints and data-rates as it arises in the
context of designing applications for wireless sensor networks
using data-driven macroprogramming. These applications can
process data streams or items in-network to take decisions
about actuation. We provided mathematical formulations for
two energy-related optimization goals – minimizing the max-
imum fraction of energy consumed in a node and minimizing
the total energy consumed in the sensor network. For each
of these goals, we focused both on the case when a single
route was available between any two nodes, as well as when

IEEE TRANSACTIONS ON COMPUTERS 13

multiple routes were possible. We used our modeling frame-
work to provide mathematical formulations to solve these four
problem instances, and demonstrated linearization techniques
to convert them into mixed-integer programs (MIP). We also
provided greedy heuristics for the above problem scenarios,
and provided worst-case performance bounds for the same.
In spite of the worst-case performance possible for specially
crafted problem instances, our heuristics were shown to out-
perform the MIP formulation by several orders of magnitudes
of time for real-world WSN applications, while not severely
compromising in the quality of the solutions.

The area of mapping data-driven task graphs on sensor
networks is still developing. Our hope is that the concise model
described in this paper will aid future research in this area,
and the MIP formulations can be used to compute the optimal
placements where time of computation is not an issue. Further,
we acknowledge that later in the life of the WSN applications,
distributed protocols will be needed to re-assign the tasks
in view of changing operating circumstances. However, our
techniques (and other technique based on our models) will
provide good initial task placements. Our immediate future
work is to reduce the complexity of the heuristics, as well as
to explore better polynomial time approximation algorithms.
Additionally, we are working on integrating our algorithms
into the compiler [28] of a pre-existing data-driven macropro-
gramming framework.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments which helped improve the presentation of the
manuscript. This work is partially supported by the National
Science Foundation, USA, under grant number CCF-0430061
and CNS-0627028.

REFERENCES

[1] A. Bakshi, V. K. Prasanna, J. Reich, and D. Larner, “The Abstract
Task Graph: A methodology for architecture-independent programming
of networked sensor systems,” in Workshop on End-to-end Sense-and-
respond Systems (EESR), 2005.

[2] T. T. Hsieh, “Using sensor networks for highway and traffic applica-
tions,” IEEE Potentials, vol. 23, no. 2, 2004.

[3] M. Dermibas, “Wireless sensor networks for monitoring of large public
buildings,” University at Buffalo, Tech. Rep., 2005.

[4] T. He, S. Krishnamurthy, L. Luo, T. Yan, L. Gu, R. Stoleru, G. Zhou,
Q. Cao, P. Vicaire, J. A. Stankovic, T. F. Abdelzaher, J. Hui, and
B. Krogh, “Vigilnet: An integrated sensor network system for energy-
efficient surveillance,” ACM Trans. Sen. Netw., vol. 2, no. 1, pp. 1–38,
2006.

[5] A. Pathak and V. K. Prasanna, “Energy-efficient task mapping for data-
driven sensor network macroprogramming,” in International Conference
on Distributed Computing in Sensor Systems (DCOSS), June 2008.

[6] G. Nemhauser, A. RinnooyKan, and M. Todd, Eds., Optimiztions:
Handbooks in Operations Research and Management Science. North-
Holland, 1989, vol. 1.

[7] J. R. Evans and E. Minieka, Optimization Algorithms for Networks and
Graphs, Second Edition. CRC Press, 2nd Edition, 1992.

[8] “LP Solve,” http://lpsolve.sourceforge.net/.
[9] S. H. Bokhari, “On the mapping problem,” IEEE Transactions on

Computers, vol. C-30, no. 3, pp. 207–214, March 1981.
[10] H. El-Rewini, T. G. Lewis, and H. H. Ali, Task scheduling in parallel

and distributed systems. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1994.

[11] P.-Y. R. Ma, E. Lee, and M. Tsuchiya, “A task allocation model for
distributed computing systems,” IEEE Transactions on Computers, vol.
C-31, no. 1, pp. 41–47, January 1982.

[12] C. Ravikumar and A. Gupta, “Genetic algorithm for mapping tasks onto
a reconfigurable parallel processor,” IEE Proceedings on Computers and
Digital Techniques, vol. 142, no. 2, pp. 81–86, March 1995.

[13] M. Kafil and I. Ahmad, “Optimal task assignment in heterogeneous com-
puting systems,” in Sixth Heterogeneous Computing Workshop (HCW
’97), April 1997.

[14] B. K. B. Tat, B. Veeravalli, T. Hung, and S. S. C. Wee, “A co-ordinate
based resource allocation strategy for grid environments,” in 6th IEEE
International Symposium on Cluster Computing and Grid (CCGRID),
May 2006, pp. 561–567.

[15] S. K. Prasad and A. Dhawan, “Distributed algorithms for lifetime of
wireless sensor networks based on dependency structure among cover
sets,” in Intl High Performance Computing (HiPC), 2007.

[16] C. Efthymiou, S. Nikoletseas, and J. Rolim, “Energy balanced data
propagation in wireless sensor networks,” Wireless Networks (WINET)
Journal, Special Issue on ”Algorithms for Wireless, Mobile, Ad Hoc and
Sensor Networks, 2006.

[17] Y. Yu and V. K. Prasanna, “Energy-balanced task allocation for collab-
orative processing in wireless sensor networks,” MONET, vol. 10, no.
1-2, pp. 115–131, 2005.

[18] Y. Tian, E. Ekici, and F. Ozguner, “Energy-constrained task mapping
and scheduling in wireless sensor networks,” in IEEE International
Conference on Mobile Adhoc and Sensor Systems Conference RPMSN
Workshop, 2005.

[19] K. H. Low, W. Leow, and J. M.H. Ang, “Autonomic mobile sensor
network with self-coordinated task allocation and execution,” IEEE
Transactions on Systems, Man and Cybernetics, Part C: Applications
and Reviews, vol. 36, no. 3, pp. 315–327, May 2006.

[20] L. K. Goh and B. Veeravalli, “An energy-balanced task scheduling
heuristic for heterogeneous wireless sensor networks,” in International
Conference on High Performance Computing (HiPC), 2008, pp. 257–
268.

[21] Z. Abrams and J. Liu, “Greedy is good: On service tree placement
for in-network stream processing,” in ICDCS ’06: Proceedings of the
26th IEEE International Conference on Distributed Computing Systems.
Washington, DC, USA: IEEE Computer Society, 2006, p. 72.

[22] C. Frank and K. Römer, “Solving generic role assignment exactly,” in
IPDPS, 2006.

[23] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos,” in International Conference on
Distributed Computing in Sensor Systems (DCOSS). Springer, 2005,
pp. 126–140.

[24] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan, “Reliable
and efficient programming abstractions for wireless sensor networks,”
in PLDI ’07: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation. New York, NY,
USA: ACM, 2007, pp. 200–210.

[25] R. Newton, G. Morrisett, and M. Welsh, “The regiment macropro-
gramming system,” in IPSN ’07: Proceedings of the 6th international
conference on Information processing in sensor networks. New York,
NY, USA: ACM, 2007, pp. 489–498.

[26] A. Awan, S. Jagannathan, and A. Grama, “Macroprogramming hetero-
geneous sensor networks using cosmos,” in EuroSys ’07: Proceedings
of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007. New York, NY, USA: ACM, 2007, pp. 159–172.

[27] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and K. White-
house, “Macrolab: a vector-based macroprogramming framework for
cyber-physical systems,” in SenSys ’08: Proceedings of the 6th ACM
conference on Embedded network sensor systems. New York, NY,
USA: ACM, 2008, pp. 225–238.

[28] A. Pathak, L. Mottola, A. Bakshi, G. P. Picco, and V. K. Prasanna, “A
compilation framework for macroprogramming networked sensors,” in
Proc. of the the 3rd Int. Conf. on Distributed Computing on Sensor
Systems (DCOSS), 2007.

IEEE TRANSACTIONS ON COMPUTERS 14

Animesh Pathak received the B.Tech degree in
Computer Science and Engineering from the In-
stitute of Technology, Banaras Hindu University,
Varanasi, India in 2003, and a PhD in Computer
Engineering from the University of Southern Cali-
fornia in 2008. He is currently a researcher with the
ARLES project-team at INRIA Paris-Rocquencourt.
His research interests include parallel and distributed
systems including networked sensor systems, and
pervasive computing. He has published and pre-
sented his work at several international workshops

and conferences. He is a member of the IEEE.

Viktor K. Prasanna is Charles Lee Powell Chair
in Engineering in the Ming Hsieh Department of
Electrical Engineering and Professor of Computer
Science at the University of Southern California.

He is the executive director of the USC-
Infosys Center for Advanced Software Technologies
(CAST). He is also an associate member of the
Center for Applied Mathematical Sciences (CAMS)
at USC, and a member of the USC-Chevron Center
of Excellence for Research and Academic Training
on Interactive Smart Oilfield Technologies (Cisoft).

His research interests include parallel and distributed systems including
networked sensor systems, embedded systems, configurable architectures and
high performance computing.

He is the Steering Co-chair of the International Parallel and Distributed
Processing Symposium and is the Steering Chair of the International Confer-
ence on High Performance Computing (HiPC). He has served on the editorial
boards of the Journal of Parallel and Distributed Computing, Proceedings
of the IEEE, IEEE Transactions on VLSI Systems, and IEEE Transactions
on Parallel and Distributed Systems. He served as the Editor-in-Chief of
the IEEE Transactions on Computers during 2003-06. He was the founding
Chair of the IEEE Computer Society Technical Committee on Parallel
Processing. He is a Fellow of the IEEE and the ACM. He is a recipient
of the 2005 Okawa Foundation Grant and 2009 Outstanding Engineering
Alumnus Award from the Pennsylvania State University. His website is at
http://ceng.usc.edu/∼prasanna

