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computing (no clear relation with quantum programs).

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
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Motivation

Motivation

e Quantum Logic! was developed ad hoc before quantum
computing (no clear relation with quantum programs).

@ There is a need for a logic that could aid us to isolating the
reasoning behind some quantum algorithms.

@ Usually the reasoning behind a program can be made to arise
via a formally-defined logic from the study of type systems
(Curry-Howard correspondence).

This work is a first step towards a formally-defined quantum
physical logic arising via the Curry-Howard correspondence

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.
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Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation
to=  x|Ax.t]|(tt) |

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation Linear algebra
to=  x|Ax.t]|(tt) | t+t|at|0

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus?

Higher-order computation Linear algebra
to=  x|Ax.t]|(tt) | t+t|at|0

o Mx.tb — t[b/x] (%)

(*) b an abstraction or a
variable.

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



Linear-Algebraic A-Calculus

The language
Why the restrictions

Linear-Algebraic \-Calculus?
Higher-order computation Linear algebra
to=  x|Ax.t]|(tt) | t+t|at|0
o Ax.thb — t[b/x] (%) e Elementary rules such as

u-+0— uand

(*) b an abstraction or a
a.(u+v) — au+ a.wv.

variable.
@ Factorisation rules such as

(**) u closed normal. a.u+fu— (a+F)u. (¥*)

(***) u and u + v closed normal. .
@ Application rules such as

u(v+w)— (uv)+(uw).
(F*%)

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA’08), 5117
(2008), pp. 17-31.
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Linear-Algebraic A-Calculus The language

Why the restrictions

Linear-Algebraic \-Calculus

Untyped A-calculus + linear algebra = o~
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb—b-+Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-—Yb—-b+Yb-—Yb—b

L
0

High school teacher says we must restrict factorization rules to
finite vectors — j.e. closed-normal forms.
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The scalar type system

Probabilistic type system

Straightforward extension of System F (A\2/4)

System F rules plus simple rules to type algebraic terms

Mu:A M-v:A M-t:A
— axp +/ -
r-0:A Tru+v:A M- at:A

al

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



Straightforward extension of System F (A2"?)
Th lar em
The scalar type system

Probabilistic type system

Straightforward extension of System F (A\2/4)

System F rules plus simple rules to type algebraic terms

Mu:A M-v:A M-t:A
T a2 +1 —
r-0:A Tru+v:A M- at:A

Theorem (Strong normalization)

I+ t: T = tis strongly normalising.

Proof. Extension of Barendregt’s proof (Barendregt, H.P., “Lambda
calculi with types”, Handbook of Logic in Computer Science 2, Clarendon
Press, Oxford, 1992).
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The scalar type system

Linear-Algebraic A-Calculus with A2

Higher-order computation Linear algebra
ti=  x|Ax.t|(tt) | t+t|at|0
e Mx.tb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong
normalizing @ Factorisation rules such as

Hence Yb is no typable! a.u+fu— (a+f)u
@ Application rules such as
u(v+w)— (uv)+(uw).

a.(u+v) — au+a.v.
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tension of System F (\2")
stem
The scalar type system

Linear-Algebraic A-Calculus with A2

Higher-order computation Linear algebra
ti=  x|Ax.t|(tt) | t+t|at|0
e Mx.tb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong a.(u+v) — autav.

@ Factorisation rules such as

normalizing

Hence Yb is no typable! a.u+fu— (a+f)u

t — t — 0 always, so it is not @ Application rules such as
necesary to reduce t first. we can u(v+w)— (uv)+(uw).

remove the closed-normal
restrictions!

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



Straightforward nsion of System F (\2?)
The scalar type system
The scalar type system S lisati

bilistic type system

The scalar type system (1)

Types grammar:
T=U|VXT|aT]|l,

U=X|U—T|IXU

where oo € S and (S, +, X) is a conmutative ring.
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Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UkFx:U
rMFuwU—>T M-v:U Mx:UFt: T
~E — Y]
FE(uv): T MEMxt:U—T
[Fu:VX. T lu:T
————VE[X:=U ———VI[X] with X ¢ FV(I)
MN-u: T[U/X] Mu:vX. T

Where U € U.
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Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UFx:U
NlNwa(U—T) MNev:p.U MHx:UFt: T
—E — I[U]
MN=(uv):(axp).T MNExt:U—T
Mu:vVX. T lFu:T
—VE[X := U] —— VI[X] with X ¢ FV(I')
MN-u: T[U/X] M-uw:vX. T
ax lFu: T MFEv: T Mu: T
I— +1 —al
r=0:7 FrFu+v: T lN-au: T
Where U € U.
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Straightforward on of System F (A\2"
The scalar type
The scalar type system

Probabilistic type system

The scalar type system (Il)

— ax[U]
Mx:UkFx:U

NlNFuwa(U—T) Mr-v:p.U Mx:UFt: T
—E 1Y)
MN=(uv):(axp).T NMNExxt:U—T

Mu:vX. T Mu: T
——VE[X:=U —— VI[X] with X ¢ FV(I)
M-w: TU/X] M-u:vX.T

MN-wu:a.T M=v:6.T lrMu:T
—axy +1 —  slo
r=0:.L MNu+4v:(a+p).T N-au:aT o

Where U € U.
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Probabilistic type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:
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15 = T for whatever type T € T(\2/).
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Straightforw nsion of System F (\2"

The scalar type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:
M={(x:TH|(x:T)eTl}

15 = T for whatever type T € T(\2/).

Lemma (Correspondence with \2/2)

TEe:T =T e t: TE
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The scalar type system

Fvoh)blllshr type system

Strong normalisation

Let (-)* be a map from 7\ {L} to T(\2").
Also, let use the following notation:

M= {(x:T) | (x: T) e T}

15 = T for whatever type T € T(\2/).

Lemma (Correspondence with \2/2)

TEe:T =T e t: TE

Theorem (Strong normalisation)

I+ t: T = tis strongly normalising.

Proof. By previous lemma I'% -, t: TY, then t is strong
normalising.
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Theorem (Subject Reduction)
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The scalar type system Strong norm
Subject reduc
Probabilistic type system

Subject reduction

Theorem (Subject Reduction)

Lett »*t. ThenT Ht: T=TF{t:T

Proof. There are 27 auxiliary lemmas to make the proof.
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The scalar type system
Subject reduction
Probabilistic type system

Probabilistic type system

Conditional functions — same type on each branch.

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



ion of System F (\2?)

The scalar type system
Subject reduction
Probablllstlc type system

Probabilistic type system

Conditional functions — same type on each branch.
By restricting the scalars to positive reals — probabilistic type
system.?

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.

Pablo Arrighi and Alejandro Diaz-Caro Scalar System F for Linear-Algebraic A-Calculus



The scalar type system

Probabilistic type system

Probabilistic type system

Conditional functions — same type on each branch.
By restricting the scalars to positive reals — probabilistic type
system.?

For example, one can type functions such as
Ax {x [5.(true + false)] [F.true + 3 false]}: B — B

with the type system serving as a guarantee that the function
conserves probabilities summing to one.

2Di Pierro, A., C. Hanking and H. Wiklicky, Probabilistic A-calculus and
quantitative program analysis, Journal of Logic and Computation 15 (2005),
pp. 159-179.
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Logical content: No-cloning theorem
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Let I a tree of typing rules and think of I1 as a function from lists
of sequents to proofs
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Logical content: No-cloning theorem

Logical content: No-cloning theorem

Let I a tree of typing rules and think of I1 as a function from lists
of sequents to proofs

Theorem (No-cloning)

BN such that YA, (I - A) has as conclusion AF A® A.

Remark: Think of I as a “universal machine”. Then this theorem
says “there is not a universal clonning machine”.
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Sumary of conclusions and future work

Sumary of conclusions and future work

@ Scalar type system — probabilistic type system guaranteeing
probabilistic functions to be well defined.
@ Strong normalization theorem — most restrictions can be
lifted in the reduction rules.
@ No-cloning theorem — thinking in terms of machines rather
than linear-logic resources.
@ This is the first step towards a future vectorial type system.
o Scalar type system — magnitude and signs for type vectors.
o Future system — direction, (i.e. addition and orthogonality of

types).
Then it would be possible to use amplituds rather than

probabilities.
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