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Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.
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Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

@ Models of Linear Logics = Quantum Theory? (Coherent
spaces, Micromechanics loses duplicability.)

e Curry-Howard : (programs,types)=—-(proofs,logics).
Quantum Computation : (quantum programs, quantum
types).

CH+4+QC : (quantum th. proofs, quantum th. logics)?
Quantum logics : isolating the reasoning behind quantum
algorithms?

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.
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Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

@ Models of Linear Logics = Quantum Theory? (Coherent
spaces, Micromechanics loses duplicability.)

e Curry-Howard : (programs,types)=—-(proofs,logics).
Quantum Computation : (quantum programs, quantum
types).

CH+4+QC : (quantum th. proofs, quantum th. logics)?
Quantum logics : isolating the reasoning behind quantum
algorithms?

What are quantum types?

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.
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Quantum theory

o States are (normalized) vectors v.
Vector space of o.n.b. (b;). Thenv=>".«;b;.
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Quantum theory

o States are (normalized) vectors v.
Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v/ = Uv.
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Quantum theory

o States are (normalized) vectors v.

Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v = Uv.

@ Systems are put next to one another with ®.
Bilinear just like application :
U+tVRW=URXW+VRW,
URKV+w=uxQv+uxw, ...
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o States are (normalized) vectors v.

Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v/ = Uv.

@ Systems are put next to one another with ®.
Bilinear just like application :
U+tVRW=URXW+VRW,
URKV+w=uxQv+uxw, ...

No-cloning theorem!
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No-cloning theorem

Statement: AU / Vv : Uv=v®uv.
Proof:
Vector space of o.n.b. (b;), so v=>" a;b;. We can have

Ub; =b; ®b; (=copying, OK)
But then

Uv = UZCV,'b,‘ = Za,‘Ub,‘
= Y aibi®b; # )  ajajb; @ b;
i ij
= (X aibi) ® (3_ajbj)
i J
= Vv (=cloning, Not OK)
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No-cloning theorem

Statement: AU / Vv : Uv=v®uv.
Proof:
Vector space of o.n.b. (b;), so v=>" a;b;. We can have

Ub; =b; ®b; (=copying, OK)
But then

Uv = UZaibi = Za,‘Ub,‘
= Y aibi®b; # )  ajajb; @ b;
i ij
= (X aibi) ® (3_ajbj)
i J
= Vv (=cloning, Not OK)

Conflicts with -reduction?
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Linear-Algebraic A\-Calculus?
The language

Higher-order computation
to=  x|Ax.t|(tt) |

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.
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Linear-Algebraic A\-Calculus?
The language

Higher-order computation Linear algebra
to=  x|Ax.t|(tt) | t+tlat|0
o Mx.tb — t[b/x] (%)

(*) b an abstraction or a
variable.

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.
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Linear-Algebraic A\-Calculus?
The language

Higher-order computation Linear algebra
to=  x|Ax.t|(tt) | t+t|at|0
e MAx.thb — t[b/x] (%) @ Elementary rules such as

u+0— uand

(*) b an abstraction or a
a.(u+v) = a.u+ av.

variable.
e Factorisation rules such as

(**) u cIosed norma|. (YU+3U . (O(,#’;B).U. (**)

(***) u and u + v closed normal. o
@ Application rules such as

u(v+w)— (uv)+(uw).
(k%)
2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,

encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.
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Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?
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Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?

Ax.(x @ x) Z ab; —* Z aib; @ b;

!
(Z ajb;) ® (Z ajb;)
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Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?

Ax.(x ® x) Z ajb; —* Z aib; @ b;

!
(Z ajb;) ® (Z aib;)

No-cloning says bottom reduction forbidden. We must delay beta
reduction till after linearity. So restrict beta reduction to base
vectors — i.e. abstractions or variables.
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Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
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Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b+ (x x)) Ax.(b+ (x x))

Yb — b+ Yb
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Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b+ (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. ..
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Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.
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Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-Yb—b+Yb—-Yb—b

L
0
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Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-Yb—b+Yb—-Yb—b
L
0

High school teacher says we must restrict factorization rules to
finite vectors — i.e. closed-normal forms.
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System F rules plus simple rules to type algebraic terms

lFu:A N-v:A Mr-t:A
X0

—a o
r-0:A FTFu+v:A FFat:A
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System F rules plus simple rules to type algebraic terms

lFu:A N-v:A Mr-t:A
X0

—a o
r-0:A FTFu+v:A FFat:A

Theorem (Strong normalization)

I t: T = tis strongly normalising.
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System F

Straightforward extension of System F (\2')

System F rules plus simple rules to type algebraic terms

lFu:A Mlv: A Mt A
P +1
r-0:A lFu+4v:A

—al
Mot A

Theorem (Strong normalization)

I t: T = tis strongly normalising.

Proof. Sketch: We extend the notion of saturated sets.
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System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms
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System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms
@ A subset X € SN is saturated if
Q Vn>0, (((xt1)...) t,) € X where t; € SN;
Quvb/x] TeX=(xv)bTeX
QtueX=t+tueclX;
Q Vo, te X = atelX;
QViel (uiwy)... wy)eX = ((Zu,) w1>... w, € X;
iel
QViel (uw;))eX=u <Zw,~)eX;
iel
Qoa(tit).. . t)eXe (i tr)...aty)...t,eX (1<k<n),
Q0cX _
Q@ VteSN (0 t)eX;
@ Vt,u €SN, (t0) U € X.

X stable by “construction” and “anti-reduction”
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System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms
@ A subset X € SN is saturated if
Q Vn>0, (((xt1)...) t,) € X where t; € SN;
Quvb/x] TeX=(xv)bTeX
QtueX=t+tueclX;
Q Vo, te X = atelX;
QViel (uiwy)... wy)eX = ((Zu,) w1>... w, € X;
iel
QViel (uw;))eX=u <Zw,~)eX;
iel
Qoa(tit).. . t)eXe (i tr)...aty)...t,eX (1<k<n),
Q0cX .
Q@ VteSN (0 t)eX;
@ Vt,u €SN, (t0) u € X.

X stable by “construction” and “anti-reduction”
@ SAT is the set of all saturated sets
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System F

Strong normalization of A2 (I1)

Refining the sketch:

@ The idea is that types “correspond” to saturated sets.
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System F

Strong normalization of A2 (I1)

Refining the sketch:
@ The idea is that types “correspond” to saturated sets.

@ This correspondance is achived by a maping from types to
SAT.
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System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN € SAT,
Q@ A BeSAT = A— B e SAT,
@ For all collection A; of members of SAT, (; A; € SAT,

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 11/31
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System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN e SAT,
@ A B e SAT = A — B € SAT,
© For all collection A; of members of SAT, (); Ai € SAT,

Definition (Mapping)
o [X]e =¢&(X) (where £(+) : TVar — SAT)
° [A— B]: = [Ale — [Ble
o [VX.Tle = Nyesarl Tle(x:=v)
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System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN e SAT,
@ A B e SAT = A — B € SAT,
© For all collection A; of members of SAT, (); Ai € SAT,

Definition (Mapping)
o [X]e =¢&(X) (where £(+) : TVar — SAT)
° [A— B]: = [Ale — [Ble
o [VX.Tle = Nyesarl Tle(x:=v)

Lemma
Given a valuation §, [T]¢ € SAT
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System F

Strong normalization of A2 (1V)

Definition (F)
ForT =x1:A1,...,xp: Ap, T Et: T means that V¢,

X1 € |[A1]I£,. .. Xp € |[An]]§ =tc |[T]]£
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System F

Strong normalization of A2 (1V)

Definition (F)
ForT =x1:A1,...,xp: Ap, T Et: T means that V¢,

X1 € |[A1]]5, ...Xp € |[An]]£ =tc |[T]]§

Refining the sketch: Prove that THt: T =TFt: T

We prove this by induction on the derivation of ' - t: T (In fact
the definition of F is slightly different to strengthen the induction

hypothesis)
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System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetM-t: T
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System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetTH¢t: T
=[TEt: T
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System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetMTHt: T
=TFt: T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31



Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 000000 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetM=¢t: T
—TEt:T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢
Note that
o x; € [Ai]¢ because [Aj]¢ is saturated,
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System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetMTHt: T
=TFt: T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢
Note that
o x; € [Ai]¢ because [Aj]¢ is saturated,
@ then t is strong normalising because [T]¢ C SN
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System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to=  x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.
a.(u+v) — au+auv.

@ Factorisation rules such as
a.u+ fu— (a+ F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).
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System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to=  x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.
Every typable term is strong
normalizing

a.(u+v) — au+auv.

@ Factorisation rules such as
a.u+ fu— (a+F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 14/31



Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 [Selelelole] ) 000000000000000

System F
Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to=  x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong
normalizing @ Factorisation rules such as

Hence Yb is no typable! a.u+ fu— (a+f)u
@ Application rules such as
u(v+w)— (uv)+(uw).

a.(u+v) — au+auv.
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System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to=  x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong a.(u+v) — autav.

@ Factorisation rules such as

normalizing

Hence Yb is no typable! a.u+ fu— (a+fF)u

t —t — 0 always, so it is not @ Application rules such as
necesary to reduce t first. we can u(v+w)— (uv)+(uw).

remove the closed-normal
restrictions!
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The scalar type system

Grammar

Types grammar:
T=U|VXT|aT]|O,

U=X|U—T|YXU

where oo € S and (S, +, x) is a conmutative ring.
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The scalar type system

Type inference rules

—— ax[U]
Mx:UkFx:U
rMuwU—T M-v:u Mx:UFt: T
— E —>I[U]
FE(uv): T TExxt:U—T
[Fu:VX. T l'tu: T
—————VE[X:=U ———VI[X] with X ¢ FV(I)
M-u: T[U/X] M-u:vX.T
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The scalar type system

Type inference rules

— ax[V]
Mx:UkFx:U

rMuwU—T M-v:u Mx:UFt: T
—E — I{U]
ME(uv): T MEAxt:U—T

[Fu:VX. T l'tu: T
—————VE[X:=U ———VI[X] with X ¢ FV(I)
MNu: T[U/X] Mu:VX. T

MlFu: T FEv: T FrMwu:T
———_—aXp +1 —al
reo:T MNM-w+v: T lr-ou: T
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The scalar type system

Type inference rules

— ax[U]
Mx:UFx:U
N-uwa(U—T) Mr-v:p5.U Mx:Ukt: T
— E — I[U]
MN=(uv):(axp).T MNExt:U—T
MFu:VX.T Mr-w: T
———VE[X:= U] ——VI[X] with X ¢ FV(I)
M-u: T[U/X] M-uw:vX.T
lFu:a.T M=v:6.T FlrMu:T
— axg +1 — sl
r=0:0 MlFu+vi(a+p).T MFau:a. T o]

Where U € U and types in contexts are are in U.
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The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
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The scalar type system

Strong normalisation

o (-)% map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X
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The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define Gu = T for some T without scalars.
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The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define Gu = T for some T without scalars.

Lemma (Correspondence with \2/)

Tt T =T Fnt: T
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The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define ﬁu = T for some T without scalars.
Lemma (Correspondence with \2/)

Tt T =T Fnt: T

Theorem (Strong normalisation)

I t: T = tis strongly normalising.

Proof. By previous lemma I'% -, t: T7, then t is strong
normalising.
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The scalar type system

Subject reduction

Theorem (Subject Reduction)

Lett =*t. ThenTHt: T=TF{t:T
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The scalar type system

Subject reduction

Theorem (Subject Reduction)

Lett =*t. ThenTHt: T=TF{t:T

Proof. (sketch)

@ We proof rule by rule that if t — t’ using that rule and
Fl-t: 7, thenTHt:T.

@ In general, the method is to take the term t, decompose it
into its small parts and recompose to t'.
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The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and
definitions:
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The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and

definitions:
Order:
o Write A > B if either
e B=VX.Aor

e A=VX.C and B = C[U/X] for some U € U.

@ > is the reflexive and transitive closure of >.
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The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and

definitions:
Order:
o Write A > B if either
e B=VX.Aor

e A=VX.C and B = C[U/X] for some U € U.
@ > is the reflexive and transitive closure of >.
Instuition of this definition:
Types in the numerator of

FrEt:-A MN-t:vx.c
—VIwith X¢ FVY(I) or —————VE
MN-t:vX.A M=t C[U/X]

are greater than the types in the denominator.
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The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
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The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandlTFt:A=TFt:B
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The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandlTFt:A=TFt:B
Q@ A>B=a0adA>aB

Conclusions and future work
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The scalar type system
Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandTHFt:A=TFHt:B
Q@ A>B=aA>aB
© Generation lemma (app): Let ' (u v):7.T, then

Mrw:B.U—T
Mv:a U

T >T
y=axf
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The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
QO A>BandTHt:A=THt:B
Q@ A>B=aA>aB
© Generation lemma (app): Let '+ (u v):~.T, then

Mrcw:B.U—T
MNEv:a U

T >T
y=axf

© Generation lemma (sum): Let TFu+4v:~.T, then

MNuw:aT
MEv:6.T

y=a+p
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The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (uw) + (v w).
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The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (uw) + (v w).
o LletlM-(u+v)w:T.
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The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (u w) + (v w).
o LletlM-(u+v)w:T.

@ Using the previous lemmas we can prove that

Nr-uw:(0xpB)U—T
FrEv:(1-90)xpB)U—T
N-w:a.U

where o x 3 =1, T"> T and ¢ is some scalar.
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The scalar type system
Subject reduction proof: example (1V)

Then
Mu:(6xp)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E
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The scalar type system
Subject reduction proof: example (1V)

Then
TFu:(0xB)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E

Also,
Fv:((L=98) xp).(U—T) Mr-w:a.U
FTE(vw):(1-6)xBxa)T >(1-96).T

— E
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The scalar type system
Subject reduction proof: example (1V)

Then
TFu:(0xB)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E

Also,
Fv:((L=98) xp).(U—T) Mr-w:a.U
FTE(vw):(1-6)xBxa)T >(1-96).T

— E

b ww) AT TR (vw)(l-8).T

NM-(uw)+(vw): T

+/ and =
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The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.
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The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.

@ By restricting the scalars to positive reals — probabilistic type
system.
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The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.
@ By restricting the scalars to positive reals — probabilistic type
system.
@ For example, one can type functions such as
Ax {x [5.(true + false)] [%.true + 3 false]}: B — B
with the type system serving as a guarantee that the function
conserves probabilities summing to one.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 24/31



Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:
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The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
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The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,
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The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,

@ We change the rule VE to

M-t vxX. T

— _VEwithCeC
Mt: T[C/X]
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The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,

@ We change the rule VE to

M-t vxX. T

— _VEwithCeC
Mt: T[C/X]

@ The final conclusion must be classic.
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The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)
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The scalar type system
Probabilistic type system: Proof

Definition (Weight function to check probability distributions)

Let w: A — R™ be a function defined inductively by:

w(O) =0 w(t1 + t2) = w(tl) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
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The scalar type system
Probabilistic type system: Proof

Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:

w(O) =0 w(t1 + t2) = w(tl) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax §.x) y
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The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)

w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax §.x) y

w(2.(Ax 3.x) y) =2
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The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)

w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax 3.x) y — y

w(2.(Ax %x) y)=2 wly)=1
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The scalar type system

Logical content: No-cloning theorem (1)

Definition (Proof method of depth n)

Mo(S)=S
M,—1(S Me(S) = . (S
1,(S) = 1( )R o k(S) R oo Tk h( )R
Ps Ps Ps
where

@ S is a sequent,

@ 7, Is a constant derivation tree of size n,
e max{k,h} =n—1,

@ R is a typing rule, and

@ Ps is a sequent such that the resulting derivation tree is
well-formed.
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The scalar type system

Logical content: No-cloning theorem (1)

Definition (Proof method of depth n)

Mo(S)=S
M,—1(S Me(S) = . (S
1,(S) = 1( )R o k(S) R oo Tk h( )R
Ps Ps Ps
where

@ S is a sequent,

7, Is a constant derivation tree of size n,
max{k,h} =n—1,

R is a typing rule, and

Ps is a sequent such that the resulting derivation tree is
well-formed.

C(MN,(S)) denote the conclusion (root) of the tree M,(S).
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The scalar type system

Logical content: No-cloning theorem (1)

Examples:

S
S
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The scalar type system

Logical content: No-cloning theorem (1)

Examples:

S r=t: 7
”1(5) =P—V/ |_|1(|_ Ft: T) ZWVI
S t: .
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The scalar type system

Logical content: No-cloning theorem (1)

Examples:
S M-t 7
M(S)=—VvI MFt:T)=—— v
Ps M-t:vx.7
Th—2

N(Mu:aA)=TFuaA M-v:2.A
NlFu+v:(2+a)A

(Partial function or pattern matching)
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The scalar type system

Logical content: No-cloning theorem (1)

Examples:
S Fr=t:. T
M(S)=—vi mrrEe:T)=—— v/
Ps MN=t:vX. T
Tn—2

N,(FFu:a.A)=TFu:aA M-v:2.A
NFu4+v:(2+a)A

(Partial function or pattern matching) Basically C(M,(S)) = Ps
means that Ps can be derived from S by using S once, with the
fixed proof method 1.
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The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(M,(TF a.U)) = A F (5 x @ + 7).V with
§ # 0 and 7y constants in S, s € N1 and U, V' constants in U.

Proof. Induction over n.
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The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.

Corollary (No-cloning Theorem)
M, such that YT, C(Ma(T - T)) = AF T® T.

where A ® B is the classical encoding for the type of tuples.
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The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.
Corollary (No-cloning Theorem)

AN, such that VT, C(N,(TF T))=A+ T T.

where A ® B is the classical encoding for the type of tuples.
Proof.

@ It is easy to show that VT, T = .U with U e U
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The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.
Corollary (No-cloning Theorem)

AN, such that VT, C(N,(TF T))=A+ T T.

where A ® B is the classical encoding for the type of tuples.
Proof.
@ It is easy to show that VT, T = .U with U e U

o TR T=aU®alU=a?. (U U)=(1xa?+0).(UxU).
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The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.

Corollary (No-cloning Theorem)
N, such that VT, C(N,(TFT)=AFT®T.
where A ® B is the classical encoding for the type of tuples.
Proof.
@ It is easy to show that VT, T = .U with U e U
o TR T=aU®alU=a?. (U U)=(1xa?+0).(UxU).
@ By the previous theorem, the corollary holds.
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Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 30/31



Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

@ Scalar type system : types keep track of the ‘amount of a
type’ by holding sum of amplitudes of terms of that types.
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The scalar type system

Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

@ Scalar type system : types keep track of the ‘amount of a
type’ by holding sum of amplitudes of terms of that types.

@ = probabilistic type system, yielding a higher-order
probabilistic A-calculus.
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Polemics, future work
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Polemics, future work

e Captured no-cloning theorem is a way that is faithful to
quantum theory and linear algebra, unlike LL:
e For all A one can find a copying proof method, but there is no
proof method for cloning all A.
o Algebraic linearity is about taking «.U to something in
ay—+0...not justfory=1=0+ 1.
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Polemics, future work

e Captured no-cloning theorem is a way that is faithful to
quantum theory and linear algebra, unlike LL:
e For all A one can find a copying proof method, but there is no
proof method for cloning all A.
o Algebraic linearity is about taking «.U to something in
ay—+0...not justfory=1=0+ 1.

e C.-H.4+Q.C.=(quantum th. proofs, quantum th. logics)?
Need a Vectorial type system:
e Scalar type system — magnitude and signs for type vectors.
e Future system — direction, (i.e. addition and orthogonality of
types). Then it would be possible to check norm on
amplitudes rather than probabilities.
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