Exercise 1. Finding a hidden parabola in a function.

Suppose we are given a black-box function $f_{\alpha,\beta} : \mathbb{F}_p^2 \rightarrow \mathbb{F}_p$, where p is a prime, satisfying the promise that $f_{\alpha,\beta}(x, y) = f_{\alpha,\beta}(x', y')$ if and only if

$$\alpha x^2 + \beta x - y = \alpha x'^2 + \beta x' - y'.$$

for some unknown $\alpha \in \mathbb{F}_p$ and $\beta \in \mathbb{F}_p$. In other words, $f_{\alpha,\beta}$ is constant on the parabola

$$P_{\alpha,\beta,\gamma} := \{(x, y) \in \mathbb{F}_p^2 : y = \alpha x^2 + \beta x + \gamma\}$$

for any fixed $\gamma \in \mathbb{F}_p$, and distinct on parabolas corresponding to different values of γ. We have access to the unitary

$$O_{f_{\alpha,\beta}}(|x\rangle|y\rangle|z\rangle) = |x\rangle|y\rangle|z + f_{\alpha,\beta}(x, y)\rangle.$$

and our goal is to find α and β. Recall that for all $x \in \mathbb{F}_p$,

$$QFT_p(|x\rangle) = \frac{1}{\sqrt{p}} \sum_{y \in \mathbb{F}_p} \omega^{xy} |y\rangle.$$

where $\omega = e^{2\pi i/p}$. We consider the following procedure

Procedure 1

1. Start from three registers initialized at $|0\rangle$.
2. Apply QFT_p on each of the two first registers.
3. Apply the unitary operation $O_{f_{\alpha,\beta}}$ on all the registers.
4. Measure the third register in the computational basis i.e. the basis $\{|0\rangle, \ldots, |p-1\rangle\}$.
5. Apply QFT_p on the second register and measure it.
Question 1. Show that after step 4 the above procedure creates the state

$$|\psi_4\rangle = \frac{1}{\sqrt{p}} \sum_{x \in \mathbb{F}_p} |x\rangle|\alpha x^2 + \beta x + \gamma\rangle.$$

for an unknown $\gamma \in \mathbb{F}_p$.

Solution: Let’s follow the steps of the procedure

$$|0\rangle|0\rangle|0\rangle \xrightarrow{QFT_p \otimes QFT_p \otimes I} \frac{1}{p} \sum_{x,y \in \mathbb{F}_p} |x\rangle|y\rangle|0\rangle \xrightarrow{O_{f_{\alpha,\beta}}} \frac{1}{p} \sum_{x,y} |x\rangle|y\rangle|f(x,y)\rangle.$$

We measure the third register and get some value v, the two first register are a uniform superposition over inputs x,y such that $f(x,y) = v$. v is the image of f, so there exists x_0, y_0 such that $f(x_0, y_0) = v$. By definition of f, values x, y such that $f(x,y) = v$ are exactly the elements of $P_{\alpha,\beta,\gamma}$ for an unknown γ (because x_0, y_0 are not known). The 2 first registers therefore become

$$|\psi_4\rangle = \frac{1}{\sqrt{p}} \sum_{x,y \in P_{\alpha,\beta,\gamma}} |x\rangle|y\rangle = \frac{1}{\sqrt{p}} \sum_{x \in \mathbb{F}_p} |x\rangle|\alpha x^2 + \beta x + \gamma\rangle.$$

\[\square\]

Question 2. Show that after step 5 the above procedure creates (up to a global phase) the state

$$|\psi_u\rangle = \frac{1}{\sqrt{p}} \sum_{x \in \mathbb{F}_p} \omega^{(\alpha x^2 + \beta x)u} |x\rangle.$$

for a known u. Why is u known ?

Solution: We start from $|\psi_4\rangle$. After applying F_p, we get the state

$$\frac{1}{p} \sum_{x,u} \omega^{(\alpha x^2 + \beta x + \gamma)u} |x\rangle|u\rangle.$$

when we measure u at the second register, we obtain $\frac{\omega^u}{\sqrt{p}} \sum_{x \in \mathbb{F}_p} \omega^{(\alpha x^2 + \beta x)u} |x\rangle$. u is measured hence known. \[\square\]

Question 3. We apply the procedure twice and we construct the state $|\Phi\rangle = |\psi_u\rangle \otimes |\psi_{u'}\rangle$ for 2 known values $u, u' \in \mathbb{F}_p$. Write $|\Phi\rangle$. Show (using ancilla qubits), how to construct in time $O(\text{polylog}(p))$ the state

$$|\Omega_{u,u'}\rangle = \frac{1}{p} \sum_{x,x'} \omega^{(ux^2 + u'x'^2) + \beta(ux + u'x')} |x\rangle|x'\rangle|ux^2 + u'x'^2\rangle|ux + u'x'\rangle$$

from $|\Phi\rangle$.

\[2\]
Solution:
\[|\psi_u \rangle \otimes |\psi_{u'} \rangle = \sum_{x, x'} \omega^{\alpha(ux^2 + u'x'^2) + \beta(ux + u'x')} |x \rangle |x' \rangle. \]

We add 2 ancilla register to obtain
\[\sum_{x, x'} \omega^{\alpha(ux^2 + u'x'^2) + \beta(ux + u'x')} |x \rangle |x' \rangle |0 \rangle |0 \rangle. \]

The functions \((x, x') \rightarrow ux^2 + u'x'^2\) and \((x, x') \rightarrow ux + u'x'\) can be efficiently computed classically. Applying the quantum circuit version of those functions on registers 1, 2, 3 and 1, 2, 4 gives the state \(|\Omega \rangle\).

Question 4. We assume that, from \(|\Omega_{u, u'} \rangle\), we know how to construct the state
\[|\xi \rangle = \frac{1}{p} \sum_{w_1, w_2 \in \mathbb{F}_p} \omega^{|w_1 + w_2|} |w_1 \rangle |w_2 \rangle. \]

Think of a way to recover \((\alpha, \beta)\) from the state \(|\xi \rangle\).

Solution: Apply \(QFT_p^\dagger\) on each register of \(|\xi \rangle\), the result is
\[\frac{1}{p^2} \sum_{a, b, w_1, w_2} \omega^{w_1(a-\alpha)a} \omega^{w_2(b-\beta)b} |a \rangle |b \rangle = |\alpha \rangle |\beta \rangle. \]

BONUS Question 1 (Hard). Find a way to go from \(|\Omega \rangle\) to a state \(|\tilde{\xi} \rangle\) which is at a constant (non zero) distance in euclidian distance from \(|\xi \rangle\). Don’t go through all the details but show the main ideas to achieve this. You can start by rewriting
\[|\Omega_{u, u'} \rangle = \sum_{w_1, w_2 \in \mathbb{F}_p} \sum_{(x, x') \in T_{w_1, w_2}} \nu_{x, x', w_1, w_2} \omega^{\alpha w_1 + \beta w_2} |x \rangle |x' \rangle |w_1 \rangle |w_2 \rangle, \]

where \(T_{w, w'} = \{(x, x') : (ux^2 + u'x'^2 = w_1) \land (ux + u'x' = w_2)\} \) and \(\nu_{x, x', w_1, w_2} \in \mathbb{C}\).
Exercise 2. Finding triangles in a graph

Consider an undirected graph G on n vertices $[n] = \{1, 2, \ldots, n\}$ whose access is given by a black-box function f on $I = \{(i, j) : i, j \in [n] \text{ and } i \neq j\}$ such that $f(i, j) = 1$ if (i, j) is an edge of G, and $f(i, j) = 0$ otherwise.

Let m be the number of edges of G. We assume that $m \geq 1$.

Both n and m are given as input.

For simplicity, we will only consider the number of black-box accesses to f, that we call queries, and we will disregard any other complexity measures. If you apply Grover’s algorithm, define properly the classical functions on which you apply the algorithm.

Let $i, j, k \in [n]$ be pairwise distincts. We say that (i, j, k) is a triangle of G if $(i, j), (j, k)$ and (k, i) are all edges of G.

Question 5. Give a simple quantum algorithm that outputs a triangle (i, j, k) of G with probability at least $9/10$ if there is any, and otherwise aborts, using $O(n^{3/2})$ queries to f.

Solution: Simply perform a Grover search on all possible triples (i, j, k). There are n^3 of them, and checking one requires 3 queries to f.

Question 6. Give a quantum algorithm that outputs an edge (i, j) of G with probability at least $9/10$, and otherwise aborts, using $O(n/\sqrt{m})$ queries to f.

Solution: Consider the following simple algorithm: Take at random a pair (i, j) and check that it is an edge by querying f. Then the algorithm has query complexity 1, and success probability m/n^2. Using amplitude amplification we get the required algorithm.

Question 7. Let (i, j) be an edge of G. Give a quantum algorithm that outputs k such that (i, j, k) is a triangle of G with probability at least $9/10$ if there is any, and otherwise aborts, using $O(\sqrt{n})$ queries to f.

Solution: Do a Grover search over the $n - 2$ possible values of k. Checking a k requires 2 queries to f.

Question 8. Give a quantum algorithm that outputs a triangle (i, j, k) of G with probability at least $1/m$ if there is any, and otherwise aborts, using $O(n/\sqrt{m} + \sqrt{n})$ queries to f.

Solution: Consider the following algorithm: (1) Search for an edge (i, j); (2) Find for k such that (i, j, k) is a triangle of G, if there is any. The overall query complexity is $O(n/\sqrt{m} + \sqrt{n})$, and the success probability is at least $1/m$ when G has at least one triangle.