A System F accounting for scalars

- arXiv:0903.3741 -

Pablo Arrighi and Alejandro Díaz-Caro

Université de Grenoble Laboratoire d'Informatique de Grenoble

November 19th, 2009. PPS (Paris)

Motivation

Oddity of Quantum theory

 Quantum Logic?¹ (developed ad hoc before quantum computing, no clear relation with quantum programs).

¹Birkhoff, G. and J. von Neumann, *The logic of quantum mechanics*, Annals of Mathematics **37** (1936), pp. 823–843.

Motivation

• Oddity of Quantum theory \Longrightarrow Quantum Logic? (developed ad hoc before quantum computing, no clear relation with quantum programs).

System F

 Models of Linear Logics ⇒ Quantum Theory? (Coherent spaces, Micromechanics loses duplicability.)

¹Birkhoff, G. and J. von Neumann, *The logic of quantum mechanics*, Annals of Mathematics 37 (1936), pp. 823-843.

- Oddity of Quantum theory \Longrightarrow Quantum Logic? (developed ad hoc before quantum computing, no clear relation with quantum programs).
- Models of Linear Logics ⇒ Quantum Theory? (Coherent spaces, Micromechanics loses duplicability.)
- Curry-Howard : $(programs, types) \Longrightarrow (proofs, logics)$. Quantum Computation: (quantum programs, quantum types).

CH+QC: (quantum th. proofs, quantum th. logics)? Quantum logics: isolating the reasoning behind quantum algorithms?

¹Birkhoff, G. and J. von Neumann, The logic of quantum mechanics, Annals of Mathematics 37 (1936), pp. 823-843.

- Curry-Howard: (programs, types) ⇒ (proofs, logics).
 Quantum Computation: (quantum programs, quantum types).

CH+QC: (quantum th. proofs, quantum th. logics)? Quantum logics: isolating the reasoning behind quantum algorithms?

What are quantum types?

¹Birkhoff, G. and J. von Neumann, *The logic of quantum mechanics*, Annals of Mathematics **37** (1936), pp. 823–843.

Quantum theory

Motivation

• States are (normalized) vectors \mathbf{v} . Vector space of o.n.b. (\mathbf{b}_i) . Then $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$.

- States are (normalized) vectors \mathbf{v} . Vector space of o.n.b. (\mathbf{b}_i) . Then $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$.
- Evolutions are (unitary) linear operators U. $\mathbf{v}' = U\mathbf{v}$.

Quantum theory

- States are (normalized) vectors \mathbf{v} . Vector space of o.n.b. (\mathbf{b}_i) . Then $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$.
- Evolutions are (unitary) linear operators U. $\mathbf{v}' = U\mathbf{v}$.
- Systems are put next to one another with ⊗.
 Bilinear just like application :

$$\mathbf{u} + \mathbf{v} \otimes \mathbf{w} = \mathbf{u} \otimes \mathbf{w} + \mathbf{v} \otimes \mathbf{w},$$

$$\mathbf{u} \otimes \mathbf{v} + \mathbf{w} = \mathbf{u} \otimes \mathbf{v} + \mathbf{u} \otimes \mathbf{w}, \dots$$

Quantum theory

- States are (normalized) vectors v. Vector space of o.n.b. (\mathbf{b}_i) . Then $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$.
- Evolutions are (unitary) linear operators U. $\mathbf{v}' = U\mathbf{v}$.
- Systems are put next to one another with \otimes . Bilinear just like application:

$$\mathbf{u} + \mathbf{v} \otimes \mathbf{w} = \mathbf{u} \otimes \mathbf{w} + \mathbf{v} \otimes \mathbf{w},$$

$$\mathbf{u} \otimes \mathbf{v} + \mathbf{w} = \mathbf{u} \otimes \mathbf{v} + \mathbf{u} \otimes \mathbf{w}, \ \dots$$

No-cloning theorem!

No-cloning theorem

Statement: $\exists U / \forall \mathbf{v} : U\mathbf{v} = \mathbf{v} \otimes \mathbf{v}$.

Proof:

Vector space of o.n.b. (\mathbf{b}_i) , so $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$. We can have

 $U\mathbf{b}_i = \mathbf{b}_i \otimes \mathbf{b}_i$ (=copying, OK) But then

$$U\mathbf{v} = U \sum_{i} \alpha_{i} \mathbf{b}_{i} = \sum_{i} \alpha_{i} U \mathbf{b}_{i}$$

$$= \sum_{i} \alpha_{i} \mathbf{b}_{i} \otimes \mathbf{b}_{i} \neq \sum_{j} \alpha_{i} \alpha_{j} \mathbf{b}_{i} \otimes \mathbf{b}_{j}$$

$$= (\sum_{i} \alpha_{i} \mathbf{b}_{i}) \otimes (\sum_{j} \alpha_{j} \mathbf{b}_{j})$$

$$= \mathbf{v} \otimes \mathbf{v} \qquad (=\text{cloning, Not OK})$$

Statement: $\not\exists U \ / \ \forall \mathbf{v} : U\mathbf{v} = \mathbf{v} \otimes \mathbf{v}$.

Proof:

Motivation

Vector space of o.n.b. (\mathbf{b}_i) , so $\mathbf{v} = \sum_i \alpha_i \mathbf{b}_i$. We can have

$$U\mathbf{b}_i = \mathbf{b}_i \otimes \mathbf{b}_i$$
 (=copying, OK)

But then

$$U\mathbf{v} = U \sum_{i} \alpha_{i} \mathbf{b}_{i} = \sum_{i} \alpha_{i} U \mathbf{b}_{i}$$

$$= \sum_{i} \alpha_{i} \mathbf{b}_{i} \otimes \mathbf{b}_{i} \neq \sum_{j} \alpha_{i} \alpha_{j} \mathbf{b}_{i} \otimes \mathbf{b}_{j}$$

$$= (\sum_{i} \alpha_{i} \mathbf{b}_{i}) \otimes (\sum_{j} \alpha_{j} \mathbf{b}_{j})$$

$$= \mathbf{v} \otimes \mathbf{v} \qquad (=\text{cloning, Not OK})$$

Conflicts with β -reduction?

Linear-Algebraic λ -Calculus² The language

Higher-order computation $\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t}\mathbf{t})$

²Arrighi, P. and G. Dowek. *Linear-algebraic* λ -calculus: higher-order, encodings and confluence. Lecture Notes in Computer Science (RTA'08), **5117** (2008), pp. 17–31.

Linear-Algebraic λ -Calculus² The language

Higher-order computation $\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t}\mathbf{t})$

Linear algebra
$$\mathbf{t} + \mathbf{t} \mid \alpha. \mathbf{t} \mid \mathbf{0}$$

²Arrighi, P. and G. Dowek. *Linear-algebraic* λ -calculus: higher-order, encodings and confluence. Lecture Notes in Computer Science (RTA'08), **5117** (2008), pp. 17–31.

Linear-Algebraic λ -Calculus² The language

Higher-order computation $\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t}\mathbf{t})$

•
$$\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$$

(*) **b** an abstraction or a variable.

Linear algebra $\mathbf{t} + \mathbf{t} | \alpha.\mathbf{t} | \mathbf{0}$

²Arrighi, P. and G. Dowek. *Linear-algebraic λ-calculus: higher-order*, encodings and confluence. Lecture Notes in Computer Science (RTA'08), 5117 (2008), pp. 17-31.

Linear-Algebraic λ -Calculus²

Higher-order computation $\mathbf{t} ::= x \mid \lambda x.\mathbf{t} \mid (\mathbf{t} \mathbf{t})$

•
$$\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$$

(*) **b** an abstraction or a variable.

(**) **u** closed normal. (***) **u** and **u** + **v** closed normal.

Linear algebra $\mathbf{t} + \mathbf{t} \mid \alpha. \mathbf{t} \mid \mathbf{0}$

The scalar type system

- Elementary rules such as $\mathbf{u} + \mathbf{0} \rightarrow \mathbf{u}$ and $\alpha.(\mathbf{u} + \mathbf{v}) \rightarrow \alpha.\mathbf{u} + \alpha.\mathbf{v}$.
- Factorisation rules such as $\alpha.\mathbf{u} + \beta.\mathbf{u} \rightarrow (\alpha + \beta).\mathbf{u}.$ (**)
- Application rules such as $\mathbf{u} \ (\mathbf{v} + \mathbf{w}) \rightarrow (\mathbf{u} \ \mathbf{v}) + (\mathbf{u} \ \mathbf{w})$. (***)

² Arrighi, P. and G. Dowek. *Linear-algebraic* λ -calculus: higher-order, encodings and confluence. Lecture Notes in Computer Science (RTA'08), **5117** (2008), pp. 17–31.

Linear-Algebraic λ -Calculus Why the restrictions: Copying vs Cloning

Motivation

Untyped λ -calculus + linear algebra \Rightarrow Cloning?

Linear-Algebraic λ -Calculus Why the restrictions : Copying vs Cloning

Untyped λ -calculus + linear algebra \Rightarrow Cloning?

$$\lambda x.(x \otimes x) \sum_{i} \alpha_{i} \mathbf{b}_{i} \to^{*} \sum_{i} \alpha_{i} \mathbf{b}_{i} \otimes \mathbf{b}_{i}$$

$$\downarrow (\sum_{i} \alpha_{i} \mathbf{b}_{i}) \otimes (\sum_{i} \alpha_{i} \mathbf{b}_{i})$$

Linear-Algebraic λ -Calculus Why the restrictions: Copying vs Cloning

Untyped λ -calculus + linear algebra \Rightarrow Cloning?

$$\lambda x.(x \otimes x) \sum_{i} \alpha_{i} \mathbf{b}_{i} \to^{*} \sum_{i} \alpha_{i} \mathbf{b}_{i} \otimes \mathbf{b}_{i}$$

$$\downarrow \qquad \qquad (\sum_{i} \alpha_{i} \mathbf{b}_{i}) \otimes (\sum_{i} \alpha_{i} \mathbf{b}_{i})$$

No-cloning says bottom reduction forbidden. We must delay beta reduction till after linearity. So restrict beta reduction to **base vectors** \rightarrow *i.e.* abstractions or variables.

Linear-Algebraic λ -Calculus Why the restrictions : Infinities

Motivation

Untyped λ -calculus + linear algebra $\Rightarrow \infty$

 $Yb \rightarrow b + Yb$

Motivation

Untyped
$$\lambda$$
-calculus + linear algebra $\Rightarrow \infty$

$$\mathbf{Yb} \equiv \lambda x.(\mathbf{b} + (x \ x)) \ \lambda x.(\mathbf{b} + (x \ x))$$

Linear-Algebraic λ -Calculus Why the restrictions : Infinities

Motivation

Untyped λ -calculus + linear algebra $\Rightarrow \infty$

$$\mathbf{Y}\mathbf{b} \equiv \lambda x.(\mathbf{b} + (x \ x)) \ \lambda x.(\mathbf{b} + (x \ x))$$

$$\mathbf{Yb} \rightarrow \mathbf{b} + \mathbf{Yb}$$

But whoever says infinity says trouble says...

Untyped λ -calculus + linear algebra $\Rightarrow \infty$

$$\mathbf{Y}\mathbf{b} \equiv \lambda x.(\mathbf{b} + (x \ x)) \ \lambda x.(\mathbf{b} + (x \ x))$$

$$Yb \rightarrow b + Yb$$

But whoever says infinity says trouble says... indefinite forms.

Linear-Algebraic λ -Calculus Why the restrictions : Infinities

Untyped λ -calculus + linear algebra $\Rightarrow \infty$

$$\mathbf{Yb} \equiv \lambda x.(\mathbf{b} + (x \ x)) \ \lambda x.(\mathbf{b} + (x \ x))$$

$$\mathbf{Y}\mathbf{b} \rightarrow \mathbf{b} + \mathbf{Y}\mathbf{b}$$

But whoever says infinity says trouble says... indefinite forms.

$$\mathbf{Y}\mathbf{b} - \mathbf{Y}\mathbf{b} o \mathbf{b} + \mathbf{Y}\mathbf{b} - \mathbf{Y}\mathbf{b} o \mathbf{b}$$

$$\downarrow_*$$

Untyped λ -calculus + linear algebra $\Rightarrow \infty$

$$\mathbf{Yb} \equiv \lambda x.(\mathbf{b} + (x \ x)) \ \lambda x.(\mathbf{b} + (x \ x))$$

$$\mathbf{Yb} \rightarrow \mathbf{b} + \mathbf{Yb}$$

But whoever says infinity says trouble says... indefinite forms.

$$\mathbf{Y}\mathbf{b} - \mathbf{Y}\mathbf{b} \to \mathbf{b} + \mathbf{Y}\mathbf{b} - \mathbf{Y}\mathbf{b} \to \mathbf{b}$$

$$\downarrow *$$

$$\mathbf{0}$$

High school teacher says we must restrict factorization rules to **finite vectors** \rightarrow *i.e.* closed-normal forms.

System F Straightforward extension of System F ($\lambda 2^{la}$)

System F rules plus simple rules to type algebraic terms

System F

$$\frac{\Gamma \vdash \mathbf{u} : A \qquad \Gamma \vdash \mathbf{v} : A}{\Gamma \vdash \mathbf{u} + \mathbf{v} : A} + I \qquad \frac{\Gamma \vdash \mathbf{t} : A}{\Gamma \vdash \alpha . \mathbf{t} : A} \alpha$$

System F rules plus simple rules to type algebraic terms

System F

$$\frac{\Gamma \vdash \mathbf{u} : A \qquad \Gamma \vdash \mathbf{v} : A}{\Gamma \vdash \mathbf{u} + \mathbf{v} : A} + I \qquad \frac{\Gamma \vdash \mathbf{t} : A}{\Gamma \vdash \alpha . \mathbf{t} : A} \alpha a$$

Theorem (Strong normalization)

 $\Gamma \vdash \mathbf{t} : T \Rightarrow \mathbf{t}$ is strongly normalising.

System F rules plus simple rules to type algebraic terms

System F

$$\frac{\Gamma \vdash \mathbf{u} : A \qquad \Gamma \vdash \mathbf{v} : A}{\Gamma \vdash \mathbf{u} : A \qquad \Gamma \vdash \mathbf{v} : A} + I \qquad \frac{\Gamma \vdash \mathbf{t} : A}{\Gamma \vdash \alpha . \mathbf{t} : A} \alpha I$$

Theorem (Strong normalization)

 $\Gamma \vdash \mathbf{t} : T \Rightarrow \mathbf{t}$ is strongly normalising.

Proof. Sketch: We extend the notion of saturated sets.

• *SN*: Set of strongly normalising terms

System F Strong normalization of $\lambda 2^{la}$

- SN: Set of strongly normalising terms
- A subset $X \in SN$ is saturated if

 - 2 $\mathbf{v}[\mathbf{b}/x] \overrightarrow{\mathbf{t}} \in X \Rightarrow (\lambda x \ \mathbf{v}) \ \mathbf{b} \ \overrightarrow{\mathbf{t}} \in X$
 - \bullet **t**, **u** $\in X \Rightarrow$ **t** + **u** $\in X$:
 - \bullet $\forall \alpha \ \mathbf{t} \in X \Rightarrow \alpha . \mathbf{t} \in X$:

 - $\mathbf{O} \ \forall \overrightarrow{\mathbf{t}} \in SN, \ (\mathbf{O} \ \overrightarrow{\mathbf{t}}) \in X;$
 - $\mathbf{0} \ \forall \mathbf{t}, \overrightarrow{\mathbf{u}} \in SN, (\mathbf{t} \ \mathbf{0}) \ \overrightarrow{\mathbf{u}} \in X.$

X stable by "construction" and "anti-reduction"

- *SN*: Set of strongly normalising terms
- A subset $X \in SN$ is saturated if

 - \bullet $\forall \alpha$, $\mathbf{t} \in X \Rightarrow \alpha . \mathbf{t} \in X$;

 - $\underbrace{\alpha.((\mathbf{t}_1 \ \mathbf{t}_2) \dots \mathbf{t}_n) \in X} \Leftrightarrow ((\mathbf{t}_1 \ \mathbf{t}_2) \dots \alpha.\mathbf{t}_k) \dots \mathbf{t}_n \in X \ (1 \leq k \leq n);$
 - **0** $\mathbf{0} \in X$;

X stable by "construction" and "anti-reduction"

• SAT is the set of all saturated sets

Refining the sketch:

• The idea is that types "correspond" to saturated sets.

System F

0000000

Refining the sketch:

• The idea is that types "correspond" to saturated sets.

System F

0000000

• This correspondance is achived by a maping from types to SAT.

System F Strong normalization of $\lambda 2^{la}$ (III)

Lemma

Motivation

- \bullet $SN \in SAT$,
- \bigcirc $A, B \in SAT \Rightarrow A \rightarrow B \in SAT$,
- **1** For all collection A_i of members of SAT, $\bigcap_i A_i \in SAT$,

Lemma

 \bullet SN \in SAT.

Strong normalization of $\lambda 2^{la}$ (III)

- \bigcirc A, B \in SAT \Rightarrow A \rightarrow B \in SAT.
- **o** For all collection A_i of members of SAT, $\bigcap_i A_i \in SAT$,

Definition (Mapping)

- $[X]_{\xi} = \xi(X)$ (where $\xi(\cdot) : TVar \to SAT$)
- $[A \to B]_{\xi} = [A]_{\xi} \to [B]_{\xi}$
- $\bullet \ \llbracket \forall X.T \rrbracket_{\mathcal{E}} = \bigcap_{Y \in SAT} \llbracket T \rrbracket_{\mathcal{E}(X:=Y)}$

Lemma

- \bullet $SN \in SAT$,
- \bigcirc $A, B \in SAT \Rightarrow A \rightarrow B \in SAT$,
- **1** For all collection A_i of members of SAT, $\bigcap_i A_i \in SAT$,

Definition (Mapping)

- $[\![X]\!]_{\xi} = \xi(X)$ (where $\xi(\cdot): TVar \to SAT$)
- $[A \to B]_{\xi} = [A]_{\xi} \to [B]_{\xi}$
- $\llbracket \forall X.T \rrbracket_{\xi} = \bigcap_{Y \in SAT} \llbracket T \rrbracket_{\xi(X:=Y)}$

Lemma

Given a valuation ξ , $[T]_{\xi} \in SAT$

The scalar type system

System F Strong normalization of $\lambda 2^{la}$ (IV)

Motivation

Definition (\models)

For $\Gamma = x_1 : A_1, \dots, x_n : A_n, \Gamma \models \mathbf{t} : T$ means that $\forall \xi$,

$$x_1 \in [\![A_1]\!]_{\xi}, \dots x_n \in [\![A_n]\!]_{\xi} \Rightarrow \mathbf{t} \in [\![T]\!]_{\xi}$$

The scalar type system

Definition (⊨)

For $\Gamma = x_1 : A_1, \dots, x_n : A_n$, $\Gamma \models \mathbf{t} : T$ means that $\forall \xi$,

$$x_1 \in [\![A_1]\!]_{\xi}, \dots x_n \in [\![A_n]\!]_{\xi} \Rightarrow \mathbf{t} \in [\![T]\!]_{\xi}$$

Refining the sketch: Prove that $\Gamma \vdash \mathbf{t} : T \Rightarrow \Gamma \models \mathbf{t} : T$

We prove this by induction on the derivation of $\Gamma \vdash \mathbf{t} : T$ (In fact the definition of \vDash is slightly different to strengthen the induction hypothesis)

Then, the proof of the strong normalisation theorem is:

System F

0000000

Let $\Gamma \vdash \mathbf{t} : T$

System F

Motivation

Then, the proof of the strong normalisation theorem is:

Let $\Gamma \vdash \mathbf{t} : T$ $\Rightarrow \Gamma \models \mathbf{t} : T$

Then, the proof of the strong normalisation theorem is:

Let $\Gamma \vdash \mathbf{t} : T$

 $\Rightarrow \Gamma \vDash \mathbf{t} : T$

 \Rightarrow If $\forall (x_i : A_i) \in \Gamma$, $x_i \in \llbracket A_i \rrbracket_{\xi}$ then $\mathbf{t} \in \llbracket T \rrbracket_{\xi}$

System F Strong normalization of $\lambda 2^{la}$ (V)

Motivation

Then, the proof of the strong normalisation theorem is:

Let $\Gamma \vdash \mathbf{t} : T$

 $\Rightarrow \Gamma \models \mathbf{t} : T$

 \Rightarrow If $\forall (x_i: A_i) \in \Gamma$, $x_i \in [A_i]_{\mathcal{E}}$ then $\mathbf{t} \in [T]_{\mathcal{E}}$

Note that

• $x_i \in [A_i]_{\mathcal{E}}$ because $[A_i]_{\mathcal{E}}$ is saturated,

Then, the proof of the strong normalisation theorem is:

Let $\Gamma \vdash \mathbf{t} : T$

 $\Rightarrow \Gamma \models \mathbf{t} \cdot T$

 \Rightarrow If $\forall (x_i: A_i) \in \Gamma$, $x_i \in [A_i]_{\mathcal{E}}$ then $\mathbf{t} \in [T]_{\mathcal{E}}$

Note that

- $x_i \in [A_i]_{\mathcal{E}}$ because $[A_i]_{\mathcal{E}}$ is saturated,
- then **t** is strong normalising because $[T]_{\mathcal{E}} \subseteq SN$

Linear-Algebraic λ -Calculus with $\lambda 2^{la}$

Higher-order computation

$$\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t} \mathbf{t})$$

- $\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$
- (*) **b** an abstraction or a variable.

Linear algebra

$$\mathbf{t} + \mathbf{t} \, | \, \alpha.\mathbf{t} \, | \, \mathbf{0}$$

- Elementary rules such as $\mathbf{u} + \mathbf{0} \rightarrow \mathbf{u}$ and $\alpha.(\mathbf{u}+\mathbf{v})\rightarrow\alpha.\mathbf{u}+\alpha.\mathbf{v}.$
- Factorisation rules such as $\alpha.\mathbf{u} + \beta.\mathbf{u} \rightarrow (\alpha + \beta).\mathbf{u}$.
- Application rules such as $\mathbf{u} (\mathbf{v} + \mathbf{w}) \rightarrow (\mathbf{u} \mathbf{v}) + (\mathbf{u} \mathbf{w}).$

Linear-Algebraic λ -Calculus with $\lambda 2^{la}$

Higher-order computation

$$\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t} \mathbf{t})$$

- $\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$
- (*) **b** an abstraction or a variable. Every typable term is strong normalizing

Linear algebra

$$\mathbf{t} + \mathbf{t} \, | \, \alpha. \mathbf{t} \, | \, \mathbf{0}$$

- Elementary rules such as $\mathbf{u} + \mathbf{0} \rightarrow \mathbf{u}$ and $\alpha.(\mathbf{u}+\mathbf{v})\rightarrow\alpha.\mathbf{u}+\alpha.\mathbf{v}.$
- Factorisation rules such as $\alpha.\mathbf{u} + \beta.\mathbf{u} \rightarrow (\alpha + \beta).\mathbf{u}$.
- Application rules such as $\mathbf{u} (\mathbf{v} + \mathbf{w}) \rightarrow (\mathbf{u} \mathbf{v}) + (\mathbf{u} \mathbf{w}).$

System F Linear-Algebraic λ -Calculus with $\lambda 2^{la}$

Higher-order computation

$$\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t} \mathbf{t})$$

- $\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$
- (*) **b** an abstraction or a variable. Every typable term is strong normalizing Hence **Yb** is no typable!

Linear algebra $\mathbf{t} + \mathbf{t} \mid \alpha. \mathbf{t} \mid \mathbf{0}$

• Elementary rules such as $\mathbf{u} + \mathbf{0} \rightarrow \mathbf{u}$ and

- $\alpha.(\mathbf{u} + \mathbf{v}) \rightarrow \alpha.\mathbf{u} + \alpha.\mathbf{v}.$ Factorisation rules such as $\alpha.\mathbf{u} + \beta.\mathbf{u} \rightarrow (\alpha + \beta).\mathbf{u}.$
- Application rules such as $\mathbf{u} \ (\mathbf{v} + \mathbf{w}) \rightarrow (\mathbf{u} \ \mathbf{v}) + (\mathbf{u} \ \mathbf{w}).$

Linear-Algebraic λ -Calculus with $\lambda 2^{la}$

Higher-order computation $\mathbf{t} ::= x | \lambda x.\mathbf{t} | (\mathbf{t}\mathbf{t})$

- $\lambda x.\mathbf{t}\,\mathbf{b} \to \mathbf{t}[\mathbf{b}/x](*)$
- (*) **b** an abstraction or a variable. Every typable term is strong normalizing Hence **Yb** is no typable! $\mathbf{t} - \mathbf{t} \rightarrow \mathbf{0}$ always, so it is not necesary to reduce t first. we can remove the closed-normal

Linear algebra $\mathbf{t} + \mathbf{t} | \alpha.\mathbf{t} | \mathbf{0}$

- Elementary rules such as $\mathbf{u} + \mathbf{0} \rightarrow \mathbf{u}$ and
- Factorisation rules such as $\alpha.\mathbf{u} + \beta.\mathbf{u} \rightarrow (\alpha + \beta).\mathbf{u}$.

 $\alpha.(\mathbf{u}+\mathbf{v})\rightarrow\alpha.\mathbf{u}+\alpha.\mathbf{v}.$

 Application rules such as $\mathbf{u} (\mathbf{v} + \mathbf{w}) \rightarrow (\mathbf{u} \mathbf{v}) + (\mathbf{u} \mathbf{w}).$

restrictions!

The *scalar* type system Grammar

Types grammar:

$$\mathcal{T} = \mathcal{U} \mid \forall X.\mathcal{T} \mid \alpha.\mathcal{T} \mid \overline{0},$$

$$\mathcal{U} = X \mid \mathcal{U} \rightarrow \mathcal{T} \mid \forall X.\mathcal{U}$$

where $\alpha \in \mathcal{S}$ and $(\mathcal{S}, +, \times)$ is a conmutative ring.

The scalar type system •00000000000000

The scalar type system Type inference rules

Motivation

$$\frac{}{\Gamma,x:U\vdash x:U}\,ax[U]$$

$$\frac{\Gamma \vdash \mathbf{u} \colon U \to T \qquad \qquad \Gamma \vdash \mathbf{v} \colon U}{\Gamma \vdash (\mathbf{u} \ \mathbf{v}) \colon T} \to E \qquad \frac{\Gamma, x \colon U \vdash \mathbf{t} \colon T}{\Gamma \vdash \lambda x \ \mathbf{t} \colon U \to T} \to I[U]$$

$$\frac{\Gamma \vdash \mathbf{u} \colon \forall X . T}{\Gamma \vdash \mathbf{u} \colon T[U/X]} \, \forall E[X := U] \qquad \frac{\Gamma \vdash \mathbf{u} \colon T}{\Gamma \vdash \mathbf{u} \colon \forall X . T} \, \forall I[X] \text{ with } X \notin FV(\Gamma)$$

Type inference rules

Motivation

$$\frac{\Gamma \vdash \mathbf{u} : U \to T}{\Gamma \vdash (\mathbf{u} \ \mathbf{v}) : T} \to E \qquad \frac{\Gamma, x : U \vdash \mathbf{t} : T}{\Gamma \vdash \lambda x \ \mathbf{t} : U \to T} \to I[U]$$

$$\frac{\Gamma \vdash \mathbf{u} : \forall X . T}{\Gamma \vdash \mathbf{u} : T[U/X]} \forall E[X := U] \qquad \frac{\Gamma \vdash \mathbf{u} : T}{\Gamma \vdash \mathbf{u} : \forall X . T} \forall I[X] \text{ with } X \notin FV(\Gamma)$$

$$\frac{\Gamma \vdash \mathbf{u} : T[U/X]}{\Gamma \vdash \mathbf{u} : T} \xrightarrow{AX_0} \frac{\Gamma \vdash \mathbf{u} : T}{\Gamma \vdash \mathbf{u} + \mathbf{v} : T} + I \qquad \frac{\Gamma \vdash \mathbf{u} : T}{\Gamma \vdash \alpha . \mathbf{u} : T} \xrightarrow{\alpha I}$$

The *scalar* type system Type inference rules

$$\frac{1}{\Gamma, x : U \vdash x : U} ax[U]$$

$$\frac{\Gamma \vdash \mathbf{u} : \alpha.(U \to T) \qquad \Gamma \vdash \mathbf{v} : \beta.U}{\Gamma \vdash (\mathbf{u} \ \mathbf{v}) : (\alpha \times \beta).T} \to E \qquad \frac{\Gamma, x : U \vdash \mathbf{t} : T}{\Gamma \vdash \lambda x \ \mathbf{t} : U \to T} \to I[U]$$

$$\frac{\Gamma \vdash \mathbf{u} : \forall X.T}{\Gamma \vdash \mathbf{u} : T[U/X]} \forall E[X := U] \qquad \frac{\Gamma \vdash \mathbf{u} : T}{\Gamma \vdash \mathbf{u} : \forall X.T} \forall I[X] \text{ with } X \notin FV(\Gamma)$$

$$\frac{}{\Gamma \vdash \mathbf{0} : \overline{\mathbf{0}}} ax_{\overline{\mathbf{0}}} \frac{\Gamma \vdash \mathbf{u} : \alpha.T \qquad \Gamma \vdash \mathbf{v} : \beta.T}{\Gamma \vdash \mathbf{u} + \mathbf{v} : (\alpha + \beta).T} + I \frac{}{\Gamma \vdash \alpha.\mathbf{u} : \alpha.T} sI[\alpha]$$

Where $U \in \mathcal{U}$ and types in contexts are are in \mathcal{U} .

The scalar type system Strong normalisation

Motivation

• $(\cdot)^{\natural}$: map that take types and remove all the scalars on it.

The *scalar* type system Strong normalisation

Motivation

• $(\cdot)^{\natural}$: map that take types and remove all the scalars on it. Example: $(U \to \alpha.X)^{\natural} = U^{\natural} \to X$

The scalar type system Strong normalisation

Motivation

- $(\cdot)^{\natural}$: map that take types and remove all the scalars on it. Example: $(U \to \alpha.X)^{\natural} = U^{\natural} \to X$
- We also define $\overline{0}^{\natural} = T$ for some T without scalars.

The *scalar* type system Strong normalisation

Motivation

- $(\cdot)^{\natural}$: map that take types and remove all the scalars on it. Example: $(U \to \alpha.X)^{\natural} = U^{\natural} \to X$
- We also define $\overline{0}^{\dagger} = T$ for some T without scalars.

Lemma (Correspondence with $\lambda 2^{la}$)

$$\Gamma \vdash \mathbf{t} : T \Rightarrow \Gamma^{\natural} \vdash_{\lambda 2^{la}} \mathbf{t} : T^{\natural}.$$

The scalar type system Strong normalisation

- $(\cdot)^{\natural}$: map that take types and remove all the scalars on it. Example: $(U \to \alpha.X)^{\natural} = U^{\natural} \to X$
- We also define $\overline{0}^{\natural} = T$ for some T without scalars.

Lemma (Correspondence with $\lambda 2^{la}$)

$$\Gamma \vdash \mathbf{t} : T \Rightarrow \Gamma^{\natural} \vdash_{\lambda 2^{la}} \mathbf{t} : T^{\natural}.$$

Theorem (Strong normalisation)

 $\Gamma \vdash \mathbf{t} : T \Rightarrow \mathbf{t}$ is strongly normalising.

Proof. By previous lemma $\Gamma^{\natural} \vdash_{\lambda 2^{la}} \mathbf{t} : T^{\natural}$, then \mathbf{t} is strong normalising.

The scalar type system Subject reduction

Motivation

Theorem (Subject Reduction)

Let $t \to^* t'$. Then $\Gamma \vdash t : T \Rightarrow \Gamma \vdash t' : T$

The scalar type system

Theorem (Subject Reduction)

Let $t \to^* t'$. Then $\Gamma \vdash t : T \Rightarrow \Gamma \vdash t' : T$

Proof. (sketch)

- We proof rule by rule that if $\mathbf{t} \to \mathbf{t}'$ using that rule and $\Gamma \vdash \mathbf{t} \colon \mathcal{T}$, then $\Gamma \vdash \mathbf{t}' \colon \mathcal{T}$.
- In general, the method is to take the term t, decompose it into its small parts and recompose to t'.

Motivation

To show a rule as example, we need some auxiliary lemmas and definitions:

To show a rule as example, we need some auxiliary lemmas and definitions:

Order:

- Write A > B if either
 - $B \equiv \forall X.A$ or
 - $A \equiv \forall X.C$ and $B \equiv C[U/X]$ for some $U \in \mathcal{U}$.
- $\bullet \ge$ is the reflexive and transitive closure of >.

To show a rule as example, we need some auxiliary lemmas and definitions:

Order:

- Write A > B if either
 - $B \equiv \forall X.A \text{ or }$
 - $A \equiv \forall X.C$ and $B \equiv C[U/X]$ for some $U \in \mathcal{U}$.
- $\bullet \geq$ is the reflexive and transitive closure of >.

Instuition of this definition:

Types in the numerator of

$$\frac{\Gamma \vdash \mathbf{t} \colon A}{\Gamma \vdash \mathbf{t} \colon \forall X.A} \, \forall I \text{ with } X \notin FV(\Gamma) \qquad \text{or} \qquad \frac{\Gamma \vdash \mathbf{t} \colon \forall X.C}{\Gamma \vdash \mathbf{t} \colon C[U/X]} \, \forall E$$

are greater than the types in the denominator.

Motivation

Some lemmas needed:

Motivation

Some lemmas needed:

 \bullet A > B and $\Gamma \vdash \mathbf{t} : A \Rightarrow \Gamma \vdash \mathbf{t} : B$

Motivation

Some lemmas needed:

- \bullet A > B and $\Gamma \vdash \mathbf{t} : A \Rightarrow \Gamma \vdash \mathbf{t} : B$
- $A \ge B \Rightarrow \alpha A \ge \alpha B$

Some lemmas needed:

- $A \ge B \Rightarrow \alpha A \ge \alpha B$
- **3** Generation lemma (app): Let $\Gamma \vdash (\mathbf{u} \ \mathbf{v}) : \gamma . T$, then

$$\begin{cases} \Gamma \vdash \mathbf{u} : \beta.U \to T' \\ \Gamma \vdash \mathbf{v} : \alpha.U \\ T' \ge T \\ \gamma = \alpha \times \beta \end{cases}$$

Some lemmas needed:

- \bullet A > B and $\Gamma \vdash \mathbf{t} : A \Rightarrow \Gamma \vdash \mathbf{t} : B$
- \triangle $A > B \Rightarrow \alpha A > \alpha B$
- **3** Generation lemma (app): Let $\Gamma \vdash (\mathbf{u} \ \mathbf{v}) : \gamma . T$, then

$$\begin{cases}
\Gamma \vdash \mathbf{u} : \beta.U \to T' \\
\Gamma \vdash \mathbf{v} : \alpha.U \\
T' \ge T \\
\gamma = \alpha \times \beta
\end{cases}$$

4 Generation lemma (sum): Let $\Gamma \vdash \mathbf{u} + \mathbf{v} : \gamma . T$, then

$$\left\{ \begin{array}{l} \Gamma \vdash \mathbf{u} : \alpha . T \\ \Gamma \vdash \mathbf{v} : \beta . T \\ \gamma = \alpha + \beta \end{array} \right.$$

Motivation

Example: Rule $(\mathbf{u} + \mathbf{v}) \mathbf{w} \rightarrow (\mathbf{u} \mathbf{w}) + (\mathbf{v} \mathbf{w})$.

The scalar type system Subject reduction proof: example (III)

Example: Rule $(\mathbf{u} + \mathbf{v}) \mathbf{w} \rightarrow (\mathbf{u} \mathbf{w}) + (\mathbf{v} \mathbf{w})$.

• Let $\Gamma \vdash (\mathbf{u} + \mathbf{v}) \mathbf{w} : T$.

Example: Rule $(\mathbf{u} + \mathbf{v}) \mathbf{w} \rightarrow (\mathbf{u} \mathbf{w}) + (\mathbf{v} \mathbf{w})$.

- Let $\Gamma \vdash (\mathbf{u} + \mathbf{v}) \mathbf{w} : \mathcal{T}$.
- Using the previous lemmas we can prove that

$$\left\{ \begin{array}{l} \Gamma \vdash \mathbf{u} : (\delta \times \beta).U \to T' \\ \Gamma \vdash \mathbf{v} : ((1 - \delta) \times \beta).U \to T' \\ \Gamma \vdash \mathbf{w} : \alpha.U \end{array} \right.$$

where $\alpha \times \beta = 1$, $T' \geq T$ and δ is some scalar.

Then

$$\frac{\Gamma \vdash \mathbf{u} : (\delta \times \beta).U \to T' \qquad \Gamma \vdash \mathbf{w} : \alpha.U}{\Gamma \vdash (\mathbf{u} \ \mathbf{w}) : (\delta \times \beta \times \alpha).T' \ge \delta.T} \to E$$

Then

$$\frac{\Gamma \vdash \mathbf{u} : (\delta \times \beta).U \to T' \qquad \Gamma \vdash \mathbf{w} : \alpha.U}{\Gamma \vdash (\mathbf{u} \ \mathbf{w}) : (\delta \times \beta \times \alpha).T' \ge \delta.T} \to E$$

Also,

$$\frac{\Gamma \vdash \mathbf{v} : ((1 - \delta) \times \beta) . (U \to T') \qquad \Gamma \vdash \mathbf{w} : \alpha . U}{\Gamma \vdash (\mathbf{v} \ \mathbf{w}) : ((1 - \delta) \times \beta \times \alpha) . T' \ge (1 - \delta) . T} \to E$$

Then

Motivation

$$\frac{\Gamma \vdash \mathbf{u} : (\delta \times \beta).U \to T' \qquad \Gamma \vdash \mathbf{w} : \alpha.U}{\Gamma \vdash (\mathbf{u} \ \mathbf{w}) : (\delta \times \beta \times \alpha).T' \ge \delta.T} \to E$$

Also,

$$\frac{\Gamma \vdash \mathbf{v} \colon ((1-\delta) \times \beta).(U \to T') \qquad \Gamma \vdash \mathbf{w} \colon \alpha.U}{\Gamma \vdash (\mathbf{v} \ \mathbf{w}) \colon ((1-\delta) \times \beta \times \alpha).T' \ge (1-\delta).T} \to E$$

So

$$\frac{\Gamma \vdash (\mathbf{u} \ \mathbf{w}) : \delta. T \qquad \Gamma \vdash (\mathbf{v} \ \mathbf{w}) : (1 - \delta). T}{\Gamma \vdash (\mathbf{u} \ \mathbf{w}) + (\mathbf{v} \ \mathbf{w}) : T} + I \text{ and } \equiv$$

The scalar type system Probabilistic type system: Intuition

Motivation

Conditional functions → same type on each branch.

- Conditional functions \rightarrow same type on each branch.
- By restricting the scalars to positive reals → probabilistic type system.

- Conditional functions \rightarrow same type on each branch.
- By restricting the scalars to positive reals → probabilistic type system.
- For example, one can type functions such as

$$\lambda x \left\{ x \left[\frac{1}{2}.(\text{true} + \text{false}) \right] \left[\frac{1}{4}.\text{true} + \frac{3}{4}.\text{false} \right] \right\} : \mathcal{B} \to \mathcal{B}$$

with the type system serving as a guarantee that the function conserves probabilities summing to one.

Motivation

Probabilistic type system: Formalisation

We define the *probabilistic* type system to be the *scalar* type system with the following restrictions:

The *scalar* type system Probabilistic type system: Formalisation

Motivation

We define the *probabilistic* type system to be the *scalar* type system with the following restrictions:

$$\circ$$
 $\mathcal{S} = \mathbb{R}^+$,

The scalar type system Probabilistic type system: Formalisation

We define the *probabilistic* type system to be the *scalar* type system with the following restrictions:

- \circ $\mathcal{S} = \mathbb{R}^+$
- ullet Contexts: Types in contexts are classic types ($\mathcal C$), *i.e.* types in $\mathcal U$ exempt of any scalar,

We define the *probabilistic* type system to be the *scalar* type system with the following restrictions:

- $\mathcal{S} = \mathbb{R}^+$
- Contexts: Types in contexts are classic types (\mathcal{C}), *i.e.* types in \mathcal{U} exempt of any scalar,
- We change the rule $\forall E$ to

$$\frac{\Gamma \vdash \mathbf{t} \colon \forall X.T}{\Gamma \vdash \mathbf{t} \colon T[C/X]} \, \forall E \text{ with } C \in \mathcal{C}$$

The scalar type system Probabilistic type system: Formalisation

We define the *probabilistic* type system to be the *scalar* type system with the following restrictions:

- \circ $\mathcal{S} = \mathbb{R}^+$
- Contexts: Types in contexts are classic types (\mathcal{C}), *i.e.* types in \mathcal{U} exempt of any scalar,
- We change the rule $\forall E$ to

$$\frac{\Gamma \vdash \mathbf{t} \colon \forall X.T}{\Gamma \vdash \mathbf{t} \colon T[C/X]} \, \forall E \text{ with } C \in \mathcal{C}$$

• The final conclusion must be classic.

The *scalar* type system Probabilistic type system: Proof

Definition (Weight function to check probability distributions)

Let $\omega : \Lambda \to \mathbb{R}^+$ be a function defined inductively by:

$$\omega(\mathbf{0}) = 0 \qquad \omega(\mathbf{t}_1 + \mathbf{t}_2) = \omega(\mathbf{t}_1) + \omega(\mathbf{t}_2)$$

$$\omega(\mathbf{b}) = 1 \qquad \omega(\alpha.\mathbf{t}) = \alpha \times \omega(\mathbf{t})$$

$$\omega(\mathbf{t}_1 \ \mathbf{t}_2) = \omega(\mathbf{t}_1) \times \omega(\mathbf{t}_2)$$

The scalar type system

The scalar type system Probabilistic type system: Proof

Definition (Weight function to check probability distributions)

Let $\omega : \Lambda \to \mathbb{R}^+$ be a function defined inductively by:

$$\omega(\mathbf{0}) = 0 \qquad \qquad \omega(\mathbf{t}_1 + \mathbf{t}_2) = \omega(\mathbf{t}_1) + \omega(\mathbf{t}_2) \\
\omega(\mathbf{b}) = 1 \qquad \qquad \omega(\alpha.\mathbf{t}) = \alpha \times \omega(\mathbf{t}) \\
\omega(\mathbf{t}_1 \ \mathbf{t}_2) = \omega(\mathbf{t}_1) \times \omega(\mathbf{t}_2)$$

Theorem (Normal terms in probabilistic have weight 1)

$$\Gamma_{\mathcal{C}} \vdash \mathbf{t} : \mathcal{C} \Rightarrow \omega(\mathbf{t}\downarrow) = 1.$$

Proof. We prove that $\Gamma \vdash \mathbf{t} : \alpha.C \Rightarrow \omega(\mathbf{t}\downarrow) = \alpha$ by structural induction over $\mathbf{t}\downarrow$.

The scalar type system

The scalar type system Probabilistic type system: Proof

Motivation

Definition (Weight function to check probability distributions)

Let $\omega : \Lambda \to \mathbb{R}^+$ be a function defined inductively by:

$$\omega(\mathbf{0}) = 0 \qquad \qquad \omega(\mathbf{t}_1 + \mathbf{t}_2) = \omega(\mathbf{t}_1) + \omega(\mathbf{t}_2) \\
\omega(\mathbf{b}) = 1 \qquad \qquad \omega(\alpha.\mathbf{t}) = \alpha \times \omega(\mathbf{t}) \\
\omega(\mathbf{t}_1 \ \mathbf{t}_2) = \omega(\mathbf{t}_1) \times \omega(\mathbf{t}_2)$$

Theorem (Normal terms in *probabilistic* have weight 1)

$$\Gamma_{\mathcal{C}} \vdash \mathbf{t} : \mathcal{C} \Rightarrow \omega(\mathbf{t}\downarrow) = 1.$$

Proof. We prove that $\Gamma \vdash \mathbf{t} : \alpha.C \Rightarrow \omega(\mathbf{t}\downarrow) = \alpha$ by structural induction over $\mathbf{t}\downarrow$.

Example: $2.(\lambda x \frac{1}{2}.x) y$

The *scalar* type system Probabilistic type system: Proof

Definition (Weight function to check probability distributions)

Let $\omega : \Lambda \to \mathbb{R}^+$ be a function defined inductively by:

$$\begin{array}{ll} \omega(\mathbf{0}) = 0 & \omega(\mathbf{t}_1 + \mathbf{t}_2) = \omega(\mathbf{t}_1) + \omega(\mathbf{t}_2) \\ \omega(\mathbf{b}) = 1 & \omega(\alpha.\mathbf{t}) = \alpha \times \omega(\mathbf{t}) \\ \omega(\mathbf{t}_1 \ \mathbf{t}_2) = \omega(\mathbf{t}_1) \times \omega(\mathbf{t}_2) & \end{array}$$

Theorem (Normal terms in probabilistic have weight 1)

$$\Gamma_{\mathcal{C}} \vdash \mathbf{t} : \mathcal{C} \Rightarrow \omega(\mathbf{t}\downarrow) = 1.$$

Proof. We prove that $\Gamma \vdash \mathbf{t} : \alpha . \mathcal{C} \Rightarrow \omega(\mathbf{t} \downarrow) = \alpha$ by structural induction over **t**↓.

Example:
$$2.(\lambda x \frac{1}{2}.x) y$$

$$\omega(2.(\lambda x \, \tfrac{1}{2}.x) \, y) = 2$$

Definition (Weight function to check probability distributions)

Let $\omega : \Lambda \to \mathbb{R}^+$ be a function defined inductively by:

$$\begin{array}{ll} \omega(\mathbf{0}) = 0 & \omega(\mathbf{t}_1 + \mathbf{t}_2) = \omega(\mathbf{t}_1) + \omega(\mathbf{t}_2) \\ \omega(\mathbf{b}) = 1 & \omega(\alpha.\mathbf{t}) = \alpha \times \omega(\mathbf{t}) \\ \omega(\mathbf{t}_1 \ \mathbf{t}_2) = \omega(\mathbf{t}_1) \times \omega(\mathbf{t}_2) & \end{array}$$

Theorem (Normal terms in probabilistic have weight 1)

$$\Gamma_{\mathcal{C}} \vdash \mathbf{t} : \mathcal{C} \Rightarrow \omega(\mathbf{t}\downarrow) = 1.$$

Proof. We prove that $\Gamma \vdash \mathbf{t} : \alpha . \mathcal{C} \Rightarrow \omega(\mathbf{t} \downarrow) = \alpha$ by structural induction over **t** ...

Example:
$$2.(\lambda x \frac{1}{2}.x) y \rightarrow y$$

$$\omega(2.(\lambda x \frac{1}{2}.x) y) = 2 \qquad \omega(y) = 1$$

Logical content: No-cloning theorem (I)

Definition (Proof method of depth n)

$$\Pi_0(S) = S$$

$$\Pi_n(S) = \frac{\Pi_{n-1}(S)}{P_S} R \quad \text{or} \quad \frac{\Pi_k(S) \quad \pi_h}{P_S} R \quad \text{or} \quad \frac{\pi_k \quad \Pi_h(S)}{P_S} R$$

where

- S is a sequent,
- π_n is a constant derivation tree of size n,
- $\max\{k, h\} = n 1$,
- R is a typing rule, and
- P_S is a sequent such that the resulting derivation tree is well-formed

The *scalar* type system Logical content: No-cloning theorem (I)

Definition (Proof method of depth n)

$$\Pi_0(S) = S$$

$$\Pi_n(S) = \frac{\Pi_{n-1}(S)}{P_S} R \quad \text{or} \quad \frac{\Pi_k(S) \quad \pi_h}{P_S} R \quad \text{or} \quad \frac{\pi_k \quad \Pi_h(S)}{P_S} R$$

where

- S is a sequent,
- π_n is a constant derivation tree of size n,
- $\max\{k, h\} = n 1$,
- R is a typing rule, and
- P_S is a sequent such that the resulting derivation tree is well-formed.

 $C(\Pi_n(S))$ denote the conclusion (root) of the tree $\Pi_n(S)$.

The scalar type system Logical content: No-cloning theorem (II)

Examples:

$$\Pi_1(S) = \frac{S}{P_S} \, \forall I$$

The scalar type system

Logical content: No-cloning theorem (II)

Examples:

$$\Pi_1(S) = \frac{S}{P_S} \, \forall I \qquad \Pi_1(\Gamma \vdash \mathbf{t} \colon T) = \frac{\Gamma \vdash \mathbf{t} \colon T}{\Gamma \vdash \mathbf{t} \colon \forall X . T} \, \forall I$$

The *scalar* type system Logical content: No-cloning theorem (II)

Examples:

$$\Pi_{1}(S) = \frac{S}{P_{S}} \forall I \qquad \Pi_{1}(\Gamma \vdash \mathbf{t} : T) = \frac{\Gamma \vdash \mathbf{t} : T}{\Gamma \vdash \mathbf{t} : \forall X . T} \forall I$$

$$\Pi_{n}(\Gamma \vdash \mathbf{u} : \alpha . A) = \frac{\Gamma \vdash \mathbf{u} : \alpha . A}{\Gamma \vdash \mathbf{u} + \mathbf{v} : (2 + \alpha) . A} + I$$
function or pattern matching)

(Partial function or pattern matching)

The scalar type system Logical content: No-cloning theorem (II)

Examples:

$$\Pi_{1}(S) = \frac{S}{P_{S}} \forall I \qquad \Pi_{1}(\Gamma \vdash \mathbf{t} : T) = \frac{\Gamma \vdash \mathbf{t} : T}{\Gamma \vdash \mathbf{t} : \forall X . T} \forall I$$

$$\Pi_{n}(\Gamma \vdash \mathbf{u} : \alpha . A) = \frac{\Gamma \vdash \mathbf{u} : \alpha . A}{\Gamma \vdash \mathbf{u} + \mathbf{v} : (2 + \alpha) . A} + I$$

(Partial function or pattern matching) Basically $C(\Pi_n(S)) = P_S$ means that P_S can be derived from S by using S once, with the fixed proof method Π .

Motivation

Logical content: No-cloning theorem (III)

Theorem (No-cloning of scalars)

 $\exists \Pi_n \text{ such that } \forall \alpha, C(\Pi_n(\Gamma \vdash \alpha.U)) = \Delta \vdash (\delta \times \alpha^s + \gamma).V \text{ with}$ $\delta \neq 0$ and γ constants in \mathcal{S} , $s \in \mathbb{N}^{>1}$ and U, V constants in \mathcal{U} .

Proof. Induction over n.

The scalar type system Logical content: No-cloning theorem (III)

Motivation

Theorem (No-cloning of scalars)

 $\sharp \Pi_n$ such that $\forall \alpha, C(\Pi_n(\Gamma \vdash \alpha.U)) = \Delta \vdash (\delta \times \alpha^s + \gamma).V$ with $\delta \neq 0$ and γ constants in \mathcal{S} , $s \in \mathbb{N}^{>1}$ and U, V constants in \mathcal{U} .

Proof. Induction over *n*.

Corollary (No-cloning Theorem)

 $\nexists \Pi_n \text{ such that } \forall T, C(\Pi_n(\Gamma \vdash T)) = \Delta \vdash T \otimes T.$

where $A \otimes B$ is the classical encoding for the type of tuples.

Motivation

Logical content: No-cloning theorem (III)

Theorem (No-cloning of scalars)

 $\exists \Pi_n \text{ such that } \forall \alpha, C(\Pi_n(\Gamma \vdash \alpha.U)) = \Delta \vdash (\delta \times \alpha^s + \gamma).V \text{ with } \delta \neq 0 \text{ and } \gamma \text{ constants in } \mathcal{S}, s \in \mathbb{N}^{>1} \text{ and } U, V \text{ constants in } \mathcal{U}.$

Proof. Induction over *n*.

Corollary (No-cloning Theorem)

 $\nexists \Pi_n \text{ such that } \forall T, C(\Pi_n(\Gamma \vdash T)) = \Delta \vdash T \otimes T.$

where $A \otimes B$ is the classical encoding for the type of tuples. *Proof.*

• It is easy to show that $\forall T, T \equiv \alpha.U$ with $U \in \mathcal{U}$

The scalar type system Logical content: No-cloning theorem (III)

Motivation

Theorem (No-cloning of scalars)

 $\sharp \Pi_n$ such that $\forall \alpha, C(\Pi_n(\Gamma \vdash \alpha.U)) = \Delta \vdash (\delta \times \alpha^s + \gamma).V$ with $\delta \neq 0$ and γ constants in \mathcal{S} , $s \in \mathbb{N}^{>1}$ and U, V constants in \mathcal{U} .

Proof. Induction over *n*.

Corollary (No-cloning Theorem)

 $\nexists \Pi_n \text{ such that } \forall T, C(\Pi_n(\Gamma \vdash T)) = \Delta \vdash T \otimes T.$

where $A \otimes B$ is the classical encoding for the type of tuples. *Proof.*

- It is easy to show that $\forall T, T \equiv \alpha.U$ with $U \in \mathcal{U}$
- $T \otimes T \equiv \alpha.U \otimes \alpha.U \equiv \alpha^2.(U \otimes U) = (1 \times \alpha^2 + 0).(U \otimes U).$

Theorem (No-cloning of scalars)

 $\sharp \Pi_n$ such that $\forall \alpha, C(\Pi_n(\Gamma \vdash \alpha.U)) = \Delta \vdash (\delta \times \alpha^s + \gamma).V$ with $\delta \neq 0$ and γ constants in \mathcal{S} , $s \in \mathbb{N}^{>1}$ and U, V constants in \mathcal{U} .

Proof. Induction over *n*.

Corollary (No-cloning Theorem)

$$\nexists \Pi_n \text{ such that } \forall T, C(\Pi_n(\Gamma \vdash T)) = \Delta \vdash T \otimes T.$$

where $A \otimes B$ is the classical encoding for the type of tuples. *Proof.*

- It is easy to show that $\forall T, T \equiv \alpha.U$ with $U \in \mathcal{U}$
- $T \otimes T \equiv \alpha.U \otimes \alpha.U \equiv \alpha^2.(U \otimes U) = (1 \times \alpha^2 + 0).(U \otimes U).$
- By the previous theorem, the corollary holds.

The scalar type system Summary of contributions

Motivation

• S.N. : Simplified the Linear-algebraic λ -calculus by lifting most restrictions. S.R. OK.

The *scalar* type system Summary of contributions

- S.N. : Simplified the Linear-algebraic λ -calculus by lifting most restrictions. S.R. OK.
- Scalar type system: types keep track of the 'amount of a type' by holding sum of amplitudes of terms of that types.

- S.N.: Simplified the Linear-algebraic λ -calculus by lifting most restrictions. S.R. OK.
- Scalar type system: types keep track of the 'amount of a type' by holding sum of amplitudes of terms of that types.
- \Longrightarrow probabilistic type system, yielding a higher-order probabilistic λ -calculus.

The scalar type system Polemics, future work

- Captured no-cloning theorem is a way that is faithful to quantum theory and linear algebra, unlike LL:
 - For all A one can find a copying proof method, but there is no proof method for cloning all A.
 - Algebraic linearity is about taking $\alpha.U$ to something in $\alpha \gamma + \delta$... not just for $\gamma = 1 = \delta + 1$.

- Captured no-cloning theorem is a way that is faithful to quantum theory and linear algebra, unlike LL:
 - For all A one can find a copying proof method, but there is no proof method for cloning all A.

- Algebraic linearity is about taking $\alpha.U$ to something in $\alpha\gamma + \delta...$ not just for $\gamma = 1 = \delta + 1$.
- C.-H.+Q.C.=(quantum th. proofs, quantum th. logics)?
 Need a Vectorial type system:
 - Scalar type system → magnitude and signs for type vectors.
 - Future system → direction, (i.e. addition and orthogonality of types). Then it would be possible to check norm on amplitudes rather than probabilities.