A System F accounting for scalars
— arXiv:0903.3741 —

Pablo Arrighi and Alejandro Diaz-Caro

Université de Grenoble
Laboratoire d'Informatique de Grenoble

November 19th, 2009. PPS (Paris)

|

LI G

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 2/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

@ Models of Linear Logics = Quantum Theory? (Coherent
spaces, Micromechanics loses duplicability.)

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 2/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

@ Models of Linear Logics = Quantum Theory? (Coherent
spaces, Micromechanics loses duplicability.)

e Curry-Howard : (programs,types)=—-(proofs,logics).
Quantum Computation : (quantum programs, quantum
types).

CH+4+QC : (quantum th. proofs, quantum th. logics)?
Quantum logics : isolating the reasoning behind quantum
algorithms?

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 2/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
ooo 0000000 000000000000000

Global context

e Oddity of Quantum theory = Quantum Logic?! (developed
ad hoc before quantum computing, no clear relation with
quantum programs).

@ Models of Linear Logics = Quantum Theory? (Coherent
spaces, Micromechanics loses duplicability.)

e Curry-Howard : (programs,types)=—-(proofs,logics).
Quantum Computation : (quantum programs, quantum
types).

CH+4+QC : (quantum th. proofs, quantum th. logics)?
Quantum logics : isolating the reasoning behind quantum
algorithms?

What are quantum types?

!Birkhoff, G. and J. von Neumann, The logic of quantum mechanics,
Annals of Mathematics 37 (1936), pp. 823-843.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 2/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

Quantum theory

o States are (normalized) vectors v.
Vector space of o.n.b. (b;). Thenv=>".«;b;.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 3/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

Quantum theory

o States are (normalized) vectors v.
Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v/ = Uv.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 3/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system
000 0000000 000000000000000

Quantum theory

o States are (normalized) vectors v.

Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v = Uv.

@ Systems are put next to one another with ®.
Bilinear just like application :
U+tVRW=URXW+VRW,
URKV+w=uxQv+uxw, ...

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741

Conclusions and future work

3/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system
000 0000000 000000000000000

Quantum theory

o States are (normalized) vectors v.

Vector space of o.n.b. (b;). Thenv=>".«;b;.

e Evolutions are (unitary) linear operators U.
v/ = Uv.

@ Systems are put next to one another with ®.
Bilinear just like application :
U+tVRW=URXW+VRW,
URKV+w=uxQv+uxw, ...

No-cloning theorem!

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741

Conclusions and future work

3/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

No-cloning theorem

Statement: AU / Vv : Uv=v®uv.
Proof:
Vector space of o.n.b. (b;), so v=>" a;b;. We can have

Ub; =b; ®b; (=copying, OK)
But then

Uv = UZCV,'b,‘ = Za,‘Ub,‘
= Y aibi®b; #) ajajb; @ b;
i ij
= (X aibi) ® (3_ajbj)
i J
= Vv (=cloning, Not OK)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 4/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

No-cloning theorem

Statement: AU / Vv : Uv=v®uv.
Proof:
Vector space of o.n.b. (b;), so v=>" a;b;. We can have

Ub; =b; ®b; (=copying, OK)
But then

Uv = UZaibi = Za,‘Ub,‘
= Y aibi®b; #) ajajb; @ b;
i ij
= (X aibi) ® (3_ajbj)
i J
= Vv (=cloning, Not OK)

Conflicts with -reduction?

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 4/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
®00 0000000 000000000000000

Linear-Algebraic A\-Calculus?
The language

Higher-order computation
to= x|Ax.t|(tt) |

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 5/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
®00 0000000 000000000000000

Linear-Algebraic A\-Calculus?
The language

Higher-order computation Linear algebra
to= x|Ax.t|(tt) | t+tlat|0

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 5/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
®00 0000000 000000000000000

Linear-Algebraic A\-Calculus?
The language

Higher-order computation Linear algebra
to= x|Ax.t|(tt) | t+tlat|0
o Mx.tb — t[b/x] (%)

(*) b an abstraction or a
variable.

2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,
encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 5/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
®00 0000000 000000000000000

Linear-Algebraic A\-Calculus?
The language

Higher-order computation Linear algebra
to= x|Ax.t|(tt) | t+t|at|0
e MAx.thb — t[b/x] (%) @ Elementary rules such as

u+0— uand

(*) b an abstraction or a
a.(u+v) = a.u+ av.

variable.
e Factorisation rules such as

(**) u cIosed norma|. (YU+3U . (O(,#’;B).U. (**)

(***) u and u + v closed normal. o
@ Application rules such as

u(v+w)— (uv)+(uw).
(k%)
2Arrighi, P. and G. Dowek. Linear-algebraic A-calculus: higher-order,

encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117
(2008), pp. 17-31.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 5/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
ceo 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 6/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
(ST 1o} 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?

Ax.(x @ x) Z ab; —* Z aib; @ b;

!
(Z ajb;) ® (Z ajb;)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 6/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
(ST 1o} 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Copying vs Cloning

Untyped A-calculus + linear algebra = Cloning?

Ax.(x ® x) Z ajb; —* Z aib; @ b;

!
(Z ajb;) ® (Z aib;)

No-cloning says bottom reduction forbidden. We must delay beta
reduction till after linearity. So restrict beta reduction to base
vectors — i.e. abstractions or variables.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 6/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
ooe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
coe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b+ (x x)) Ax.(b+ (x x))

Yb — b+ Yb

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
coe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b+ (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. ..

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
coe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
coe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-Yb—b+Yb—-Yb—b

L
0

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
coe 0000000 000000000000000

Linear-Algebraic A-Calculus
Why the restrictions : Infinities

Untyped A-calculus + linear algebra = oo
Yb = Ax.(b + (x x)) Ax.(b+ (x x))

Yb — b+ Yb

But whoever says infinity says trouble says. .. indefinite forms.

Yb—-Yb—b+Yb—-Yb—b
L
0

High school teacher says we must restrict factorization rules to
finite vectors — i.e. closed-normal forms.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 7/31

Motivation Linear-Algebraic A-Calculus System F
ooo

System F

Straightforward extension of System F (\2')

The scalar type system Conclusions and future work
®000000 000000000000000

System F rules plus simple rules to type algebraic terms

lFu:A N-v:A Mr-t:A
X0

—a o
r-0:A FTFu+v:A FFat:A

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 8/31

Motivation Linear-Algebraic A-Calculus System F
ooo

System F

Straightforward extension of System F (\2')

The scalar type system Conclusions and future work
®000000 000000000000000

System F rules plus simple rules to type algebraic terms

lFu:A N-v:A Mr-t:A
X0

—a o
r-0:A FTFu+v:A FFat:A

Theorem (Strong normalization)

I t: T = tis strongly normalising.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 8/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ®000000 000000000000000

System F

Straightforward extension of System F (\2')

System F rules plus simple rules to type algebraic terms

lFu:A Mlv: A Mt A
P +1
r-0:A lFu+4v:A

—al
Mot A

Theorem (Strong normalization)

I t: T = tis strongly normalising.

Proof. Sketch: We extend the notion of saturated sets.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 8/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0®00000 000000000000000

System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 9/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ©®00000 000000000000000

System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms
@ A subset X € SN is saturated if
Q Vn>0, (((xt1)...) t,) € X where t; € SN;
Quvb/x] TeX=(xv)bTeX
QtueX=t+tueclX;
Q Vo, te X = atelX;
QViel (uiwy)... wy)eX = ((Zu,) w1>... w, € X;
iel
QViel (uw;))eX=u <Zw,~)eX;
iel
Qoa(tit).. . t)eXe (i tr)...aty)...t,eX (1<k<n),
Q0cX _
Q@ VteSN (0 t)eX;
@ Vt,u €SN, (t0) U € X.

X stable by “construction” and “anti-reduction”

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 9/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ©®00000 000000000000000

System F

Strong normalization of \2”

@ SN: Set of strongly normalising terms
@ A subset X € SN is saturated if
Q Vn>0, (((xt1)...) t,) € X where t; € SN;
Quvb/x] TeX=(xv)bTeX
QtueX=t+tueclX;
Q Vo, te X = atelX;
QViel (uiwy)... wy)eX = ((Zu,) w1>... w, € X;
iel
QViel (uw;))eX=u <Zw,~)eX;
iel
Qoa(tit).. . t)eXe (i tr)...aty)...t,eX (1<k<n),
Q0cX .
Q@ VteSN (0 t)eX;
@ Vt,u €SN, (t0) u € X.

X stable by “construction” and “anti-reduction”
@ SAT is the set of all saturated sets

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 9/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ©0®0000 000000000000000

System F

Strong normalization of A2 (I1)

Refining the sketch:

@ The idea is that types “correspond” to saturated sets.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 10/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ©0®0000 000000000000000

System F

Strong normalization of A2 (I1)

Refining the sketch:
@ The idea is that types “correspond” to saturated sets.

@ This correspondance is achived by a maping from types to
SAT.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 10/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0008000 000000000000000

System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN € SAT,
Q@ A BeSAT = A— B e SAT,
@ For all collection A; of members of SAT, (; A; € SAT,

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 11/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0008000 000000000000000

System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN e SAT,
@ A B e SAT = A — B € SAT,
© For all collection A; of members of SAT, (); Ai € SAT,

Definition (Mapping)
o [X]e =¢&(X) (where £(+) : TVar — SAT)
° [A— B]: = [Ale — [Ble
o [VX.Tle = Nyesarl Tle(x:=v)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 11/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0008000 000000000000000

System F

Strong normalization of A2 (I1I)

Lemma
Q@ SN e SAT,
@ A B e SAT = A — B € SAT,
© For all collection A; of members of SAT, (); Ai € SAT,

Definition (Mapping)
o [X]e =¢&(X) (where £(+) : TVar — SAT)
° [A— B]: = [Ale — [Ble
o [VX.Tle = Nyesarl Tle(x:=v)

Lemma
Given a valuation §, [T]¢ € SAT

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 11/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 ©0000e®00 000000000000000

System F

Strong normalization of A2 (1V)

Definition (F)
ForT =x1:A1,...,xp: Ap, T Et: T means that V¢,

X1 € |[A1]I£,. .. Xp € |[An]]§ =tc |[T]]£

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 12/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 000000 000000000000000

System F

Strong normalization of A2 (1V)

Definition (F)
ForT =x1:A1,...,xp: Ap, T Et: T means that V¢,

X1 € |[A1]]5, ...Xp € |[An]]£ =tc |[T]]§

Refining the sketch: Prove that THt: T =TFt: T

We prove this by induction on the derivation of ' - t: T (In fact
the definition of F is slightly different to strengthen the induction

hypothesis)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 12/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000080 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetM-t: T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000080 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetTH¢t: T
=[TEt: T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 000000 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetMTHt: T
=TFt: T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 000000 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetM=¢t: T
—TEt:T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢
Note that
o x; € [Ai]¢ because [Aj]¢ is saturated,

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 000000 000000000000000

System F

Strong normalization of A2 (V)

Then, the proof of the strong normalisation theorem is:

LetMTHt: T
=TFt: T
= If V(xi: Aj) €T, x; € [Aile then t € [T]¢
Note that
o x; € [Ai]¢ because [Aj]¢ is saturated,
@ then t is strong normalising because [T]¢ C SN

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 13/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 [Selelelole]) 000000000000000

System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to= x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.
a.(u+v) — au+auv.

@ Factorisation rules such as
a.u+ fu— (a+ F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 14/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 [Selelelole]) 000000000000000

System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to= x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.
Every typable term is strong
normalizing

a.(u+v) — au+auv.

@ Factorisation rules such as
a.u+ fu— (a+F).u.

@ Application rules such as
u(v+w)— (uv)+(uw).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 14/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 [Selelelole]) 000000000000000

System F
Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to= x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong
normalizing @ Factorisation rules such as

Hence Yb is no typable! a.u+ fu— (a+f)u
@ Application rules such as
u(v+w)— (uv)+(uw).

a.(u+v) — au+auv.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 14/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 [Selelelole]) 000000000000000

System F

Linear-Algebraic A-Calculus with \2"

Higher-order computation Linear algebra
to= x|Axt]|(tt) | t+t|at|0
e Ax.thb — t[b/x] (%) e Elementary rules such as
u+0—uand

(*) b an abstraction or a variable.

Every typable term is strong a.(u+v) — autav.

@ Factorisation rules such as

normalizing

Hence Yb is no typable! a.u+ fu— (a+fF)u

t —t — 0 always, so it is not @ Application rules such as
necesary to reduce t first. we can u(v+w)— (uv)+(uw).

remove the closed-normal
restrictions!

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 14/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 ©00000000000000

The scalar type system

Grammar

Types grammar:
T=U|VXT|aT]|O,

U=X|U—T|YXU

where oo € S and (S, +, x) is a conmutative ring.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 15/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0®0000000000000

The scalar type system

Type inference rules

—— ax[U]
Mx:UkFx:U
rMuwU—T M-v:u Mx:UFt: T
— E —>I[U]
FE(uv): T TExxt:U—T
[Fu:VX. T l'tu: T
—————VE[X:=U ———VI[X] with X ¢ FV(I)
M-u: T[U/X] M-u:vX.T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 16/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0®0000000000000

The scalar type system

Type inference rules

— ax[V]
Mx:UkFx:U

rMuwU—T M-v:u Mx:UFt: T
—E — I{U]
ME(uv): T MEAxt:U—T

[Fu:VX. T l'tu: T
—————VE[X:=U ———VI[X] with X ¢ FV(I)
MNu: T[U/X] Mu:VX. T

MlFu: T FEv: T FrMwu:T
———_—aXp +1 —al
reo:T MNM-w+v: T lr-ou: T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 16/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00®000000000000

The scalar type system

Type inference rules

— ax[U]
Mx:UFx:U
N-uwa(U—T) Mr-v:p5.U Mx:Ukt: T
— E — I[U]
MN=(uv):(axp).T MNExt:U—T
MFu:VX.T Mr-w: T
———VE[X:= U] ——VI[X] with X ¢ FV(I)
M-u: T[U/X] M-uw:vX.T
lFu:a.T M=v:6.T FlrMu:T
— axg +1 — sl
r=0:0 MlFu+vi(a+p).T MFau:a. T o]

Where U € U and types in contexts are are in U.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 17/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000®00000000000

The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 18/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000®00000000000

The scalar type system

Strong normalisation

o (-)% map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 18/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000®00000000000

The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define Gu = T for some T without scalars.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 18/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000®00000000000

The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define Gu = T for some T without scalars.

Lemma (Correspondence with \2/)

Tt T =T Fnt: T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 18/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000®00000000000

The scalar type system

Strong normalisation

o (-)%: map that take types and remove all the scalars on it.
Example: (U — a.X)! = U! — X

o We also define ﬁu = T for some T without scalars.
Lemma (Correspondence with \2/)

Tt T =T Fnt: T

Theorem (Strong normalisation)

I t: T = tis strongly normalising.

Proof. By previous lemma I'% -, t: T7, then t is strong
normalising.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 18/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000®0000000000

The scalar type system

Subject reduction

Theorem (Subject Reduction)

Lett =*t. ThenTHt: T=TF{t:T

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 19/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000®0000000000

The scalar type system

Subject reduction

Theorem (Subject Reduction)

Lett =*t. ThenTHt: T=TF{t:T

Proof. (sketch)

@ We proof rule by rule that if t — t’ using that rule and
Fl-t: 7, thenTHt:T.

@ In general, the method is to take the term t, decompose it
into its small parts and recompose to t'.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 19/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000®000000000

The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and
definitions:

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 20/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000®000000000

The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and

definitions:
Order:
o Write A > B if either
e B=VX.Aor

e A=VX.C and B = C[U/X] for some U € U.

@ > is the reflexive and transitive closure of >.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 20/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000®000000000

The scalar type system

Subject reduction proof: example (1)

To show a rule as example, we need some auxiliary lemmas and

definitions:
Order:
o Write A > B if either
e B=VX.Aor

e A=VX.C and B = C[U/X] for some U € U.
@ > is the reflexive and transitive closure of >.
Instuition of this definition:
Types in the numerator of

FrEt:-A MN-t:vx.c
—VIwith X¢ FVY(I) or —————VE
MN-t:vX.A M=t C[U/X]

are greater than the types in the denominator.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 20/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000@00000000

The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 21/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000®00000000

The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandlTFt:A=TFt:B

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 21/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system
000 0000000 000000®00000000

The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandlTFt:A=TFt:B
Q@ A>B=a0adA>aB

Conclusions and future work

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741

21/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000®00000000

The scalar type system
Subject reduction proof: example (1)

Some lemmas needed:
Q@ A>BandTHFt:A=TFHt:B
Q@ A>B=aA>aB
© Generation lemma (app): Let ' (u v):7.T, then

Mrw:B.U—T
Mv:a U

T >T
y=axf

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 21/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000®00000000

The scalar type system

Subject reduction proof: example (1)

Some lemmas needed:
QO A>BandTHt:A=THt:B
Q@ A>B=aA>aB
© Generation lemma (app): Let '+ (u v):~.T, then

Mrcw:B.U—T
MNEv:a U

T >T
y=axf

© Generation lemma (sum): Let TFu+4v:~.T, then

MNuw:aT
MEv:6.T

y=a+p

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 21/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000e0000000

The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (uw) + (v w).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 22/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000e0000000

The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (uw) + (v w).
o LletlM-(u+v)w:T.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 22/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000e0000000

The scalar type system

Subject reduction proof: example (111)

Example: Rule (u+v) w — (u w) + (v w).
o LletlM-(u+v)w:T.

@ Using the previous lemmas we can prove that

Nr-uw:(0xpB)U—T
FrEv:(1-90)xpB)U—T
N-w:a.U

where o x 3 =1, T"> T and ¢ is some scalar.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 22/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000e000000

The scalar type system
Subject reduction proof: example (1V)

Then
Mu:(6xp)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 23/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000e000000

The scalar type system
Subject reduction proof: example (1V)

Then
TFu:(0xB)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E

Also,
Fv:((L=98) xp).(U—T) Mr-w:a.U
FTE(vw):(1-6)xBxa)T >(1-96).T

— E

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 23/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000e000000

The scalar type system
Subject reduction proof: example (1V)

Then
TFu:(0xB)U—T MN-w:a.U

Fr-(uw):(xBxa)T >6.T

— E

Also,
Fv:((L=98) xp).(U—T) Mr-w:a.U
FTE(vw):(1-6)xBxa)T >(1-96).T

— E

b ww) AT TR (vw)(l-8).T

NM-(uw)+(vw): T

+/ and =

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 23/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000800000

The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 24/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000e00000

The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.

@ By restricting the scalars to positive reals — probabilistic type
system.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 24/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000e00000

The scalar type system
Probabilistic type system: Intuition

o Conditional functions — same type on each branch.
@ By restricting the scalars to positive reals — probabilistic type
system.
@ For example, one can type functions such as
Ax {x [5.(true + false)] [%.true + 3 false]}: B — B
with the type system serving as a guarantee that the function
conserves probabilities summing to one.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 24/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 25/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 25/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 25/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,

@ We change the rule VE to

M-t vxX. T

— _VEwithCeC
Mt: T[C/X]

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 25/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000e0000

The scalar type system

Probabilistic type system: Formalisation

We define the probabilistic type system to be the scalar type
system with the following restrictions:

e S=RT,
e Contexts: Types in contexts are classic types (C), i.e. types in
U exempt of any scalar,

@ We change the rule VE to

M-t vxX. T

— _VEwithCeC
Mt: T[C/X]

@ The final conclusion must be classic.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 25/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000080

The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 26/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000080

The scalar type system
Probabilistic type system: Proof

Definition (Weight function to check probability distributions)

Let w: A — R™ be a function defined inductively by:

w(O) =0 w(t1 + t2) = w(tl) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 26/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000080

The scalar type system
Probabilistic type system: Proof

Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:

w(O) =0 w(t1 + t2) = w(tl) + w(t2)
w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax §.x) y

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 26/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000080

The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)

w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax §.x) y

w(2.(Ax 3.x) y) =2

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 26/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000080

The scalar type system
Probabilistic type system: Proof
Definition (Weight function to check probability distributions)
Let w: A — R™ be a function defined inductively by:
w(0) =0 w(ty +t2) = w(tr) + w(t2)

w(b) =1 w(a.t) = a x w(t)
w(tl t2) = w(tl) X w(tz)

Theorem (Normal terms in probabilistic have weight 1)

feFt:C=w(t])=1.

Proof. We prove that ' - t:a.C = w(t]) = « by structural
induction over t|.
Example: 2.(Ax 3.x) y — y

w(2.(Ax %x) y)=2 wly)=1

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 26/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000e00

The scalar type system

Logical content: No-cloning theorem (1)

Definition (Proof method of depth n)

Mo(S)=S
M,—1(S Me(S) = . (S
1,(S) = 1()R o k(S) R oo Tk h()R
Ps Ps Ps
where

@ S is a sequent,

@ 7, Is a constant derivation tree of size n,
e max{k,h} =n—1,

@ R is a typing rule, and

@ Ps is a sequent such that the resulting derivation tree is
well-formed.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 27/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000e00

The scalar type system

Logical content: No-cloning theorem (1)

Definition (Proof method of depth n)

Mo(S)=S
M,—1(S Me(S) = . (S
1,(S) = 1()R o k(S) R oo Tk h()R
Ps Ps Ps
where

@ S is a sequent,

7, Is a constant derivation tree of size n,
max{k,h} =n—1,

R is a typing rule, and

Ps is a sequent such that the resulting derivation tree is
well-formed.

C(MN,(S)) denote the conclusion (root) of the tree M,(S).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 27/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000000e0

The scalar type system

Logical content: No-cloning theorem (1)

Examples:

S
S

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 28/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000000e0

The scalar type system

Logical content: No-cloning theorem (1)

Examples:

S r=t: 7
”1(5) =P—V/ |_|1(|_ Ft: T) ZWVI
S t: .

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 28/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000000e0

The scalar type system

Logical content: No-cloning theorem (1)

Examples:
S M-t 7
M(S)=—VvI MFt:T)=—— v
Ps M-t:vx.7
Th—2

N(Mu:aA)=TFuaA M-v:2.A
NlFu+v:(2+a)A

(Partial function or pattern matching)

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 28/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 0000000000000e0

The scalar type system

Logical content: No-cloning theorem (1)

Examples:
S Fr=t:. T
M(S)=—vi mrrEe:T)=—— v/
Ps MN=t:vX. T
Tn—2

N,(FFu:a.A)=TFu:aA M-v:2.A
NFu4+v:(2+a)A

(Partial function or pattern matching) Basically C(M,(S)) = Ps
means that Ps can be derived from S by using S once, with the
fixed proof method 1.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 28/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000000000e

The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(M,(TF a.U)) = A F (5 x @ + 7).V with
§ # 0 and 7y constants in S, s € N1 and U, V' constants in U.

Proof. Induction over n.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 29/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000000000e

The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.

Corollary (No-cloning Theorem)
M, such that YT, C(Ma(T - T)) = AF T® T.

where A ® B is the classical encoding for the type of tuples.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 29/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000000000e

The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.
Corollary (No-cloning Theorem)

AN, such that VT, C(N,(TF T))=A+ T T.

where A ® B is the classical encoding for the type of tuples.
Proof.

@ It is easy to show that VT, T = .U with U e U

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 29/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000000000e

The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.
Corollary (No-cloning Theorem)

AN, such that VT, C(N,(TF T))=A+ T T.

where A ® B is the classical encoding for the type of tuples.
Proof.
@ It is easy to show that VT, T = .U with U e U

o TR T=aU®alU=a?. (U U)=(1xa?+0).(UxU).

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 29/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 00000000000000e

The scalar type system

Logical content: No-cloning theorem (II1)

Theorem (No-cloning of scalars)

BN, such that Yo, C(Mu(T F a.U)) = A (5 x o® + 7).V with
§ # 0 and v constants in S, s € N> and U, V constants in U.

Proof. Induction over n.

Corollary (No-cloning Theorem)
N, such that VT, C(N,(TFT)=AFT®T.
where A ® B is the classical encoding for the type of tuples.
Proof.
@ It is easy to show that VT, T = .U with U e U
o TR T=aU®alU=a?. (U U)=(1xa?+0).(UxU).
@ By the previous theorem, the corollary holds.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 29/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 30/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

@ Scalar type system : types keep track of the ‘amount of a
type’ by holding sum of amplitudes of terms of that types.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 30/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Summary of contributions

@ S.N. : Simplified the Linear-algebraic A-calculus by lifting
most restrictions. S.R. OK.

@ Scalar type system : types keep track of the ‘amount of a
type’ by holding sum of amplitudes of terms of that types.

@ = probabilistic type system, yielding a higher-order
probabilistic A-calculus.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 30/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Polemics, future work

Pablo Arrighi and Alejandro Di:

A System F accounting for scalars, arXiv:0903.3741 31/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Polemics, future work

e Captured no-cloning theorem is a way that is faithful to
quantum theory and linear algebra, unlike LL:
e For all A one can find a copying proof method, but there is no
proof method for cloning all A.
o Algebraic linearity is about taking «.U to something in
ay—+0...not justfory=1=0+ 1.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 31/31

Motivation Linear-Algebraic A-Calculus System F The scalar type system Conclusions and future work
000 0000000 000000000000000

The scalar type system

Polemics, future work

e Captured no-cloning theorem is a way that is faithful to
quantum theory and linear algebra, unlike LL:
e For all A one can find a copying proof method, but there is no
proof method for cloning all A.
o Algebraic linearity is about taking «.U to something in
ay—+0...not justfory=1=0+ 1.

e C.-H.4+Q.C.=(quantum th. proofs, quantum th. logics)?
Need a Vectorial type system:
e Scalar type system — magnitude and signs for type vectors.
e Future system — direction, (i.e. addition and orthogonality of
types). Then it would be possible to check norm on
amplitudes rather than probabilities.

Pablo Arrighi and Alejandro Diaz-Caro, LIG A System F accounting for scalars, arXiv:0903.3741 31/31

	Motivation
	Linear-Algebraic Lambda-Calculus
	The language
	Why the restrictions

	System F
	Straightforward extension of System F
	Strong normalisation of lasf

	The scalar type system
	Grammar
	Type inference rules
	Strong normalisation
	Subject reduction
	Probabilistic type system
	Logical content: No-cloning theorem

	Conclusions and future work

