Chapter 2

Shor’s quantum factoring algorithm

Shor’s idea:

• There exists an efficient quantum algorithm for finding the period of a function.

• Factoring can be reduced to period finding i.e., an efficient algorithm for period finding ⇒ an efficient algorithm for factoring.

Period finding problem

Input: a function \(f : \mathbb{N} \rightarrow \{0, \ldots, N-1\} \) such that \(\exists r \in \{0, \ldots, N-1\} \) (unknown) such that \(f(a) = f(b) \iff a = b \mod r. \)

Goal: output \(r. \)

2.1 From factoring to period finding

2.1.1 Classical algorithm for factoring a number \(N \) using period finding

Equivalent to finding a non trivial factor of \(N. \)

1. Pick a random \(x \in \{2, \ldots, N-1\}. \)

2. Calculate \(x \land N \) (efficient, use Euclid’s algorithm).

 • if \(x \land N = c \neq 1 \rightarrow c \) divides \(N. \)

 • if \(x \land N = 1 \rightarrow \) continue.

3. Consider the smallest \(r \in \{0, \ldots, N-1\} \) such that \(x^r = 1 \mod N. \) Since \(x \land N = 1, \) such an \(r \) exists.

4. \(r \) is the period of the function \(f(k) = x^k \mod N. \) Use the period finding algorithm to find \(r. \) If \(r \) is odd, go back to step 1.

5. Calculate \((x^{r/2} + 1) \land N \) and \((x^{r/2} - 1) \land N. \) If one of those values is different than 1 or \(N \) then this value is a non trivial factor of \(n. \) If both of those values are equal to 1 or \(N, \) start again from step 1.
2.1.2 Proof that the algorithm works

The main part of the proof will be the following lemma from number theory. The proof will be omitted.

Lemma 1. For any odd \(N \), for a randomly chosen \(x \) such that \(x \wedge N = 1 \) and \(r \) begin the smallest element in \(\{0, \ldots, n - 1\} \) satisfying \(x^r = 1 \mod N \), the event

\[
E : \ r \text{ is even} \quad \land \quad (x^{r/2} + 1) \neq 0 \mod N \\
\land \quad (x^{r/2} - 1) \neq 0 \mod N
\]

occurs with probability \(\geq \frac{1}{2} \).

If \(r \) is even, we have

\[
x^r = 1 \mod N \Leftrightarrow (x^{r/2} + 1)(x^{r/2} - 1) = 0 \mod N \\
\Leftrightarrow \exists k \in \mathbb{N}^*, \ (x^{r/2} + 1)(x^{r/2} - 1) = kN.
\]

Notice first that \((x^{r/2} + 1) > 0 \) and we also have \((x^{r/2} - 1) > 0 \) because \(x \geq 2 \) and \(r \geq 2 \).

If \(E \) holds, both \(x^{r/2} + 1 \) and \(x^{r/2} - 1 \) are not multiples of \(N \). Therefore, they will both have a non trivial factor of \(N \) and we actually have \((x^{r/2} - 1) \wedge N \neq 1 \) and \((x^{r/2} + 1) \wedge N \neq 1 \).

Conclusion: if \(E \) holds then step 5 outputs a non trivial factor of \(N \). Since \(\Pr[E] \geq \frac{1}{2} \), we require \(O(1) \) calls to the period finding algorithm for the algorithm to succeed with a high (constant) probability.

2.2 Shor’s period finding algorithm

Our goal here is to present Shor’s quantum algorithm for period finding. Let \(n := \lceil \log(N) \rceil \), \(q := \lceil \log(N^2) \rceil \) and \(Q := 2^q \in [2N^2, 2N^2] \). We have a quantum access to \(f : \mathbb{N} \rightarrow \{0, \ldots, N - 1\} \). We restrict the input space to \(q \) input bits and consider the quantum unitary

\[
O_f : |x\rangle_q|0\rangle_n \rightarrow |x\rangle_q|f(x)\rangle_n.
\]

The subscripts represent the number of qubits in each register. This means for example that register \(|x\rangle_q \) contains \(q \) qubits and register \(|0\rangle_n \) contains \(n \) qubits.

2.2.1 Algorithm for period finding

1. Initialize the protocol at the state

\[
|0\rangle_q|0\rangle_n.
\]

2. Apply \(QFT_Q \) on the first register. We get

\[
\frac{1}{\sqrt{Q}} \sum_{a=0}^{Q-1} |a\rangle_q|0\rangle_n.
\]

3. Apply \(O_f \) on the whole state to obtain

\[
\frac{1}{\sqrt{Q}} \sum_{a=0}^{Q-1} |a\rangle_q|f(a)\rangle_n.
\]
4. Measure the second register: it gives some value \(f(s) \) for some \(s < r \). Let \(m := \# \{ a \in \{0, \ldots, Q - 1 \} : f(a) = f(s) \} \). We have

\[
\{ a \in \{0, \ldots, Q - 1 \} : f(a) = f(s) \} = \{ s, s + r, \ldots, s + (m - 1)r \} = \{ jr + s \}_{0 \leq j < m}
\]

When measuring \(f(s) \) in the second register, the first register collapses to

\[
\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} |jr + s\rangle.
\]

5. Apply QFT\(_Q\) on this first register.

\[
\frac{1}{\sqrt{m}} \sum_{j=0}^{m-1} \frac{1}{\sqrt{Q}} \sum_{b=0}^{Q-1} e^{\frac{2\pi ib(jr+s)}{Q}} |b\rangle
\]

\[
= \frac{1}{\sqrt{mQ}} \sum_{b=0}^{Q-1} e^{\frac{2\pi ib}{Q}} \left(\sum_{j=0}^{m-1} e^{\frac{2\pi jrb}{Q}} \right) |b\rangle
\]

6. Measure the first register. What is the probability of outputting each specific \(b \)?

| Special case developed here : \(r \) divides \(Q \). |

In this case, we have \(m = \frac{Q}{r} \). We have

\(b \) is a multiple of \(\frac{Q}{r} \) \(\iff \) \(e^{\frac{2\pi ib}{Q}} = 1 \).

Any such \(b \) will therefore have squared amplitude

\[
\left| \frac{1}{\sqrt{mQ}} e^{\frac{2\pi ib}{Q}} \left(\sum_{j=0}^{m-1} e^{\frac{2\pi jrb}{Q}} \right) \right|^2
\]

\[
= \left| \frac{1}{\sqrt{mQ}} e^{\frac{2\pi ib}{Q}} \left(\sum_{j=0}^{m-1} 1 \right) \right|^2
\]

\[
= \frac{m}{Q} = \frac{1}{r}
\]

Each \(b \in \{0, \ldots, Q - 1\} \) which is a multiple of \(\frac{Q}{r} \) will be measured with probability exactly \(\frac{1}{r} \). Notice also that there are exactly \(r \) such multiples, which are the elements of \(\{0, \frac{Q}{r}, \ldots, (r-1)\frac{Q}{r}\} \). Therefore, the measurement will always output a multiple of \(\frac{Q}{r} \).

Output \(b \): a uniformly random multiple of \(\frac{Q}{r} \).

This means there exists a random (unknown) \(c \in \{0, \ldots, r - 1\} \) such that \(b = \frac{Q}{r} \cdot \) or equivalently \(\frac{b}{Q} = \frac{c}{r} \).

7. Find \(r \) from the above equality. How?
• b, Q are known, c, r are unknown. We can rewrite $\frac{b}{Q} = \frac{b'}{Q'}$ with $b' \land Q' = 1$.
• c is a random number in $\{0, \ldots, r-1\}$. This implies that $c \land r = 1$ with probability greater than $\Omega(\frac{1}{\log(\log(r))})$. When this happens, we necessarily have $c = b'$ and $r = Q'$.
• Check that Q' is a period of f. If yes: done. If no, go back to step 1.

General case (Sketch): r does not divide Q.

If we measure the first register, we obtain b such that $|\frac{b}{Q} - \frac{c}{r}| \leq \frac{1}{2Q}$ with high probability for some random c. If this is the case, $\frac{c}{r}$ is the only fraction with $c \land r = 1$ and $r \leq N$ such that $|\frac{b}{Q} - \frac{c}{r}| \leq \frac{1}{2Q}$ (proof omitted). This is because we chose Q such that $Q \geq N^2$.

If we indeed have $c \land r = 1$, which still happens with probability greater than $\Omega(\frac{1}{\log(\log(r))})$, we can use the continuous fraction method to find the unique fraction $\frac{c}{r}$ satisfying $|\frac{b}{Q} - \frac{c}{r}| \leq \frac{1}{2Q}$ from which we can get r.

DONE :)