Scalar System F for Linear-Algebraic A-Calculus

Towards a Quantum Physical Logic

Pablo Arrighi and Alejandro Diaz-Caro

{pablo.arrighi,alejandro.diaz-caro}@imag.fr
Université de Grenoble, LIG

April 9th, 2009. VI Quantum Physics and Logic. Oxford University

Motivation

Motivation

e Quantum Logic! was developed ad hoc before quantum
computing (no clear relation with quantum programs).

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Motivation

Motivation

e Quantum Logic! was developed ad hoc before quantum
computing (no clear relation with quantum programs).

@ There is a need for a logic that could aid us to isolating the
reasoning behind some quantum algorithms.

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Motivation

Motivation

e Quantum Logic! was developed ad hoc before quantum
computing (no clear relation with quantum programs).

@ There is a need for a logic that could aid us to isolating the
reasoning behind some quantum algorithms.

@ Usually the reasoning behind a program can be made to arise
via a formally-defined logic from the study of type systems
(Curry-Howard correspondence).

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Motivation

Motivation

e Quantum Logic! was developed ad hoc before quantum
computing (no clear relation with quantum programs).

@ There is a need for a logic that could aid us to isolating the
reasoning behind some quantum algorithms.

@ Usually the reasoning behind a program can be made to arise
via a formally-defined logic from the study of type systems
(Curry-Howard correspondence).

This work is a first step towards a formally-defined quantum
physical logic arising via the Curry-Howard correspondence

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation
to= x|Ax.t]|(tt) |

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation Linear algebra
to= x|Ax.t]|(tt) | t+t|at|0

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation Linear algebra
to= x|Ax.t]|(tt) | t+t|at|0

o Mx.tb — t[b/x] (%)

(*) b an abstraction or a
variable.

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus

The language
Why the restrictions

Linear-Algebraic \-Calculus?
Higher-order computation Linear algebra
to= x|Ax.t]|(tt) | t+t|at|0
o Ax.thb — t[b/x] (%) e Elementary rules such as

u-+0— uand

(*) b an abstraction or a
a.(u+v) — au+ a.wv.

variable.
@ Factorisation rules such as

(**) u closed normal. a.u+fu— (a+F)u. (¥*)

(***) u and u + v closed normal. .
@ Application rules such as

u(v+w)— (uv)+(uw).
(F*%)

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

But whoever says infinity says trouble says. ..

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

But whoever says infinity says trouble says. .. indefinite forms.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-—Yb—-b+Yb-—Yb—b

L
0

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-—Yb—-b+Yb-—Yb—b

L
0

High school teacher says we must restrict factorization rules to
finite vectors — j.e. closed-normal forms.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

The scalar type system

Probabilistic type system

Straightforward extension of System F (A\2/4)

System F rules plus simple rules to type algebraic terms

Mu:A M-v:A M-t:A
— axp +/ -
r-0:A Tru+v:A M- at:A

al

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward extension of System F (A2"?)
Th lar em
The scalar type system

Probabilistic type system

Straightforward extension of System F (A\2/4)

System F rules plus simple rules to type algebraic terms

Mu:A M-v:A M-t:A
T a2 +1 —
r-0:A Tru+v:A M- at:A

Theorem (Strong normalization)

I+ t: T = tis strongly normalising.

Proof. Extension of Barendregt’s proof (Barendregt, H.P., “Lambda
calculi with types”, Handbook of Logic in Computer Science 2, Clarendon
Press, Oxford, 1992).

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Higher-order computation Linear algebra

ti= x|Ax.t|(tt) | t+t|at|0
e Mx.tb — t[b/x] (%) e Elementary rules such as
u+0— uand

(*) b an abstraction or a variable.
a.(u+v) — au+a.v.

@ Factorisation rules such as
a.u+ fu— (a+ F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Higher-order computation
ti= x|Ax.t|(tt) |

e Ax.th — t[b/x] (%)

(*) b an abstraction or a variable.
Every typable term is strong
normalizing

Pablo Arrighi and Alejandro Diaz-Caro

Linear algebra
t+t|at|0

e Elementary rules such as
u+0—uand
a.(u+v) — au+a.v.

@ Factorisation rules such as
a.u+ fu— (a+ F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).

Scalar System F for Linear-Algebraic A-Calculus

The scalar type system

Linear-Algebraic A-Calculus with A2

Higher-order computation Linear algebra
ti= x|Ax.t|(tt) | t+t|at|0
e Mx.tb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong
normalizing @ Factorisation rules such as

Hence Yb is no typable! a.u+fu— (a+f)u
@ Application rules such as
u(v+w)— (uv)+(uw).

a.(u+v) — au+a.v.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

tension of System F (\2")
stem
The scalar type system

Linear-Algebraic A-Calculus with A2

Higher-order computation Linear algebra
ti= x|Ax.t|(tt) | t+t|at|0
e Mx.tb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong a.(u+v) — autav.

@ Factorisation rules such as

normalizing

Hence Yb is no typable! a.u+fu— (a+f)u

t — t — 0 always, so it is not @ Application rules such as
necesary to reduce t first. we can u(v+w)— (uv)+(uw).

remove the closed-normal
restrictions!

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward nsion of System F (\2?)
The scalar type system
The scalar type system S lisati

bilistic type system

The scalar type system (1)

Types grammar:
T=U|VXT|aT]|l,

U=X|U—T|IXU

where oo € S and (S, +, X) is a conmutative ring.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UkFx:U
rMFuwU—>T M-v:U Mx:UFt: T
~E — Y]
FE(uv): T MEMxt:U—T
[Fu:VX. T lu:T
————VE[X:=U ———VI[X] with X ¢ FV(I)
MN-u: T[U/X] Mu:vX. T

Where U € U.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UkFx:U

MN-uwoa(U-T) MN=v:p.U Mx:UkFt: T
—E — 1]
MN=(uv):(axp).T MNExt:U—T

MFuw:VX.T Mu: T
—VE[X := U] —— VI[X] with X ¢ FV(I')
MN-u: T[U/X] M-uw:vX. T

Where U € U.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UFx:U
NlNwa(U—T) MNev:p.U MHx:UFt: T
—E — I[U]
MN=(uv):(axp).T MNExt:U—T
Mu:vVX. T lFu:T
—VE[X := U] —— VI[X] with X ¢ FV(I')
MN-u: T[U/X] M-uw:vX. T
ax lFu: T MFEv: T Mu: T
I— +1 —al
r=0:7 FrFu+v: T lN-au: T
Where U € U.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UkFx:U

NlNFuwa(U—T) Mr-v:p.U Mx:UFt: T
—E 1Y)
MN=(uv):(axp).T NMNExxt:U—T

Mu:vX. T Mu: T
——VE[X:=U —— VI[X] with X ¢ FV(I)
M-w: TU/X] M-u:vX.T

MN-wu:a.T M=v:6.T lrMu:T
—axy +1 — slo
r=0:.L MNu+4v:(a+p).T N-au:aT o

Where U € U.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

ion of System F (\2?)

The scalar type system
bject reduction
listic type system

Strong normalisation

Let (-)% be a map from 7 \ {L} to T(A\2%).

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

ion of System F (\2?)

The scalar type system Strong normalisation
Subject reduction
Probabilistic type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:
M={(x:TH|(x:T)eTl}

15 = T for whatever type T € T(\2/).

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Straightforw nsion of System F (\2"

The scalar type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:
M={(x:TH|(x:T)eTl}

15 = T for whatever type T € T(\2/).

Lemma (Correspondence with \2/2)

TEe:T =T e t: TE

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

The scalar type system

Fvoh)blllshr type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:

M= {(x:T) | (x: T) e T}

15 = T for whatever type T € T(\2/).

Lemma (Correspondence with \2/2)

TEe:T =T e t: TE

Theorem (Strong normalisation)

I+ t: T = tis strongly normalising.

Proof. By previous lemma I'% -, t: TY, then t is strong
normalising.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

ion of System F (\2?)

The scalar type system Strong normalisa
Subject reduction
abilistic type system

Subject reduction

Theorem (Subject Reduction)

Lett »*t. ThenT Ht: T=TF{t:T

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

The scalar type system Strong norm
Subject reduc
Probabilistic type system

Subject reduction

Theorem (Subject Reduction)

Lett »*t. ThenT Ht: T=TF{t:T

Proof. There are 27 auxiliary lemmas to make the proof.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

The scalar type system
Subject reduction
Probabilistic type system

Probabilistic type system

Conditional functions — same type on each branch.

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

ion of System F (\2?)

The scalar type system
Subject reduction
Probablllstlc type system

Probabilistic type system

Conditional functions — same type on each branch.
By restricting the scalars to positive reals — probabilistic type
system.?

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

The scalar type system

Probabilistic type system

Probabilistic type system

Conditional functions — same type on each branch.
By restricting the scalars to positive reals — probabilistic type
system.?

For example, one can type functions such as
Ax {x [5.(true + false)] [F.true + 3 false]}: B — B

with the type system serving as a guarantee that the function
conserves probabilities summing to one.

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Logical content: No-cloning theorem

Logical content: No-cloning theorem

Let I a tree of typing rules and think of I1 as a function from lists
of sequents to proofs

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Logical content: No-cloning theorem

Logical content: No-cloning theorem

Let I a tree of typing rules and think of I1 as a function from lists
of sequents to proofs

Theorem (No-cloning)

BN such that YA, (I - A) has as conclusion AF A® A.

Remark: Think of I as a “universal machine”. Then this theorem
says “there is not a universal clonning machine”.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Sumary of conclusions and future work

Sumary of conclusions and future work

@ Scalar type system — probabilistic type system guaranteeing
probabilistic functions to be well defined.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Sumary of conclusions and future work

Sumary of conclusions and future work

@ Scalar type system — probabilistic type system guaranteeing
probabilistic functions to be well defined.

@ Strong normalization theorem — most restrictions can be
lifted in the reduction rules.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Sumary of conclusions and future work

Sumary of conclusions and future work

@ Scalar type system — probabilistic type system guaranteeing
probabilistic functions to be well defined.

@ Strong normalization theorem — most restrictions can be
lifted in the reduction rules.

@ No-cloning theorem — thinking in terms of machines rather
than linear-logic resources.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus

Sumary of conclusions and future work

Sumary of conclusions and future work

@ Scalar type system — probabilistic type system guaranteeing
probabilistic functions to be well defined.
@ Strong normalization theorem — most restrictions can be
lifted in the reduction rules.
@ No-cloning theorem — thinking in terms of machines rather
than linear-logic resources.
@ This is the first step towards a future vectorial type system.
o Scalar type system — magnitude and signs for type vectors.
o Future system — direction, (i.e. addition and orthogonality of

types).
Then it would be possible to use amplituds rather than

probabilities.

Scalar System F for Linear-Algebraic A-Calculus

Pablo Arrighi and Alejandro Diaz-Caro

	Motivation
	Linear-Algebraic Lambda-Calculus
	The scalar type system
	Logical content: No-cloning theorem
	Sumary of conclusions and future work

