UNIVERSITE DE GRENOBLE

Soutenance de thése
Du typage vectoriel

Alejandro Diaz-Caro

CAPP Team
LABORATOIRE D'INFORMATIQUE DE GRENOBLE

Adviser: Co-adviser:

Pablo Arrighi Frédéric Prost

23 - 09 - 2011

Lambda calculus [church’3sl
Formal system to study the defini-
tion of function

f(x) ~ t«
x = f(x) ~ Ax.ty
(x = f(x))r ~ (Ax.t) r
(x> F(x))r=1F(r) ~ (Ax.te) r — t[r/x]

tro=x|Axt]|(t)r
(Ax.t) r — t[r/x]

Lambda calculus rchurch’36] Type system [Church’40]

Formal system to study the defini- ‘@ tractable syntactic framework
tion of function for classifying phrases according to
F(x) ~ te the kinds of values they compute”

x = f(x) ~ Ax.ty
(x = f(x))r ~ (Ax.t) r

) —[Pierce’02]
(x> F(x))r=1F(r) ~ (Ax.te) r — t[r/x]

Mt T — R r: T

tro=x|Axt]|(t)r (Ax.t) r: R
(Ax.t) r — t[r/x]

Lambda calculus [church’36]
Formal system to study the defini-
tion of function

f(x) ~ t«
x = f(x) ~ Ax.ty
(x = f(x))r ~ (Ax.t) r
(x> F(x))r=1F(r) ~ (Ax.te) r — t[r/x]

tro=x|Axt|(t)r
(Ax.t) r — t[r/x]

System F [cirara>71]

TS with a universal quantification
over types

Ax.x . Int — Int
Ax.x : Bool — Bool

~ A x VXX = X

Type system [church’40]

“a tractable syntactic framework
for classifying phrases according to
the kinds of values they compute”
—[Pierce’02]

Mt T — R r: T
(Axt)r:R

Lambda calculus [church’36]
Formal system to study the defini-
tion of function
f(x) ~ t«
x = f(x) ~ Ax.ty

(x = f(x))r ~ (Ax.t) r
(x> F(x))r=1F(r) ~ (Ax.te) r — t[r/x]

tro=x|Axt|(t)r
(Ax.t) r — t[r/x]

System F [cirara>71]

TS with a universal quantification
over types

Ax.x . Int — Int
Ax.x : Bool — Bool

~ A x VXX = X

Type system [church’40]

“a tractable syntactic framework
for classifying phrases according to
the kinds of values they compute”
—[Pierce’02]

Mt T — R r: T
(Axt)r:R

Curry-Howard correspondence

Correspondence between type sys-
tems and logic

Mt T — R r: T
(Axt)r:R

T=R T
R

Lambda calculus [church’36]
Formal system to study the defini-
tion of function
f(x) ~ t«
x = f(x) ~ Ax.ty

(x = f(x))r ~ (Ax.t) r
(x> F(x))r=1F(r) ~ (Ax.te) r — t[r/x]

tro=x|Axt|(t)r
(Ax.t) r — t[r/x]

System F [cirara>71]

TS with a universal quantification
over types

Ax"t x : Int — Int
AxBo° x - Bool — Bool

~ o AX AN X YX X = X

Type system [church’40]

“a tractable syntactic framework
for classifying phrases according to
the kinds of values they compute”
—[Pierce’02]

Mt T — R r: T
(Axt)r:R

Curry-Howard correspondence

Correspondence between type sys-
tems and logic

Mt T — R r: T

(Axt)r:R
T=R T
R

Church vs. Curry style whether the types are part of the terms or not

To capture probabilistic/quantum/quantitative constructions:

algebraic extensions

tro=x|Axt|(t)r|t+r|at]|0 a € (S,+, %), aring.
Two origins:
» Differential A-calculus renrhara’031: linearity a /a Linear Logic
Removing the differential operator: Algebraic A-calculus (Aalg) [Vaux’09]
» Quantum computing: superposition of programs

Linearity as in algebra: Linear-algebraic A-calculus (A1in) [Arrighi,Dowek’08]

To capture probabilistic/quantum/quantitative constructions:

algebraic extensions

tro=x|Axt|(t)r|t+r|at]|0 a € (S,+, %), aring.
Two origins:
» Differential A-calculus renrhara’031: linearity a /a Linear Logic
Removing the differential operator: Algebraic A-calculus (Aalg) [Vaux’09]
» Quantum computing: superposition of programs

Linearity as in algebra: Linear-algebraic A-calculus (A1in) [Arrighi,Dowek’08]

Beta reduction:
(Ax.t) r = t[r/x]
“Algebraic” reductions:
at+ Bt — (a+P).t,
a.bt = (ax B).t,
(t) (rn+r2) = Et) ri+ (t) r,

(ti+t)r— (t) r+ (t2) 1,

(oriented version of the axioms of
vectorial spaces)(Arrighi,Dowek’07]

To capture probabilistic/quantum/quantitative constructions:

algebraic extensions

tro=x|Axt|(t)r|t+r|at]|0 a € (S,+, %), aring.
Two origins:
» Differential A-calculus renrhara’031: linearity a /a Linear Logic
Removing the differential operator: Algebraic A-calculus (Aalg) [Vaux’09]
» Quantum computing: superposition of programs

Linearity as in algebra: Linear-algebraic A-calculus (A1in) [Arrighi,Dowek’08]

Beta reduction:
(Ax.t) r = t[r/x]
“Algebraic” reductions:
at+pt— (a+p)t,
aﬂt%(axﬂ)t B = {t;: t; var. or abs. }
(t) (rn+r2) = Et) ri+ (t) r,

(ti+t)r— (t) r+ (t2) 1,

Vectorial space of values

Set of values ::= Span(B)

(oriented version of the axioms of
vectorial spaces)(Arrighi,Dowek’07]

To capture probabilistic/quantum/quantitative constructions:

algebraic extensions

tro=x|Axt|(t)r|t+r|at]|0 a € (S,+, %), aring.
)\alg /\lin
Origin Linear Logic Quantum computing
Evaluation strategy Call-by-name Call-by-base
Algebraic part Equalities Rewrite system

Contribution: CPS simulation [Diaz-Caro,Perdrix,Tasson,Valiron’10]

Beta reduction:
(Ax.t) r = t[r/x]
“Algebraic” reductions:)
at+Bt— (a+p)t, Vectorial space of values
a.p.t — (axB).t, B = {t;: t; var. or abs. }
(t) (rn+r2) = (t) 1+ (t) r2,
(t1+t) r — (t1) r(t)r, Set of values ::= Span(B)
(oriented version of the axioms of
vectorial spaces)(Arrighi,Dowek’07]

Example of program

Two base vectors:

true = Ax. Ay .x
false = Ax.\y.y

Example of program

true = Ax. Ay .x

false = Ax.\y.y

(U)true = a.true + b.false
(U)false = c.true + d.false

Two base vectors:

Linear map U s.t.

Example of program

true = Ax. Ay .x

false = Ax.\y.y

(U)true = a.true + b.false
(U)false = c.true + d.false

Two base vectors:
Linear map U s.t.

U := Mx.{((x) [a.true + b.false]) [c.true + d false]}

Example of program

true = Ax. Ay .x

false = Ax.\y.y

(U)true = a.true + b.false
(U)false = c.true + d.false

U := Mx.{((x) [a.true + b.false]) [c.true + d false]}

Two base vectors:

Linear map U s.t.

Aim:

To provide a type system capturing the “vectorial” structure of terms
. to check for properties of probabilistic processes
. to check for properties of quantum processes

. or whatever application needing the structure of the vector
in normal form
understand what it means “linear combination of types”

. a Curry-Howard approach to defining
Fuzzy/Quantum/Probabilistic logics from
Fuzzy/Quantum/Probabilistic programming languages.

Plan

System F
Scalar Additive
a.T T+R
Vectorial

a. T+ B.R

Plan

System F
Scalar Additive
a.T T+R
Vectorial

a. T+ B.R

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

MNFat:aT

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

6/24

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

Nat:a.T

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

6/24

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

Nat:a.T

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)

6/24

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

Nat:a.T

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)
Theorem

IfTcEt: C thenw(t])=1

6/24

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

Nat:a.T

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)
Theorem

IfTcEt: C thenw(t])=1

1
2.(Ax.=.x) y 1
Example 1 2 y:ChF2.(Ax.zx)y: C
w(2.()\x.§.x) y)=2 2

6/24

The Scalar Type System
A polymorphic type system tracking scalars:
FrEt: T

Nat:a.T

NrN-t:a.T THr:0.T
Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)
Theorem

IfTcEt: C thenw(t])=1
1
2(Mz x)y =y
Example 1(2) y:Ck 2.()\x.1.x) y:C
w(2.()\x.§.x) y)=2 wy)=1 2

6/24

The Scalar Type System
A polymorphic type system tracking scalars:

ree: 7 > Subject reduction (type preservation)
MN-at:aT » Strong normalisation
1. SN for a straightforward extension of
lrt:a.T TEHr: 5T System F

2. verify that both systems type the same
terms

Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)
Theorem

IfTcEt: C thenw(t])=1

1
2. (Ax.zx)y =%y 1
Example 1 2 y:ChF2.(Ax.zx)y:C
w(2.()\x.§.x) y)=2 wy)=1 2

6/

24

The Scalar Type System
A polymorphic type system tracking scalars:

ree: 7 > Subject reduction (type preservation)
MN-at:aT » Strong normalisation
1. SN for a straightforward extension of
lrt:a.T TEHr: 5T System F

2. verify that both systems type the same
terms

Mrt+r:(a+p).T

Gives the “amount” of terms — Barycentric restrictions (3~ a; = 1)

Definition (Weight function (to check barycentricity))

w(0)=0 wb) =1 w(a.t) = a x w(t)
w((t) r) = w(t) x w(r) w(t +r) = w(t) +w(r)
Theorem

IfTcEt: C thenw(t])=1
1
2(Mz x)y =y
Example 1(2) y:Ck 2.()\x.1.x) y:C
w(2.()\x.§.x) y)=2 wy)=1 2

Contribution: [Arrighi,Diaz-Caro’09]

6/

24

Plan

System F

SN

Scalar Additive

o~

Vectorial

/24

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs
» Simplified version without AC of + [T+ R|=|T|x|R|

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs
» Simplified version without AC of + [T+ R|=|T|x|R|
» Distributivity in the translation (using the structure given by the type)

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs
» Simplified version without AC of + |IT+R|=|T|x|R]|
» Distributivity in the translation (using the structure given by the type)
» Equivalences given explicitly: T = R implies |T| < |R)|
AxB& BxA (AxB)x Ce Ax(BxC()

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs
» Simplified version without AC of + |IT+R|=|T|x|R]|
» Distributivity in the translation (using the structure given by the type)
» Equivalences given explicitly: T = R implies |T| < |R)|
AxB& BxA (AxB)x Ce Ax(BxC()

Theorem
IfT = t: T and exists T' = T then || ¢ [tlp : | T’

Also we set up an inverse translation showing that it is non-trivial

The Additive Type System
A polymorphic type system with sums (for the additive fragment of Ajy)

Fr=t: 7 N-r:R » Sums ~ Assoc., comm. pairs

Tt+r: THR » distributive w.r.t. application

Translation into System F with pairs
» Simplified version without AC of + |IT+R|=|T|x|R]|
» Distributivity in the translation (using the structure given by the type)
» Equivalences given explicitly: T = R implies |T| < |R)|
AxB& BxA (AxB)x Ce Ax(BxC()

Theorem
IfT = t: T and exists T' = T then || ¢ [tlp : | T’

Also we set up an inverse translation showing that it is non-trivial

Subject reduction v*
Strong normalisation (using the one from System F,) v/
Contribution: [Diaz-Caro,Petit’10]

Plan

System F

TN

Scalar Additive > System F,

>~ 7

Vectorial

9/24

Plan

System F

TN

Scalar Additive > System F,

~,

Vectorial A\CA

9/24

The Complete Additive System (A“?)
Extending sums to the whole calculus (with positive reals scalars)

o re1 » More general than Additive
l-at:|a.T=T+---+T
—_—

Le]

> Less complex than Vectorial

» “Amounts’ approximated

The Complete Additive System (A“?)
Extending sums to the whole calculus (with positive reals scalars)

o re1 » More general than Additive
l-at:|a.T=T+---+T
—_—

Le]

> Less complex than Vectorial

» “Amounts’ approximated

If=t: T, thent (0.9).t+(1.1).t: T
(0.9).t+(1.1)t -2t and F2t:2.T

The Complete Additive System (A“?)
Extending sums to the whole calculus (with positive reals scalars)

o re1 » More general than Additive
l-at:|a.T=T+---+T
—_—

Le]

> Less complex than Vectorial

» “Amounts’ approximated

If=t: T, thent (0.9).t+(1.1).t: T
(0.9).t+(1.1)t -2t and F2t:2.T

Weak subject reduction: t =>r, TFt: T=TFr: Rwith T <R

The Complete Additive System (A“?)
Extending sums to the whole calculus (with positive reals scalars)

o re1 » More general than Additive
l-at:|a.T=T+---+T
—_—

Le]

> Less complex than Vectorial

» “Amounts’ approximated

If=t: T, thent (0.9).t+(1.1).t: T
(0.9).t+(1.1)t -2t and F2t:2.T

Weak subject reduction: t =>r, TFt: T=TFr: Rwith T <R
Abstract interpretation (theorem)

ANA T

| T
() ()

)\CA p)\add] Fp

1F

The Complete Additive System (A“?)
Extending sums to the whole calculus (with positive reals scalars)

o re1 » More general than Additive
l-at:|a.T=T+---+T
—_—

Le]

> Less complex than Vectorial

» “Amounts’ approximated

If=t: T, thent (0.9).t+(1.1).t: T
(0.9).t+(1.1)t -2t and F2t:2.T

Weak subject reduction: t =>r, TFt: T=TFr: Rwith T <R
Abstract interpretation (theorem)

[]

ACA T s N\ F,

\Ll [{ \La wLF
(=) (=)

A ——— N F,

[P

Strong normalisation (using Additive)
Contribution: [Buiras,Diaz-Caro,Jaskelioff’11]

Plan

System F

TN

Scalar Additive > System F,

~,

Vectorial A\CA

11/24

The Vectorial system

Types:
T,R,S=U|T+R|aT
UV.W =X|U—->T]|v¥X.U
(U, V, W reflect the basis terms)

Equivalences:

1.T = T
a.(8.T) = (axp).T
aT+aR = a(T+R)
a.T+B.T = (a+8).T
T+R = R+T
T+(R+S) = (T+R)+S

(reflect the vectorial spaces axioms)

Typing rules

Fr=t: T Fr=t: T
FxUrx:U o °
X X r-0:0.T MN-at:aT
n m =
) . v : R . : vV, 3w; /
FFt.;a,.VX.(Ua T) rH_Z@,vJ iRy,
= —>E
FE(t)r ZZ&,X,BJ Ti[W;/X]
i=1 j=1
Mx:UFt: T FrEt: T Nl-r:R
— +
FrNEXxt:U—T Fr~t+r: T+R
n n
FEt: Y ainli X ¢ FV(n) TEt: Y VXU
i=1 - V/ i=1 VE
Tht: Y o ¥X.U; Met: Za, i[V/X]

i=1

13/24

Typing rules

Fr=t: T FrEt: T
. T 0 s/
Hx:Ukx:U FF0:0.T M-at:aT
. ux : . v YL 3W
FFt.Zlu,,.VX.(Uﬁ Ti) rH.ZI/aJ_vj iRl
i= Jj= —F
n m
THE@E) Y > i x 8. Ti[W;/X]
i=1 j=1
Mx:UFt: T FrEt: T Fr:R
- +1
FTEAxt:U—T rM-t+r: T+R
n n
FEt: Y ainli X ¢ Fv(n) FEt: Y i vX.U
i=1 vl i=1 VE
n n
FEt:) VXU ety i U[V/X]
i=1 i=1

Strong normalisation: Reducibility candidates v
Main difficulty: show that {t;}; SN = >".t; SN (algebraic measure)

13/24

Typing rules

Fr=t: T FrEt: T
UL x - ax 0 S/
Hx:Ukx:U FF0:0.T M-at:aT
. ux : . v YL 3W
Mt Zlu,,.vx.(u —T) Trr ZIBJ_\/J iRl
i= Jj= —F
n m
THE@E) Y > i x 8. Ti[W;/X]
i=1 j=1
Mx:UFt: T FrEt: T Fr:R
- +1
FTEAxt:U—T rM-t+r: T+R
n n
FEt: Y ainli X ¢ Fv(n) FEt: Y i vX.U
i=1 vl i=1 VE
n n
FEt:) VXU ety i U[V/X]
i=1 i=1

Strong normalisation: Reducibility candidates v
Main difficulty: show that {t;}; SN = >".t; SN (algebraic measure)
Subject reduction a challenge

13/24

The case of the factorisation rule

System F a la Curry: a term can have different, unrelated types

rete: 7 THt: T
MlMNat+Bt:a.T+B.T
However, a.t + 3.t = (a + f3).t... one of the two types must be chosen!

In general a. T + 8. T" # (a+). T # (a+ B). T

(and since we are working in System F, there is no principal types neither)

14 /24

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial” structure lost)

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial” structure lost)

Mr=t: T r-t:. 7

M-(a+pB)t:a.T+p.T
> As soon as we add this one, we have to add many others
» Too complex and inelegant (subject reduction by axiom)

» Add the typing rule

Several possible solutions:

» Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial” structure lost)

Mr=t: T r-t:. 7

M-(a+pB)t:a.T+p.T
> As soon as we add this one, we have to add many others
» Too complex and inelegant (subject reduction by axiom)

» Add the typing rule

» Weak subject reduction
» IfTHt: T andt —kr, then
> if R is not the factorisation rule: T'+r: T
> if R is the factorisation rule: 3SC T /Tkr:S

where (¢ +8).TC a.T+ BT ifJFt/T+t: TandlHt: T’

Contribution: [Arrighi,Diaz-Caro,Valiron’11]

v

v

v

v

Several possible solutions:

Remove factorisation rule (Done. SR and SN both work)

> + in scalars not used anymore. Scalars = Monoid
> It works!... but it is no so expressive (“vectorial” structure lost)

Mr=t: T r-t:. 7

M-(a+pB)t:a.T+p.T
> As soon as we add this one, we have to add many others
» Too complex and inelegant (subject reduction by axiom)

Add the typing rule

Weak subject reduction
» IfTHt: T andt —kr, then
> if R is not the factorisation rule: T'+r: T
> if R is the factorisation rule: 3SC T /Tkr:S

where (¢ +8).TC a.T+ BT ifJFt/T+t: TandlHt: T’
Contribution: [Arrighi,Diaz-Caro,Valiron’11]

Church style
» Seems to be the natural solution: the type is part of the term, if the
types are different, the terms are different (no factorisation rule)

Plan

System F

TN

Scalar Additive > System F,

~,

Vectorial A\CA

|

Lineal

16 /24

The system Lineal

Types:
T,R,S=U|T+R|aT
UV,W =X |U-—=>T|VX.U|

(U, V, W reflect the basis terms)

Equivalences:

1.T = T
a.(8.T) = (axp).T
aT+aR = a(T+R)
a.T+B.T = (a+8).T
T+R = R+T
T+(R+S) = (T+R)+S

(reflect the vectorial spaces axioms)

17/24

Typing rules

Fret: T Mt T
ax 0

. . 1
Lx:Ukx:U F0:0.T M-at:aT

S|

m+36

n m
FEt Y ai((vX), (U — T)) Z W), TErY 8.V Vujf[j/{/l%]-»jkv/
i=1 j=

ZZa, x B Ti{ W/ X]),
i=1 j=1
Mx:UkFt: T Fr=t: T l~r:R
— +1
FrNEXx:Ut:U—T Fr~t+r: T+R
TEt:Y ol X ¢ FV(n) FEt: Y aivX.U
i—1 i=1
M]

m

M-AX.t: ia;.VX.U,- (> V) Y an(vX.U)e(> V)
j=1 i=1 j=1

i=1

Subject reduction v
Strong normalisation (using Vectorial) v/

18/24

Most important properties of Lineal

Theorem

Theorem

19/24

Confluence as a side effect

Confluence

In the original untyped setting: “confluence by restrictions’™

Yo = (Ax.(b + (x)x)) Ax.(b + (x)x)

Yb—>b+yb—>b+b+yb—>

21 /24

Confluence

In the original untyped setting: “confluence by restrictions’™

Yo = (Ax.(b + (x)x)) Ax.(b + (x)x)

Yb—>b+yb—>b+b+yb—>

Yo + (—1).Yb — (1 - 1).Yb —*0
1
b + Yb + (_1)Yb

A
b

Confluence

In the original untyped setting: “confluence by restrictions’™

Yv = (Ax.(b + (x)x)) Ax.(b + (x)x)

Yb—>b+yb—>b+b+yb—>

Yo + (—1).Yb — (1 - 1).Yb —*0

1 Solution in the untyped setting:
b+ Yp+(-1).Y% at+ft— (ot)t
1. only if t is closed-normal

b

Confluence

In the original untyped setting: “confluence by restrictions’™

Yo = (Ax.(b + (x)x)) Ax.(b + (x)x)

Yb—>b+yb—>b+b+yb—>

Yo + (—1).Yb — (1 - 1).Yb —*0

1 Solution in the untyped setting:
b+ Yp+(-1).Y% at+ft— (ot p)t

i only if t is closed-normal

b

In the typed setting: Strong normalisation solves the problem

Theorem (Confluence)

Contributions

System F Aalg C Alin
Scalar Additive > System F,
A
Vectorial ACA
Relation between Aji, and Aue
. SN and SR for the five systems
Lineal

Sums as pairs
Types <+ vectorial structure of terms

vV v.v. v Yy

Extra: No cloning theorem

Papers

Diaz-Caro,Perdrix, Tasson,Valiron HOR'10 (journal version in preparation)
Arrighi,Diaz-Caro QPL'09 (journal version submitted)

Diaz-Caro,Petit (in preparation)

Buiras,Diaz-Caro,Jaskelioff LSFA'11

Arrighi,Diaz-Caro,Valiron DCM'11 (journal version in preparation)

N}

Future work

v

Invariability of models of A,z through the CPS simulation

v

Differential A-calculus <+ Linear-algebraic A-calculus

v

Algebraic Linearity <> Linear logic resources

v

Quantum language (orthogonality issues)

v

Relations with Probabilistic/Quantum/Fuzzy Logics

N

	Introduction
	Motivation
	Scalar
	Additive
	lCA
	Vectorial
	Lineal
	Confluence
	Contributions
	Future Work

