The Vectorial Lambda-Calculus

Pablo Arrighia,b, Alejandro Díaz-Caro c,e, Benoît Valiron d,e

aENS-Lyon, Laboratoire LIP, France
bUniversité de Grenoble, Laboratoire LIG, France
cUniversité Paris-Ouest Nanterre La Défense, France
dUniversity of Pennsylvania, CIS Department, USA
eINRIA Paris-Rocquencourt, France

Abstract

We describe a type system for the linear-algebraic lambda-calculus. The type system accounts for the linear-algebraic aspects of this extension of lambda-calculus: it is able to statically describe the linear combinations of terms that will be obtained when reducing the programs. This gives rise to an original type theory where types, in the same way as terms, can be superposed into linear combinations. We prove that the resulting typed lambda-calculus is strongly normalising and features a weak subject reduction. Finally, we show how to naturally encode matrices and vectors in this typed calculus.

1. Introduction

1.1. (Linear-)algebraic lambda-calculi

A number of recent works seek to endow the \(\lambda\)-calculus with a vector space structure. This agenda has emerged simultaneously in two different contexts.

- The field of Linear Logic considers a logic of resources where the propositions themselves stand for those resources – and hence cannot be discarded nor copied. When seeking to find models of this logic, one obtains a particular family of vector spaces and differentiable functions over these. It is by trying to capture back these mathematical structures into a programming language that Ehrhard and Regnier have defined the differential \(\lambda\)-calculus [21], which has an intriguing differential operator as a built-in primitive and an algebraic module of the \(\lambda\)-calculus terms over natural numbers. Vaux [34] has focused his attention on a ‘differential \(\lambda\)-calculus without differential operator’, extending the algebraic module to positive real numbers. He obtained a confluence result in this case, which stands even in the untyped setting. More recent works on this algebraic \(\lambda\)-calculus tend to consider arbitrary scalars [31, 20, 1].

Email addresses: pablo.arrighi@imag.fr (Pablo Arrighi), alejandro@diaz-caro.info (Alejandro Díaz-Caro), benoit.valiron@monoidal.net (Benoît Valiron)
The field of Quantum Computation postulates that, as computers are physical systems, they may behave according to the quantum theory. It proves that, if this is the case, novel, more efficient algorithms are possible \[30, 23\] – which have no classical counterpart. Whilst partly unexplained, it is nevertheless clear that the algorithmic speed-up arises by tapping into the parallelism granted to us ‘for free’ by the superposition principle; which states that if \( \mathbf{t} \) and \( \mathbf{u} \) are possible states of a system, then so is the formal linear combination of them \( \alpha \cdot \mathbf{t} + \beta \cdot \mathbf{u} \) (with \( \alpha \) and \( \beta \) some arbitrary complex numbers, up to a normalizing factor). The idea of a module of \( \lambda \)-terms over an arbitrary scalar field arises quite naturally in this context. This was the motivation behind the linear-algebraic \( \lambda \)-calculus, or Lineal for short, by Dowek and one of the authors \[6\], who obtained a confluence result which holds for arbitrary scalars and again covers the untyped setting.

These two languages are rather similar: they both merge higher-order computation, be it terminating or not, in its simplest and most general form (namely the untyped \( \lambda \)-calculus) together with linear algebra in its simplest and most general form also (the axioms of vector spaces). In fact they can simulate each other \[17\]. Our starting point is the second one, Lineal, because its confluence proof allows arbitrary scalars and because one has to make a choice. Whether the models developed for the first language, and the type systems developed for the second language, carry through to one another via their reciprocal simulations, is a topic of future investigation.

1.2. Other motivations to study (linear-)algebraic lambda-calculi

The two languages are also reminiscent of other works in the literature:

- **Algebraic and symbolic computation.** The functional style of programming is based on the \( \lambda \)-calculus together with a number of extensions, so as to make everyday programming more accessible. Hence since the birth of functional programming there have been several theoretical studies on extensions of the \( \lambda \)-calculus in order to account for basic algebra (see for instance Dougherty’s algebraic extension \[19\] for normalising terms of the \( \lambda \)-calculus) and other basic programming constructs such as pattern-matching \[12, 3\], together with sometimes non-trivial associated type theories \[29\]. Whilst this was not the original motivation behind (linear-)algebraic \( \lambda \)-calculi, they could still be viewed as an extension of the \( \lambda \)-calculus in order to handle operations over vector spaces and make programming more accessible upon them. The main difference in approach is that the \( \lambda \)-calculus is not seen here as a control structure which sits on top of the vector space data structure, controlling which operations to apply and when. Rather, the \( \lambda \)-calculus terms themselves can be summed and weighted, hence they actually are vectors, upon which they can also act.

- **Parallel and probabilistic computation.** The above intertwinnings of concepts are essential if seeking to represent parallel or probabilistic computation as it is the computation itself which must be endowed with a vector space structure. The ability to superpose \( \lambda \)-calculus terms in that sense takes us back to Boudol’s parallel \( \lambda \)-calculus \[8\] or de Liguoro and Piperno’s work on non-deterministic extensions of \( \lambda \)-calculus \[13\], as well as more recent works such as \[28, 10, 16\]. It may also
be viewed as being part of a series of works on probabilistic extensions of calculi, e.g. [9, 24] and [14, 27, 15] for \( \lambda \)-calculus more specifically.

Hence (linear-)algebraic \( \lambda \)-calculus can be seen as a platform for various applications, ranging from algebraic computation, probabilistic computation, quantum computation and resource-aware computation.

1.3. The language

The language we consider in this paper will be called the \textit{vectorial lambda-calculus}, denoted by \( \lambda^{vec} \). It is derived from \textit{Lineal} [6]. This language admits the regular constructs of lambda-calculus: variables \( x, y, \ldots \), lambda-abstractions \( \lambda x. s \) and application \( (s) t \). But it also admits linear combinations of terms: \( 0, s + t \) and \( \alpha \cdot s \) are terms, where the scalar \( \alpha \) ranges over a ring. As in [6], it behaves in a call-by-value oriented manner, in the sense that \( (\lambda x. r)(s + t) \) first reduces to \( (\lambda x. r)s + (\lambda x. r)t \) until \textit{basis terms} (i.e. values) are reached, at which point beta-reduction applies.

The set of the normal forms of the terms can then be interpreted as a module and the term \( (\lambda x. r)s \) can be seen as the application of the linear operator \( (\lambda x. r) \) to the vector \( s \).

The goal of this paper is to give a formal account of linear operators and vectors at the level of the type system.

1.4. Our contributions: The types

Our goal is to characterize the vectoriality of the system of terms, as summarized by the slogan:

If \( s : T \) and \( t : R \) then \( \alpha \cdot s + \beta \cdot t : \alpha \cdot T + \beta \cdot R \).

In the end we achieve a type system such that:

- The typed language features a slightly weakened subject reduction (cf. Theorem 4.1).
- The typed language features strong normalization (cf. Theorem 5.13).
- In general, if \( t \) has type \( \sum_i \alpha_i U_i \), then it must reduce to a \( t' \) of the form \( \sum_{ij} \beta_{ij} b_{ij} \), where: the \( b_{ij} \)'s are basis terms of unit type \( U_i \), and \( \sum_{ij} \beta_{ij} = \alpha_i \). (cf. Theorem 6.1).
- In particular finite vectors and matrices and tensorial products can be encoded within \( \lambda^{vec} \). In this case, the type of the encoded expressions coincides with the result of the expression (cf. Theorem 6.2).

Beyond these formal results, this work constitutes a first attempt to describe a natural type system with type constructs \( \alpha \cdot \) and \( + \) and to study their behaviour.
1.5. Directly related works

This paper is part of a research path [33, 2, 6, 32, 11, 4, 18] to design a typed language where terms are quantified (they can be interpreted as probability distributions or quantum superpositions of data and programs) and the types are quantified (they provide the propositions for a probabilistic or quantum logic via Curry-Howard).

Along this path, a first step was accomplished in [4] with scalars in the type system. If \( \alpha \) is a scalar and \( \Gamma \vdash t : T \) is a valid sequent, then \( \Gamma \vdash \alpha \cdot t : \alpha \cdot T \) is a valid sequent. When the scalars are taken to be positive real numbers, the developed language actually provides a static analysis tool for probabilistic computation. However, it fails to address the following issue: without sums but with negative numbers, the term representing “true – false”, namely \( \lambda x.\lambda y.x - \lambda x.\lambda y.y \), is typed with \( 0 \cdot (X \rightarrow (X \rightarrow X)) \), a type which fails to exhibit the fact that we have a superposition of terms.

A second step was accomplished in [18] with sums in the type system. In this case, if \( \Gamma \vdash s : S \) and \( \Gamma \vdash t : T \) are two valid sequents, then \( \Gamma \vdash s + t : S + T \) is a valid sequent. However, the language considered is only the additive fragment of Lineal, it leaves scalars out of the picture. For instance, \( \lambda x.\lambda y.x - \lambda x.\lambda y.y \), does not have a type, due to its minus sign. Each of these two contributions required renewed, careful and lengthy proofs about their type systems, introducing new techniques.

The type system we propose in this paper builds upon these two approaches: it includes both scalars and sums of types, thereby reflecting the vectorial structure of the terms at the level of types. Interestingly, combining the two separate features of [4, 18] raises subtle novel issues, which we identify and discuss. Equipped with those two vectorial type constructs, the type system is indeed able to capture some fine-grained information about the vectorial structure of the terms. Intuitively, this means keeping track of both the ‘direction’ and the ‘amplitude’ of the terms.

A preliminary version of this paper has appeared in [5].

1.6. Plan of the paper

In Section 2, we present the language. We discuss the differences with the original language Lineal [6]. In Section 3, we explain the problems arising from the possibility of having linear combinations of types, and elaborate a type system that addresses those problems. Section 4 is devoted to subject reduction. We first say why the standard formulation of subject reduction does not hold. Second we state a slightly weakened notion of the subject reduction theorem, and we prove this result. In Section 5, we prove strong normalisation. Finally we close the paper in Section 6 with theorems about the information brought by the type judgements, both in the general and the finitary cases (matrices and vectors).

2. The terms

We consider the untyped language \( \lambda^\text{vec} \) described in Figure 1. It is based on Lineal [6]: terms come in two flavours, basis terms which are the only ones that will substitute a variable in a \( \beta \)-reduction step, and general terms. We use Krivine’s notation [26] for function application: The term \( (s)\ t \) passes the argument \( t \) to the function \( s \).

In addition to \( \beta \)-reduction, there are fifteen rules stemming from the oriented axioms of vector spaces [6], specifying the behaviour of sums and products. We divide the rules
in groups: Elementary (E), Factorisation (F), Application (A) and the Beta reduction (B). A general term t is thought of as a linear combination of terms \( \alpha \cdot r + \beta \cdot r' \). When we apply s to this superposition, \( s \cdot t \) reduces to \( \alpha \cdot (s) \cdot r + \beta \cdot (s) \cdot r' \). Terms are considered modulo associativity and commutativity of the operator +, making the reduction into an \( AC\text{-rewrite system} \) [25]. Scalars (notation \( \alpha, \beta, \gamma, \ldots \)) form a ring \((S, +, \cdot)\). The typical ring we consider in the examples is the ring of complex numbers. In particular, we shall use the shortcut notation \( s - t \) in place of \( s + (-1) \cdot t \).

The set of free variables of a term is defined as usual: the only operator binding variables is the \( \lambda \)-abstraction. The operation of substitution on terms (notation \( t[b/x] \)) is defined in the usual way for the regular lambda-term constructs, by taking care of variable renaming to avoid capture. For a linear combination, the substitution is defined as follows: \( (\alpha \cdot t + \beta \cdot r)[b/x] = \alpha \cdot t[b/x] + \beta \cdot r[b/x] \).

Note that we need to choose a reduction strategy. For example, the term \( (\lambda x. (x \cdot x)) \cdot y + (\lambda x. (x \cdot x)) \cdot z \) cannot reduce to both \( (\lambda x. (x \cdot x)) \cdot y + (\lambda x. (x \cdot x)) \cdot z \) and \( (\lambda x. (x \cdot x)) \cdot y + (\lambda x. (x \cdot x)) \cdot z \). Indeed, the former normalizes to \( (y \cdot z + (x \cdot z) \cdot z \) whereas the latter normalizes to \( (y \cdot z + (x \cdot z) \cdot z \) which would break confluence. As in [6, 4, 18], we consider a call-by-value reduction strategy: The argument of the application is required to be a base term, cf. Group B.

2.1. Relation to Lineal

Although strongly inspired from \emph{Lineal}, the language \( \mathcal{X}^{\infty} \) is closer to [17, 4, 18]. Indeed, \emph{Lineal} considers some restrictions on the reduction rules, for example \( \alpha \cdot t + \beta \cdot t \rightarrow (\alpha + \beta) \cdot t \) is only allowed when \( t \) is a closed normal term. These restrictions are enforced to ensure confluence in the untyped setting. Consider the following example. Let \( Y_b = (\lambda x. (b + (x \cdot x)) \cdot x \cdot x) \). Then \( Y_b \) reduces to \( b + Y_b \). So the term \( Y_b - Y_b \) reduces to \( 0 \), but also reduces to \( b + Y_b - Y_b \) and hence to \( b \), breaking confluence. The above restriction forbids the first reduction, bringing back confluence.

In our setting we do not need it because \( Y_b \) is not well-typed. If one considers a typed language enforcing strong normalisation, one can wave many of the restrictions and consider a more canonical set of rewrite rules [17, 4, 18]. Working with a type system enforcing strong normalisation (as shown in Section 5), we follow this approach.
2.2. Booleans in the vectorial lambda-calculus

We claimed in the introduction that the design of Lineal was motivated by quantum computing; in this section we develop this analogy.

Both in $\lambda^c$ and in quantum computation one can interpret the notion of booleans. In the former we can consider the usual booleans $\lambda x.\lambda y.x$ and $\lambda x.\lambda y.y$ whereas in the latter we consider the regular quantum bits true $= |0\rangle$ and false $= |1\rangle$.

In $\lambda^c$, a representation of if r then s else t needs to take into account the special relation between sums and applications. We cannot directly encode this test as the usual $((r)s)t$. Indeed, if r, s and t were respectively the terms true, $s_1+s_2$ and $t_1+t_2$, the term $((r)s)t$ would reduce to $((\text{true})s_1)t_1 + ((\text{true})s_1)t_2 + ((\text{true})s_2)t_1 + ((\text{true})s_2)t_2$, then to $2 \cdot s_1 + 2 \cdot s_2$ instead of $s_1 + s_2$. We need to “freeze” the computations in each branch of the test so that the sum does not distribute over the application. For that purpose we use the well-known notion of thanks $[6]$: we encode the test as $\{((r) [s]) [t]\}$, where $[\cdot]$ is the term $\lambda f.\cdot$ with $f$ a fresh, unused term variable and where $\{\cdot\}$ is the term ($\cdot)\lambda x.x$. The former “freezes” the linearity while the latter “releases” it. Then the term if true then $(s_1 + s_2)$ else $(t_1 + t_2)$ reduces to the term $s_1 + s_2$ as one could expect. Note that this test is linear, in the sense that the term if $\alpha \cdot \text{true} + \beta \cdot \text{false}$ then s else t reduces to $\alpha \cdot s + \beta \cdot t$.

This is similar to the quantum test that can be found e.g. in [33, 2]. Quantum computation deals with complex, linear combinations of terms, and a typical computation is run by applying linear unitary operations on the terms, called gates. For example, the Hadamard gate $H$ acts on the space of booleans spanned by true and false. It sends true to $\frac{\sqrt{2}}{2}(\text{true} + \text{false})$ and false to $\frac{\sqrt{2}}{2}(\text{true} - \text{false})$. If $x$ is a quantum bit, the value $(H)x$ can be represented as the quantum test

$$(H)x := \text{if } x \text{ then } \frac{\sqrt{2}}{2}(\text{true} + \text{false}) \text{ else } \frac{\sqrt{2}}{2}(\text{true} - \text{false}).$$

As developed in [6], one can simulate this operation in $\lambda^c$ using the test construction we just described:

$$(H) x := \left\{ (x) \left[ \frac{\sqrt{2}}{2} \cdot \text{true} + \frac{\sqrt{2}}{2} \cdot \text{false} \right] \right\} \left[ \frac{\sqrt{2}}{2} \cdot \text{true} - \frac{\sqrt{2}}{2} \cdot \text{false} \right].$$

Note that the thunks are necessary: without thunks the term $((x) \left[ \frac{\sqrt{2}}{2} \cdot \text{true} + \frac{\sqrt{2}}{2} \cdot \text{false} \right]) \left( \frac{\sqrt{2}}{2} \cdot \text{true} - \frac{\sqrt{2}}{2} \cdot \text{false} \right)$ would reduce to the term $\frac{1}{2}(((x) \text{true}) \text{true} + ((x) \text{false}) \text{false} + ((x) \text{false}) \text{true} + ((x) \text{false}) \text{false})$, which is fundamentally different from the term H we are trying to emulate.

With this procedure we can “encode” any matrix. If the space is of some general dimension $n$, instead of the basis elements true and false we can choose for $i = 1$ to $n$ the terms $\lambda x_1 \cdot \ldots \cdot x_n. x_i$’s to encode the basis of the space. We can also take tensor products of qubits. We come back to this encodings in Section 6.

3. The type system

This section presents the core definition of the paper: the vectorial type system.
3.1. Intuitions

Before diving into the technicalities of the definition, we discuss the rational behind the construction of the type-system.

3.1.1. Superposition of types

We want to incorporate the notion of scalars in the type system. If \( A \) is a valid type, the construction \( \alpha \cdot A \) is also a valid type and if the terms \( s \) and \( t \) are of type \( A \), the term \( \alpha \cdot s + \beta \cdot t \) is of type \( (\alpha + \beta) \cdot A \). This was achieved in [4] and it allows us to distinguish between the functions \( \lambda x.(1 \cdot x) \) and \( \lambda x.(2 \cdot x) \): the former is of type \( A \to A \) whereas the latter is of type \( A \to (2 \cdot A) \).

The terms \texttt{true} and \texttt{false} can be typed in the usual way with \( B = X \to (X \to X) \), for a fixed type \( X \). So let us consider the term \( \frac{\sqrt{2}}{2} \cdot (\texttt{true} - \texttt{false}) \). Using the above addition to the type system, this term should be of type \( 0 \cdot B \), a type which fails to exhibit the fact that we have a superposition of terms. For instance, applying the Hadamard gate to this term produces the term \texttt{false} of type \( B \): the norm would then jump from 0 to 1. This time, the problem comes from the fact that the type system does not keep track of the “direction” of a term.

To address this problem we must allow sums of types. For instance, provided that \( T = X \to (Y \to X) \) and \( F = X \to (Y \to Y) \), we can type the term \( \frac{\sqrt{2}}{2} \cdot (\texttt{true} - \texttt{false}) \) with \( \frac{\sqrt{2}}{2} \cdot (T - F) \), which has \( L_2 \)-norm 1, just like the type of \texttt{false} has norm one.

At this stage the type system is able to type the term \( H = \lambda x.(((x) [(\frac{\sqrt{2}}{2} \cdot \texttt{true} + \frac{\sqrt{2}}{2} \cdot \texttt{false})]) [(\frac{\sqrt{2}}{2} \cdot \texttt{true} - \frac{\sqrt{2}}{2} \cdot \texttt{false}])] \), with \( ((I \to \frac{\sqrt{2}}{2} \cdot (T + F)) \to (I \to \frac{\sqrt{2}}{2} \cdot (T - F)) \to I \to T) \to T \) with \( I \) an identity type of the form \( Z \to Z \) and \( T \) any fixed type.

Let us now try to type the term \((H)\texttt{true}\). This is possible by taking \( T \) to be \( \frac{\sqrt{2}}{2} \cdot (T + \mathcal{F}) \). But then, if we want to type the term \((H)\texttt{false}\), \( T \) needs to be equal to \( \frac{\sqrt{2}}{2} \cdot (T - \mathcal{F}) \). It follows that we cannot type the term \((H)\frac{\sqrt{2}}{2} \cdot \texttt{true} + \frac{\sqrt{2}}{2} \cdot \texttt{false})\) since there is no possibility to conciliate the two constraints on \( T \).

To address this problem, we need a forall construction in the type system, making it à la System F. The term \( H \) can now be typed with \( \forall T.((I \to \frac{\sqrt{2}}{2} \cdot (T + \mathcal{F})) \to (I \to \frac{\sqrt{2}}{2} \cdot (T - \mathcal{F})) \to I \to T) \to T \) and the types \( T \) and \( \mathcal{F} \) are updated to be respectively \( \forall XY.X \to (Y \to X) \) and \( \forall XY.Y \to (Y \to Y) \). The terms \((H)\texttt{true}\) and \((H)\texttt{false}\) can both be well-typed with respective types \( \frac{\sqrt{2}}{2} \cdot (T + \mathcal{F}) \) and \( \frac{\sqrt{2}}{2} \cdot (T - \mathcal{F}) \), as expected.

3.1.2. Type variables, units and general types

Because of the call-by-value strategy, variables must range over types that are not linear combination of other types, i.e. unit types. To illustrate this necessity, consider the following example. Suppose we allow variables to have scaled types, such as \( \alpha \cdot U \). Then the term \( \lambda x.x + y \) could have type \( (\alpha \cdot U) \to \alpha \cdot U + V \) (with \( y \) of type \( V \)). Let \( b \) be of type \( U \), then \( (\lambda x.x + y) (\alpha \cdot b) \) has type \( \alpha \cdot U + V \), but then

\[
(\lambda x.x + y) (\alpha \cdot b) \to \alpha \cdot (\lambda x.x + y) b \to \alpha \cdot (b + y) \to \alpha \cdot b + \alpha \cdot y ,
\]

which is problematic since the type \( \alpha \cdot U + V \) does not reflect such a superposition. Hence, the left side of an arrow will be required to be a unit type.
Type variables, however, do not always have to be unit type. Indeed, a forall of a general type was needed in the previous section in order to type the term \(H\). But we need to distinguish a general type variable from a unit type variable, in order to make sure that only unit types appear at the left of arrows. Therefore, we define two sorts of type variables: the variables \(X\) to be replaced with unit types, and \(X\) to be replaced with any type (we use just \(X\) when we mean either one). The type \(X\) is a unit type whereas the type \(X\) is not.

In particular, the type \(T\) is now \(\forall XY.X \rightarrow Y \rightarrow X\), the type \(F\) is \(\forall XY.X \rightarrow Y \rightarrow Y\) and the type of \(H\) is

\[
\forall X. \left( I \rightarrow \frac{\sqrt{2}}{2} \cdot (T + F) \right) \rightarrow \left( I \rightarrow \frac{\sqrt{2}}{2} \cdot (T - F) \right) \rightarrow I \rightarrow X \rightarrow X.
\]

Notice how the left sides of all arrows remain unit types.

3.1.3. The term 0

The term 0 will naturally have the type \(0 \cdot T\), for any inhabited type \(T\). We could also consider to add the equivalence \(R + 0 \cdot T \equiv R\) as in [4]. However, consider the following example. Let \(\lambda x. x\) be of type \(U \rightarrow U\) and let \(t\) be of type \(T\). The term \(\lambda x. x + t - t\) is of type \((U \rightarrow U) + 0 \cdot T\), that is, \((U \rightarrow U)\). Now choose \(b\) of type \(U\): we are allowed to say that \((\lambda x. x + t - t)\ b\) is of type \(U\). This term reduces to \(b + (t) b - (t) b\). But if the type system is reasonable enough, we should at least be able to type \((t) b\). However, since there is no constraints on the type \(T\), this is difficult to enforce.

The problem comes from the fact that along the typing of \(t - t\), the type of \(t\) is lost in the equivalence \((U \rightarrow U) + 0 \cdot T \equiv U \rightarrow U\). The only solution is to not discard \(0 \cdot T\), that is, to not equate \(R + 0 \cdot T\) and \(R\).

3.2. Formalisation

We now give a formal account of the type system: we first describe the language of types, then present the typing rules.

3.2.1. Definition of types

Types are defined in Figure 2 (top). They come in two flavours: unit types and general types, that is, linear combinations of types. Unit types include all types of System F [22, Ch. 11] and intuitively they are used to type basis terms. The arrow type admits only a unit type in its domain. This is due to the fact that the argument of a lambda-abstraction can only be substituted by a basis term, as discussed in Section 3.1.2. The type system features two sorts of variables: unit variables \(X\) and general variables \(X\). The former can only be substituted by a unit type whereas the latter can be substituted by any type. We use the notation \(X\) when the type variable is unrestricted. The substitution of \(X\) by \(U\) (resp. \(X\) by \(S\)) in \(T\) is defined as usual and is written \(T[U/X]\) (resp. \(T[S/X]\)). We use the notation \(T[A/X]\) to say: “if \(X\) is a unit variable, then \(A\) is a unit type and otherwise \(A\) is a general type”. In particular, for a linear combination, the substitution is defined as follows: \((\alpha \cdot T + \beta \cdot R)[A/X] = \alpha \cdot T[A/X] + \beta \cdot R[A/X]\). We also use the vectorial notation \(T[\vec{A}/\vec{X}]\) for \(T[A_1/X_1] \cdots [A_n/X_n]\) if \(\vec{X} = X_1, \ldots, X_n\) and \(\vec{A} = A_1, \ldots, A_n\), and also \(\forall \vec{X}\) for \(\forall X_1 \ldots X_n = \forall X_1, \ldots, \forall X_n\).
Types:
\[ T, R, S ::= \quad U \mid \alpha \cdot T \mid T + R \mid X \]

Unit types:
\[ U, V, W ::= \quad X \mid U \to T \mid \forall X. U \mid \forall X. U \]

\[
\begin{align*}
1 \cdot T & \equiv T \\
\alpha \cdot (\beta \cdot T) & \equiv (\alpha \times \beta) \cdot T \\
\alpha \cdot T + \alpha \cdot R & \equiv \alpha \cdot (T + R) \\
T + R & \equiv R + T \\
T + (R + S) & \equiv (T + R) + S
\end{align*}
\]

\[
\begin{array}{c}
\frac{\Gamma, x : U \vdash x : U}{\alpha x} \quad \frac{\Gamma \vdash t : T}{\Gamma \vdash 0 : 0 \cdot T} \quad \rac{\Gamma, x : U \vdash t : T}{\Gamma \vdash \lambda x. t : U \to T} \\
\end{array}
\]

\[
\frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_i. (U \to T_i)}{\Gamma \vdash \lambda \alpha \cdot t : \forall I} \quad \frac{\Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U_{\alpha_j / \vec{X}}}{\Gamma \vdash r : \forall E}
\]

\[
\frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_i \cdot U_i \quad X \notin FV(\Gamma)}{\Gamma \vdash t : \forall I} \quad \frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_i \cdot U_i}{\Gamma \vdash t : \forall E}
\]

\[
\frac{\Gamma \vdash t : T \quad \Gamma \vdash r : R}{\Gamma \vdash t + r : T + R} \quad \frac{\Gamma \vdash t : T \quad \Gamma \vdash t : R}{\Gamma \vdash t : T \equiv R}
\]

Figure 2: Types and typing rules of $\lambda \text{vec}$. We use $X$ when we do not want to specify if it is $X$ or $X$, that is, unit variables or general variables respectively. In $T[A/X]$, if $X = X$, then $A$ is a unit type, and if $X = X$, then $A$ can be any type. We also may write $\forall I$ and $\forall E$ (resp. $\forall E$ and $\forall E$) when we need to specify which kind of variable is being used.
The equivalence relation \( \equiv \) on types is defined as a congruence. Notice that this equivalence makes the types into a weak module over the scalars: they almost form a module save from the fact that there is no neutral element for the addition. The type \( 0 \cdot T \) is not the neutral element of the addition.

We may use the summation (\( \sum \)) notation without ambiguity, due to the associativity and commutativity equivalences of +.

### 3.2.2. Typing rules

The typing rules are given also in Figure 2 (bottom). Contexts are denoted by \( \Gamma, \Delta, \) etc. and are defined as sets \( \{ x : U, \ldots \} \), where \( x \) is a term variable appearing only once in the set, and \( U \) is a unit type. The axiom \( (ax) \) and the arrow introduction rule \( (\rightarrow I) \) are the usual ones. The rule \( (0_I) \) to type the term \( 0 \) takes into account the discussion in Section 3.1.3. This rule also ensures that the type of \( 0 \) is inhabited, discarding problematic types like \( \forall \).

Example 3.1. Rule \( (\rightarrow E) \) is easier to read for trivial linear combinations. It states that provided that \( \Gamma \vdash s : \forall X.U \rightarrow S \) and \( \Gamma \vdash t : V \), if there exists some type \( W \) such that \( V = U[W/X] \), then since the sequent \( \Gamma \vdash s : V \rightarrow S[W/X] \) is valid, we also have \( \Gamma \vdash (s \cdot t) : S[W/X] \). Hence, the arrow elimination here does an arrow and a forall elimination at the same time.

Example 3.2. Consider the terms \( b_1 \) and \( b_2 \), of respective types \( U_1 \) and \( U_2 \). The term \( b_1 + b_2 \) is of type \( U_1 + U_2 \). We would reasonably expect the term \( (\lambda x.x)(b_1 + b_2) \) to be also of type \( U_1 + U_2 \). This is the case thanks to Rule \( (\rightarrow E) \). Indeed, type the term \( \lambda x.x \) with the type \( \forall X.X \rightarrow X \) and we can now apply the rule. Notice that we could not type such a term unless we eliminate the forall together with the arrow.

Example 3.3. A slightly more evolved example is the projection of a pair of elements. It is possible to encode in System F the notion of pairs and projections: \( (b, c) = \lambda x.((x) b) c, (b', c') = \lambda x.((x) b') c' \). \( \pi_1 = \lambda x.\pi_1(x) (\lambda y.\pi_1.y) \) and \( \pi_2 = \lambda x.\pi_2(x) (\lambda y.\pi_2.y) \). Provided that \( b, b', c \) and \( c' \) have respective types \( U, U', V \) and \( V' \), the type of \( (b, c) \) is \( \forall X.\pi_1(x) \rightarrow X \) and the type of \( (b', c') \) is \( \forall X.\pi_2(x) \rightarrow X \). The term \( \pi_1 \) and \( \pi_2 \) can be typed respectively with \( \forall X Y Z .((X \rightarrow Y) \rightarrow Z) \rightarrow Z \) and \( \forall X Y Z .((X \rightarrow Y) \rightarrow Z) \rightarrow Z \). The term \( ((\pi_1 + \pi_2)((b, c) + (b', c'))) \) is then typable of type \( U + U' + V + V' \), thanks to Rule \( (\rightarrow E) \). Note that this is consistent with the rewrite system, since it reduces to \( b + c + b' + c' \).

### 3.3. Example: Typing Hadamard

In this Section, we formally show how to retrieve the type that was discussed in Section 3.1.2, for the term \( H \) encoding the Hadamard gate.

Let \( \text{true} = \lambda x.\lambda y.x \) and \( \text{false} = \lambda x.\lambda y.y \). It is easy to check that

\[ \vdash \text{true} : \forall X.Y \rightarrow X, \]
\(\vdash \text{false} : \forall X Y. X \rightarrow Y \rightarrow Y.\)

We also define the following superpositions:

\[
|+| = \frac{1}{\sqrt{2}} \cdot (\text{true} + \text{false}) \quad \text{and} \quad |-| = \frac{1}{\sqrt{2}} \cdot (\text{true} - \text{false}).
\]

In the same way, we define

\[
\bot = \frac{1}{\sqrt{2}} \cdot ((\forall X Y. X \rightarrow Y) + (\forall X Y. X \rightarrow Y)),
\]

\[
\top = \frac{1}{\sqrt{2}} \cdot ((\forall X Y. X \rightarrow Y) - (\forall X Y. X \rightarrow Y)).
\]

Finally, we define \([t] = \lambda x. t\), where \(x \notin FV(t)\) and \(\{t\} = (t) I\). So \(\{t\} \rightarrow t\). Then it is easy to check that \(\vdash t : (I \rightarrow \top)\) and \(\vdash t : (I \rightarrow \bot)\). In order to simplify the notation, let \(F = (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow (I \rightarrow \bot)\). Then

\[
\begin{array}{l}
\frac{\vdash x : F \vdash x : F}{\vdash x : F \vdash (x) : (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow E} \\
\frac{\vdash x : F \vdash (x) : (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow E}{\vdash x : F \vdash (x) : (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow \top} \vdash F
\end{array}
\]

Now we can apply Hadamard to a qubit and get the right type. Let \(H\) be the term \(\lambda x.\{(x)\} : (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow (I \rightarrow \bot) \rightarrow \top\)

\[
\begin{array}{l}
\vdash H : \forall X. (I \rightarrow \top) \rightarrow (I \rightarrow \bot) \rightarrow (I \rightarrow \bot) \rightarrow \top \rightarrow \top \rightarrow \top \rightarrow \top \rightarrow \top \rightarrow \top
\end{array}
\]

4. Subject reduction

As we will now explain, the usual formulation of subject reduction is not directly satisfied. We discuss the alternatives and opt for a weakened version of subject reduction.

4.1. Principal types and subtyping alternatives

Since the terms of \(\lambda^e\) are not explicitly typed, we are bound to have sequents such as \(\Gamma \vdash t : T_1\) and \(\Gamma \vdash t : T_2\) with distinct types \(T_1\) and \(T_2\) for the same term \(t\). Using Rules \((+_1)\) and \((\alpha_1)\) we get the valid typing judgement \(\Gamma \vdash \alpha \cdot t + \beta \cdot t : \alpha \cdot T_1 + \beta \cdot T_2\). Given that \(\alpha \cdot t + \beta \cdot t\) reduces to \((\alpha + \beta) \cdot t\), a regular subject reduction would ask for the valid sequent \(\Gamma \vdash (\alpha + \beta) \cdot t : \alpha \cdot T_1 + \beta \cdot T_2\). But since in general we do not have \(\alpha \cdot T_1 + \beta \cdot T_2 \equiv (\alpha + \beta) \cdot T_1 \equiv (\alpha + \beta) \cdot T_2\), we need to find a way around this.
A first approach would be to use the notion of principal types. However, since our type system includes System $F$, the usual examples for the absence of principal types apply to our settings: we cannot rely upon this method.

A second approach would be to ask for the sequent $\Gamma \vdash (\alpha + \beta) \cdot t : \alpha \cdot T_1 + \beta \cdot T_2$ to be valid. If we force this typing rule into the system, it seems to solve the issue but then the type of a term becomes pretty much arbitrary: with typing context $\Gamma$, the term $(\alpha + \beta) \cdot t$ would then be typed with any combination $\gamma \cdot T_1 + \delta \cdot T_2$, where $\alpha + \beta = \gamma + \delta$.

The approach we favour in this paper is via a notion of order on types. The order, denoted with $\sqsubseteq$, will be chosen so that the factorisation rules make the types of terms smaller. We will ask in particular that $(\alpha + \beta) \cdot t$ would then be typed with any combination $\alpha \cdot T_1 + \beta \cdot T_2$ whenever $T_1$ and $T_2$ are types for the same term. This approach can also be extended to solve a second pitfall coming from the rule $\alpha \cdot t \rightarrow \alpha \cdot t$, especially if $\alpha$ is not valid in general. We therefore extend the ordering to also have $X \sqsubseteq X + 0 \cdot T$.

Notice that we are not introducing a subtyping relation with this ordering. For example, although $\vdash (\alpha + \beta) \cdot \lambda x.\lambda y.x : (\alpha + \beta) \cdot \forall X.X \rightarrow (X \rightarrow X)$ is valid and $(\alpha + \beta) \cdot \forall X.X \rightarrow (X \rightarrow X) \sqsupseteq \alpha \cdot \forall X.X \rightarrow (X \rightarrow X) + \beta \cdot \forall X.X \rightarrow (Y \rightarrow Y)$, the sequent $\vdash (\alpha + \beta) \cdot \lambda x.\lambda y.x : \alpha \cdot \forall X.X \rightarrow (X \rightarrow X) + \beta \cdot \forall X.X \rightarrow (Y \rightarrow Y)$ is not valid.

### 4.2. Weak subject reduction

We define the ordering relation $\sqsubseteq$ on types discussed above as the smallest reflexive transitive and congruent relation satisfying the rules:

1. $(\alpha + \beta) \cdot T \sqsupseteq \alpha \cdot T + \beta \cdot T'$ if there are $\Gamma, t$ such that $\Gamma \vdash \alpha \cdot t : \alpha \cdot T$ and $\Gamma \vdash \beta \cdot t : \beta \cdot T'$.
2. $T \sqsupseteq T + 0 \cdot R$ for any type $R$.
3. If $T \sqsupseteq R$ and $U \sqsubseteq V$, then $T + S \sqsupseteq R + S$, $\alpha \cdot T \sqsupseteq \alpha \cdot R$, $U \rightarrow T \sqsupseteq U \rightarrow R$ and $\forall X.U \sqsubseteq \forall X.V$.

Note that the fact that $\Gamma \vdash t : T$ and $\Gamma \vdash t : T'$ does not imply that $\beta \cdot T \sqsupseteq \beta \cdot T'$. For instance, although $\beta \cdot T \sqsupseteq 0 \cdot T + \beta \cdot T'$, we do not have $0 \cdot T + \beta \cdot T' \equiv \beta \cdot T'$.

Let $R$ be any reduction rule from Figure 1, and $\rightarrow_R$ a one-step reduction by rule $R$. A weak version of the subject reduction theorem can be stated as follows.

**Theorem 4.1** (Weak subject reduction). For any terms $t, t'$, any context $\Gamma$ and any type $T$, if $t \rightarrow_R t'$ and $\Gamma \vdash t : T$, then:

1. if $R \notin \text{Group } F$, then $\Gamma \vdash t' : T$;
2. if $R \in \text{Group } F$, then $\exists S \sqsubseteq T$ such that $\Gamma \vdash t' : S$ and $\Gamma \vdash t : S$.

### 4.3. Prerequisites to the proof

The proof of Theorem 4.1 requires some machinery that we develop in this section.

#### 4.3.1. Properties of types

The following lemma gives a characterisation of types as linear combinations of unit types and general variables.
Lemma 4.2 (Characterisation of types). For any type $T$ in $G$, there exist $n, m \in \mathbb{N}$, $\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m \in S$, distinct unit types $U_1, \ldots, U_n$ and distinct general variables $X_1, \ldots, X_m$ such that

$$T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{j=1}^{m} \beta_j \cdot X_j.$$ 

Proof. Structural induction on $T$.

- Let $T$ be a unit type, then take $\alpha = \beta = n = 1$ and $m = 0$, and so $T \equiv \sum_{i=1}^{1} \cdot U + \sum_{j=1}^{0} \cdot X = 1 \cdot U$.

- Let $T = \alpha \cdot T'$, then by the induction hypothesis $T' \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{j=1}^{m} \beta_j \cdot X_j$, so $T = \alpha \cdot T' \equiv \alpha \cdot (\sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{j=1}^{m} \beta_j \cdot X_j) \equiv \sum_{i=1}^{n} (\alpha \cdot \alpha_i) \cdot U_i + \sum_{j=1}^{m} (\alpha \cdot \beta_j) \cdot X_j$.

- Let $T = R + S$, then by the induction hypothesis $R \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{j=1}^{m} \beta_j \cdot X_j$ and $S \equiv \sum_{i=1}^{n'} \alpha_i' \cdot U_i' + \sum_{j=1}^{m'} \beta_j' \cdot X_j'$, so $T = R + S \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{i=1}^{n'} \alpha_i' \cdot U_i' + \sum_{j=1}^{m} \beta_j \cdot X_j + \sum_{j=1}^{m'} \beta_j' \cdot X_j'$. If the $U_i$ and the $U_i'$ are all different each other, we have finished, in other case, if $U_k = U_k'$, notice that $\alpha_k \cdot U_k + \alpha_k' \cdot U_k' = (\alpha_k + \alpha_k') \cdot U_k$.

- Let $T = X$, then take $\alpha = \beta = m = 1$ and $n = 0$, and so $T \equiv \sum_{i=1}^{0} \cdot 1 \cdot U + \sum_{j=1}^{1} \cdot X = 1 \cdot X$.

Our system admits weakening and contraction, as stated by the following lemma.

Lemma 4.3 (Weakening and Contraction). Let $t$ such that $x \notin \text{FV}(t)$. Then $\Gamma \vdash t : T$ is derivable if and only if $\Gamma, x : U \vdash t : T$ is also derivable.

Proof. By an straightforward induction on the type derivation.

4.3.2. Properties on the equivalence relation

Lemma 4.4 (Equivalence between sums of distinct elements). Let $U_1, \ldots, U_n$ be a set of distinct unit types, and let $V_1, \ldots, V_m$ be also a set distinct unit types. If $\sum_{i=1}^{n} \alpha_i \cdot U_i \equiv \sum_{j=1}^{m} \beta_j \cdot V_j$, then $\sum_{i=1}^{n} \alpha_i \cdot U_i \equiv \sum_{j=1}^{m} \beta_j \cdot V_j$, and there exists a permutation $p$ of $m$ such that $\forall i, \alpha_i = \beta_{p(i)}$.

Proof. Straightforward case by case analysis over the equivalence rules.

Lemma 4.5 (Equivalences $\forall t$).

1. $\sum_{i=1}^{n} \alpha_i \cdot U_i \equiv \sum_{i=1}^{n} \alpha_i \cdot \forall X. U_i \equiv \sum_{j=1}^{m} \beta_j \cdot \forall X. V_j$.
2. $\sum_{i=1}^{n} \alpha_i \cdot \forall X. U_i \equiv \sum_{j=1}^{m} \beta_j \cdot \forall X. V_j \Rightarrow \forall V_j, \exists W_j / V_j \equiv \forall X. W_j$.

Proof. Item (1) From Lemma 4.4, $m = n$, and without loss of generality, for all $i, \alpha_i = \beta_i$ and $U_i = V_i$ in the left-to-right direction, $\forall X. U_i = \forall X. V_i$ in the right-to-left direction. In both cases we easily conclude.

Item (2) is similar.

Item (3) is a straightforward induction on the equivalence $T \equiv R$.
4.3.3. An auxiliary relation on types

We start with another relation, inspired from [7].

**Definition 4.6.** For any types \( T, R \), any context \( \Gamma \) and any term \( t \) such that \( \Gamma \vdash t : T = = = = = \Gamma \vdash t : R \):

1. if \( X \not\in FV(\Gamma) \), write \( T \succ X, \Gamma R \) if either
   - \( T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i \) and \( R \equiv \sum_{i=1}^{n} \alpha_i \cdot \forall X.U_i \), or
   - \( T \equiv \sum_{i=1}^{n} \alpha_i \cdot \forall X.U_i \) and \( R \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i[A/X] \).
2. if \( \mathcal{V} \) is a set of type variables such that \( \mathcal{V} \cap FV(\Gamma) = \emptyset \), we define \( \mathcal{V} \succ \Gamma \) inductively by
   - If \( X \in \mathcal{V} \) and \( T \succ X, \Gamma R \), then \( T \succ \{ X \}, \Gamma R \).
   - If \( \mathcal{V}_1, \mathcal{V}_2 \subseteq \mathcal{V} \), \( T \succ \mathcal{V}_1, \Gamma R \) and \( R \succ \mathcal{V}_2, \Gamma S \), then \( T \succ \mathcal{V}_1 \cup \mathcal{V}_2, \Gamma S \).
   - If \( T \equiv R \), then \( T \succ \mathcal{V}, \Gamma R \).

**Remark 4.7.** Notice that if \( T \succ \mathcal{V}, \Gamma R \), then we can trivially exhibit \( t \) such that \( \Gamma \vdash t : T \) and \( \Gamma \vdash t : R \). Moreover, if we already know a term \( t \) such that \( \Gamma \vdash t : T \), then sure enough \( \Gamma \vdash t : R \).

**Example 4.8.** Let the following be a valid derivation.

\[
\begin{align*}
\Gamma \vdash t : T & \quad T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i \\
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot U_i & \quad X \not\in FV(\Gamma) \\
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X.U_i & \quad \forall \mathcal{V}_1 \\
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot U_i[V/X] & \quad \forall \mathcal{V}_2 \\
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall Y.U_i[V/X] & \quad \sum_{i=1}^{n} \alpha_i \cdot \forall Y.U_i[V/X] \equiv R \\
\end{align*}
\]

Then \( T \succ_{\{X,Y\}, \Gamma} R \).

The following lemma states that if two arrow types are ordered, then they are equivalent up to some substitutions.

**Lemma 4.9 (Arrows comparison).** If \( V \to R \succ_{\mathcal{V}, \Gamma} \forall X.(U \to T) \), then \( U \to T \equiv (V \to R)[\tilde{A}/\tilde{Y}] \), with \( \tilde{Y} \not\in FV(\Gamma) \).
Proof. Let \((\cdot)^\circ\) be a map from types to types defined as follows,
\[
X^\circ = X \quad (U \rightarrow T)^\circ = U \rightarrow T \quad (\forall X T)^\circ = T^\circ \quad (T + R)^\circ = T^\circ + R^\circ
\]

We need three intermediate results:
1. If \(T \equiv R\), then \(T^\circ \equiv R^\circ\).
2. For any types \(U, A\), there exists \(B\) such that \((U[A/X])^\circ = U^\circ[B/X]\).
3. For any types \(V, U\), there exists \(A\) such that if \(V \geq_{\forall, T} \forall X U\), then \(U^\circ \equiv V^\circ[A/X]\).

Proofs.

1. Induction on the equivalence rules. We only give the basic cases since the inductive step, given by the context where the equivalence is applied, is trivial.
   - \((1 \cdot T)^\circ = 1 \cdot T^\circ \equiv T^\circ\).
   - \((\alpha \cdot (\beta \cdot T))^\circ = \alpha \cdot (\beta \cdot T^\circ) \equiv (\alpha \times \beta) \cdot T^\circ = ((\alpha \times \beta) \cdot T)^\circ\).
   - \((\alpha \cdot T + \alpha \cdot R)^\circ = \alpha \cdot T^\circ + \alpha \cdot R^\circ \equiv \alpha \cdot (T^\circ + R^\circ) = (\alpha \cdot (T + R))^\circ\).
   - \((\alpha \cdot T + \beta \cdot T)^\circ = \alpha \cdot T^\circ + \beta \cdot T^\circ \equiv (\alpha + \beta) \cdot T^\circ = ((\alpha + \beta) \cdot T)^\circ\).
   - \((T + R)^\circ = T^\circ + R^\circ \equiv R^\circ + T^\circ = (R + T)^\circ\).
   - \((T + (R + S))^\circ = T^\circ + (R^\circ + S^\circ) \equiv (T^\circ + R^\circ) + S^\circ = ((T + R) + S)^\circ\).

2. Structural induction on \(U\).
   - \(U = X\). Then \((X[V/X])^\circ = V^\circ = X[V^\circ/X] = X^\circ[V^\circ/X]\).
   - \(U = Y\). Then \((Y[A/X])^\circ = Y = Y^\circ[A/X]\).
   - \(U = V \rightarrow T\). Then \((V \rightarrow T[A/X])^\circ = (V[A/X] \rightarrow T[A/X])^\circ = V[A/X] \rightarrow T[A/X] = (V \rightarrow T)[A/X] = (V \rightarrow T)^\circ[A/X]\).
   - \(U = \forall Y V\). Then \((\forall Y V[A/X])^\circ = (\forall Y V[A/X])^\circ = (V[A/X])^\circ\), which by the induction hypothesis is equivalent to \(V^\circ[B/X] = (\forall Y V)^\circ[B/X]\).

3. It suffices to show this for \(V \geq_{\forall, T} \forall X U\). Cases:
   - \(\forall X U \equiv \forall Y V\), then notice that \((\forall X U)^\circ \equiv (\forall Y V)^\circ = V^\circ\).
   - \(V \equiv \forall Y W\) and \(\forall X U \equiv W[A/X]\), then \((\forall X U)^\circ \equiv (W[A/X])^\circ \equiv (W^\circ[B/X] = (\forall Y W)^\circ[B/X] \equiv (V^\circ[B/X]).

Proof of the lemma. \(U \rightarrow T \equiv (U \rightarrow T)^\circ\), by the intermediate result 3, this is equivalent to \((V \rightarrow R)^\circ[A/X] = (V \rightarrow R)[A/X]\).

4.3.4. Generations lemmas

Before proving Theorem 4.1, we need to prove some basic properties of the system.

Lemma 4.10 (Scalars). For any context \(\Gamma\), term \(t\), type \(T\) and scalar \(\alpha\), if \(\Gamma \vdash \alpha \cdot t : T\), then there exists a type \(R\) such that \(T \equiv \alpha \cdot R\) and \(\Gamma \vdash t : R\). Moreover, if the minimum size of the derivation of \(\Gamma \vdash t : T\) is \(s\), then if \(T \equiv \alpha \cdot R\), the minimum size of the derivation of \(\Gamma \vdash t : R\) is at most \(s - 1\), in other case, its minimum size is at most \(s - 2\).

Proof. We proceed by induction on the typing derivation.
The following lemma shows that the type for \( \alpha \cdot t \): 

\[
\Gamma \vdash \alpha \cdot t : \sum_{i=1}^n \alpha_i \cdot U_i
\]

By the induction hypothesis \( \sum_{i=1}^n \alpha_i \cdot U_i \equiv \alpha \cdot R \), and by Lemma 4.2, \( R \equiv \sum_{j=1}^m \beta_j \cdot V_j + \sum_{k=1}^h \gamma_k \cdot X_k \). So it is easy to see that \( h = 0 \) and so \( R \equiv \sum_{j=1}^m \beta_j \cdot V_j \). Hence \( \sum_{i=1}^n \alpha_i \cdot U_i \equiv \sum_{i=1}^n \alpha \times \beta_j \cdot V_j \). Then by Lemma 4.5, \( \sum_{i=1}^n \alpha_i \cdot \forall X.U_i \equiv \sum_{j=1}^m \alpha \times \beta_j \cdot \forall X.V_j \equiv \alpha \cdot \sum_{j=1}^m \beta_j \cdot \forall X.V_j \).

In addition, by the induction hypothesis, \( \Gamma \vdash t : R \) with a derivation of size \( s - 3 \) (or \( s - 2 \) if \( n = 1 \)), so by rules \( \forall I \) and \( \equiv \) (not needed if \( n = 1 \)), \( \Gamma \vdash t : \sum_{j=1}^m \beta_j \cdot \forall X.V_j \) in size \( s - 2 \) (or \( s - 1 \) in the case \( n = 1 \)).

\[
\Gamma \vdash \alpha \cdot t : \sum_{i=1}^n \alpha_i \cdot \forall X.U_i
\]

By the induction hypothesis \( \sum_{i=1}^n \alpha_i \cdot \forall X.U_i \equiv \alpha \cdot R \), and by Lemma 4.2, \( R \equiv \sum_{j=1}^m \beta_j \cdot V_j + \sum_{k=1}^h \gamma_k \cdot X_k \). So it is easy to see that \( h = 0 \) and so \( R \equiv \sum_{j=1}^m \beta_j \cdot V_j \). Hence \( \sum_{i=1}^n \alpha_i \cdot \forall X.U_i \equiv \sum_{j=1}^m \alpha \times \beta_j \cdot V_j \). Then by Lemma 4.5, for each \( V_j \), there exists \( W_j \) such that \( V_j \equiv \forall X.W_j \), so \( \sum_{i=1}^n \alpha_i \cdot \forall X.U_i \equiv \sum_{j=1}^m \alpha \times \beta_j \cdot \forall X.W_j \). Then by the same lemma, \( \sum_{i=1}^n \alpha_i \cdot U_i[A/X] \equiv \sum_{j=1}^m \alpha \cdot \sum_{j=1}^m \beta_j \cdot W_j[A/X] \). In addition, by the induction hypothesis, \( \Gamma \vdash t : R \) with a derivation of size \( s - 3 \) (or \( s - 2 \) if \( n = 1 \)), so by rules \( \forall E \) and \( \equiv \) (not needed if \( n = 1 \)), \( \Gamma \vdash t : \sum_{j=1}^m \beta_j \cdot W_j[A/X] \) in size \( s - 2 \) (or \( s - 1 \) in the case \( n = 1 \)).

\[
\Gamma \vdash t : T
\]

\[
\Gamma \vdash \alpha \cdot t : \alpha \cdot T
\]

By the induction hypothesis \( T \equiv \alpha \cdot S \), and \( \Gamma \vdash t : S \). Notice that \( R \equiv T \equiv \alpha \cdot S \). If \( T = \alpha \cdot S \), then it is derived with a minimum size of at most \( s - 2 \). If \( T = R \), then the minimum size remains because the last \( \equiv \) rule is redundant. In other case, the sequent can be derived with minimum size at most \( s - 1 \).

The following lemma shows that the type for \( 0 \) is always \( 0 \cdot T \).

**Lemma 4.11 (Type for zero).** Let \( t = 0 \) or \( t = \alpha \cdot 0 \), then \( \Gamma \vdash t : T \) implies \( \exists \cdot 0 \cdot T \).

**Proof.** We proceed by induction on the typing derivation.

\[
\Gamma \vdash 0 : T
\]

\[
\Gamma \vdash \alpha \cdot 0 : 0 \cdot T
\]

\[
\forall \text{-rules (} \forall I \text{ and } \forall E \text{)} \text{ have both the same structure as shown on the left. In both cases, by the induction hypothesis } \sum_{i=1}^n \alpha_i \cdot U_i \equiv 0 \cdot R \text{, and by Lemma 4.2, } R \equiv \sum_{j=1}^m \beta_j \cdot V_j + \sum_{k=1}^h \gamma_k \cdot X_k.
\]

It is easy to check that \( h = 0 \), so \( \sum_{i=1}^n \alpha_i \cdot U_i \equiv 0 \cdot \sum_{j=1}^m \beta_j \cdot V_j \). Hence, using the same \( \forall \)-rule, we can derive \( \Gamma \vdash t : \sum_{j=1}^m \beta_j \cdot W_j \), and by Lemma 4.5 we can ensure that \( \sum_{i=1}^n \alpha_i \cdot V_i \equiv 0 \cdot \sum_{j=1}^m W_j \).
\[ \Gamma \vdash t : T \quad T \equiv R \]
\[ \Gamma \vdash t : R \]

By the induction hypothesis \( R \equiv T \equiv 0 \cdot S \).

\[ \square \]

**Lemma 4.12** (Sums). If \( \Gamma \vdash t + r : S \), then \( S \equiv T + R \) with \( \Gamma \vdash t : T \) and \( \Gamma \vdash r : R \). Moreover, if the size of the derivation of \( \Gamma \vdash t + r : S \) is \( s \), then if \( S = T + R \), the minimum sizes of the derivations of \( \Gamma \vdash t : T \) and \( \Gamma \vdash r : R \) are at most \( s - 1 \), and if \( S \neq T + R \), the minimum sizes of these derivations are at most \( s - 2 \).

**Proof.** We proceed by induction on the typing derivation.

\[ \Gamma \vdash t + r : \sum_{i=1}^{n} \alpha_i \cdot U_i \]
\[ \forall \quad \Gamma \vdash t + r : \sum_{i=1}^{n} \alpha_i \cdot V_i \]

Rules \( \forall_1 \) and \( \forall_E \) have both the same structure as shown on the left. In any case, by the induction hypothesis \( \Gamma \vdash t : T \) and \( \Gamma \vdash r : R \) with \( T + R \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i \), and derivations of minimum size at most \( s - 2 \) if the equality is true, or \( s - 3 \) if these types are not equal.

In the second case (when the types are not equal), there exists \( N, M \subseteq \{1, \ldots, n\} \) with \( N \cup M = \{1, \ldots, n\} \) such that

\[ T \equiv \sum_{i \in N \setminus M} \alpha_i \cdot U_i + \sum_{i \in N \cap M} \alpha_i' \cdot U_i \]
\[ R \equiv \sum_{i \in M \setminus N} \alpha_i \cdot U_i + \sum_{i \in N \cap M} \alpha_i'' \cdot U_i \]

where \( \forall i \in N \cap M \), \( \alpha_i' + \alpha_i'' = \alpha_i \). Therefore, using \( \equiv \) (if needed) and the same \( \forall \)-rule, we get \( \Gamma \vdash t : \sum_{i \in N \setminus M} \alpha_i \cdot V_i + \sum_{i \in N \cap M} \alpha_i' \cdot V_i \) and \( \Gamma \vdash r : \sum_{i \in M \setminus N} \alpha_i \cdot V_i + \sum_{i \in N \cap M} \alpha_i'' \cdot V_i \), with derivations of minimum size at most \( s - 1 \).

\[ \Gamma \vdash t + r : S' \]
\[ S' \equiv S \]
\[ \Gamma \vdash t + r : S \]

By the induction hypothesis, \( S \equiv S' \equiv T + R \) and we can derive \( \Gamma \vdash t : T \) and \( \Gamma \vdash r : R \) with a minimum size of at most \( s - 2 \).

\[ \Gamma \vdash t : T \]
\[ \Gamma \vdash r : R \]
\[ \Gamma \vdash t + r : T + R \]

\[ +_1 \]

This is the trivial case.

\[ \square \]

**Lemma 4.13** (Applications). If \( \Gamma \vdash (t) \ r : T \), then \( \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_t (U \to T_i) \) and \( \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[A_j/X] \) where \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[A_j/X] \geq \forall X_t T \) for some \( \forall \).

**Proof.** We proceed by induction on the typing derivation.

\[ \Gamma \vdash (t) \ r : \sum_{k=1}^{o} \gamma_k \cdot V_k \]

Rules \( \forall_1 \) and \( \forall_E \) have both the same structure as shown on the left. In any case, by the induction hypothesis \( \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_t (U \to T_i) \), \( \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[A_j/X] \) and \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[A_j/X] \geq \forall \Gamma \sum_{k=1}^{o} \gamma_k \cdot V_k \geq \forall \Gamma \sum_{k=1}^{o} \gamma_k \cdot W_k \).

\[ \Gamma \vdash (t) \ r : S \]
\[ S \equiv R \]
\[ \Gamma \vdash (t) \ r : R \]

By the induction hypothesis \( \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_t (U \to T_i) \), \( \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[A_j/X] \) and \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[A_j/X] \geq \forall \Gamma S \equiv R \).
\[
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{X} (U \rightarrow T_i), \quad \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \\
\Gamma \vdash (t) \cdot r : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \cdot \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \rightarrow E \quad \text{This is the trivial case.} \\
\]

**Lemma 4.14 (Abstractions).** If \( \Gamma \vdash \lambda x. t : T \), then \( \Gamma, x : U \vdash t : R \) where \( U \rightarrow T \geq \forall, \Gamma T \) for some \( V \).

*Proof.* We proceed by induction on the typing derivation.

\[
\begin{align*}
\Gamma \vdash \lambda x. t & : \sum_{i=1}^{n} \alpha_i \cdot U_i \\
\Gamma \vdash \lambda x. t & : \sum_{i=1}^{n} \alpha_i \cdot V_i \\
\Gamma \vdash \lambda x. t : R & \equiv R \equiv T \\
\Gamma \vdash \lambda x. t : U \rightarrow T & \rightarrow I \\
\end{align*}
\]

This is the trivial case. \( \square \)

A basis term can always be given a unit type.

**Lemma 4.15 (Basis terms).** For any context \( \Gamma \), type \( T \) and basis term \( b \), if \( \Gamma \vdash b : T \) then there exists a unit type \( U \) such that \( T \equiv U \).

*Proof.* By induction on the typing derivation.

\[
\begin{align*}
\Gamma \vdash b & : \sum_{i=1}^{n} \alpha_i \cdot U_i \\
\Gamma \vdash b & : \sum_{i=1}^{n} \alpha_i \cdot V_i \\
\Gamma \vdash b : R & \equiv R \equiv T \\
\Gamma, x : U \vdash x : U & \rightarrow I \\
\Gamma \vdash \lambda x. t : U \rightarrow T & \rightarrow I \quad \text{These two are the trivial cases.} \quad \square \\
\end{align*}
\]

4.3.5. Substitution lemma

The final stone for the proof of Theorem 4.1 is a lemma relating well-typed terms and substitution.

**Lemma 4.16 (Substitution lemma).** For any term \( t \), basis term \( b \), term variable \( x \), context \( \Gamma \), types \( T, R, U, W \), set of type variables \( V \) and type variables \( \vec{X} \),

1. if \( \Gamma \vdash t : T \), then \( \Gamma[A/\vec{X}] \vdash t : T[A/\vec{X}] \);
Proof.

1. Induction on the typing derivation.

\[ \frac{\Gamma, x : U \vdash \alpha x \quad \text{Notice that } \Gamma[A/X], x : U[A/X] \vdash x : U[A/X] \text{ can also be}}{\Gamma \vdash t : T} \quad \text{derived with the same rule.} \]

\[ \frac{\Gamma \vdash t : T \quad \text{By the induction hypothesis } \Gamma[A/X] \vdash t : T[A/X], \text{ so by rule } 0_f,}{\Gamma \vdash 0 : 0 \cdot T} \quad \Gamma[A/X] \vdash 0 : 0 \cdot T[A/X] = (0 \cdot T)[A/X]. \]

\[ \frac{\Gamma, x : U \vdash t : T \quad \text{By the induction hypothesis } \Gamma[A/X], x : U[A/X] \vdash t : T}{\Gamma \vdash \lambda x. t : U \rightarrow T} \quad \text{so by rule } \rightarrow_f, \quad \Gamma[A/X] \vdash \lambda x. t : U[A/X] \rightarrow T[A/X] = (U \rightarrow T)[A/X]. \]

\[ \frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{Y}. (U \rightarrow T_i) \quad \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[\bar{B}_j / \bar{Y}]}{\Gamma \vdash (t \ r) : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\bar{B}_j / \bar{Y}] \rightarrow E} \]

By the induction hypothesis, \( \Gamma[A/X] \vdash t : (\sum_{i=1}^{n} \alpha_i \cdot \forall \bar{Y}. (U[A/X] \rightarrow T_i[A/X])) \) and this type is equal to \( \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{Y}. (U[A/X] \rightarrow T_i[A/X]) \). Also \( \Gamma[A/X] \vdash r : (\sum_{j=1}^{m} \beta_j \cdot U[\bar{B}_j / \bar{Y}]][A/X] = \sum_{j=1}^{m} \beta_j \cdot U[\bar{B}_j / \bar{Y}][A/X] \). Since \( \bar{Y} \) is bounded, we can consider it is not in \( A \). Hence \( U[\bar{B}_j / \bar{Y}][A/X] = U[A/X][\bar{B}_j[A/X][\bar{Y}] \rangle, \) and so, by rule \( \rightarrow_E \),

\[ \Gamma[A/X] \vdash (t \ r) : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[A/X][\bar{B}_j[A/X][\bar{Y}]] \]

\[ = (\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\bar{B}_j / \bar{Y}]][A/X] \].

\[ \frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot U_i \quad \text{Y \notin FV}(\Gamma)}{\forall I} \]

\[ \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall Y. U_i \]

By the induction hypothesis, \( \Gamma[A/X] \vdash t : (\sum_{i=1}^{n} \alpha_i \cdot U_i)[A/X] = \sum_{i=1}^{n} \alpha_i \cdot U_i[A/X] \).

Then, by rule \( \forall_f, \quad \Gamma[A/X] \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall Y. U_i[A/X] \).

In the case \( Y \in \text{FV}(A) \), we can rename the free variable.

\[ \frac{\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall Y. U_i}{\forall E} \]

Since \( Y \) is bounded, we can consider \( Y \notin \text{FV}(A) \).

By the induction hypothesis, \( \Gamma[A/X] \vdash t : (\sum_{i=1}^{n} \alpha_i \cdot \forall Y. U_i)[A/X] = \sum_{i=1}^{n} \alpha_i \cdot \forall Y. U_i[A/X] \).

Then by rule \( \forall_f, \quad \Gamma[A/X] \vdash t : \sum_{i=1}^{n} \alpha_i \cdot U_i[A/X][B/Y] \).

We can consider \( X \notin \text{FV}(B) \) (in other cases, just take \( B[A/X] \) in the \( \forall \)-elimination), hence \( \sum_{i=1}^{n} \alpha_i \cdot U_i[A/X][B/Y] = \sum_{i=1}^{n} \alpha_i \cdot U_i[B/Y][A/X] \).

19
2. We proceed by induction on the typing derivation of $\Gamma \vdash t : T$.

\[(a)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } ax. \text{ Cases:}
\]
\begin{itemize}
  \item $t = x$, then $T = U$, and so $\Gamma \vdash t[b/x] : T$ and $\Gamma \vdash b : U$ are the same sequent.
  \item $t = y$. Notice that $y[b/x] = y$. By Lemma 4.3.3, $\Gamma, x : U \vdash y : T$ implies $\Gamma \vdash y : T$.
\end{itemize}

\[(b)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \rightarrow_f, \text{ then } t = \lambda y . r \text{ and } T = V \rightarrow R, \text{ with } \Gamma, x : U, y : V \vdash r : R \text{ for some } r. \text{ By the induction hypothesis, } \Gamma \vdash r[b/x] : R. \text{ Hence, by rule } 0_f, \Gamma \vdash 0 : 0 \rightarrow R.
\]

\[(c)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \rightarrow_I, \text{ then } t = \lambda y . r \text{ and } T = V \rightarrow R, \text{ with } \Gamma, x : U, y : V \vdash r : R. \text{ Since our system admits weakening (Lemma 4.3.4), the sequent } \Gamma, y : V \vdash b : U \text{ is derivable. Then by the induction hypothesis, } \Gamma, y : V \vdash r[b/x] : R, \text{ from where, by rule } \rightarrow_I, \text{ we obtain } \Gamma \vdash \lambda y . r[b/x] : V \rightarrow R. \text{ We are done since } \lambda y . r[b/x] = (\lambda y . r)[b/x].
\]

\[(d)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \rightarrow_E, \text{ then } t = (r) u \text{ and } T = \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot R_i[\vec{B}/\vec{Y}], \text{ with } \Gamma, x : U \vdash r : \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{Y}. (V \rightarrow T_i) \text{ and } \Gamma, x : U \vdash u : \sum_{i=1}^{m} \beta_j \cdot V[\vec{B}/\vec{Y}]. \text{ By the induction hypothesis, } \Gamma \vdash r[b/x] : \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{Y}. (V \rightarrow R_i) \text{ and } \Gamma \vdash u[b/x] : \sum_{i=1}^{m} \beta_j \cdot V[\vec{B}/\vec{Y}]. \text{ Then, by rule } \rightarrow_E, \Gamma \vdash r[b/x], u[b/x] : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot R_i[\vec{B}/\vec{Y}].
\]

\[(e)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \forall_f. \text{ Then } T = \sum_{i=1}^{n} \alpha_i \cdot \forall Y.V_i, \text{ with } \Gamma, x : U \vdash t : \sum_{i=1}^{n} \alpha_i \cdot V_i \text{ and } Y \notin \text{FV}(\Gamma \cup \text{FV}(U)). \text{ By the induction hypothesis, } \Gamma \vdash t[b/x] : \sum_{i=1}^{n} \alpha_i \cdot V_i. \text{ Then by rule } \forall_f, \Gamma \vdash t[b/x] : \sum_{i=1}^{n} \alpha_i \cdot \forall Y.V_i.
\]

\[(f)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \exists_E. \text{ Then } T = \sum_{i=1}^{n} \alpha_i \cdot V_i[B/Y], \text{ with } \Gamma, x : U \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall Y.V_i \text{ and } B \notin \text{FV}(\Gamma \cup \text{FV}(U)). \text{ By the induction hypothesis, } \Gamma \vdash t[b/x] : \sum_{i=1}^{n} \alpha_i \cdot \forall Y.V_i. \text{ By rule } \exists_E, \Gamma \vdash t[b/x] : \sum_{i=1}^{n} \alpha_i \cdot V_i[B/Y].
\]

\[(g)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \alpha_I. \text{ Then } T = \alpha \cdot R \text{ and } t = \alpha \cdot r, \text{ with } \Gamma, x : U \vdash r : R. \text{ By the induction hypothesis } \Gamma \vdash r[b/x] : R, \text{ and hence by rule } \alpha_I, \Gamma \vdash \alpha \cdot r[b/x] : \alpha \cdot R. \text{ Notice that } \alpha \cdot r[b/x] = (\alpha \cdot r)[b/x].
\]

\[(h)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \rightarrow_S. \text{ Then } t = r + u \text{ and } T = R + S, \text{ with } \Gamma, x : U \vdash r : R \text{ and } \Gamma, x : U \vdash u : S. \text{ By the induction hypothesis, } \Gamma \vdash r[b/x] : R \text{ and } \Gamma \vdash u[b/x] : S. \text{ Then by rule } \rightarrow_S, \Gamma \vdash r[b/x] + u[b/x] : R + S. \text{ Notice that } r[b/x] + u[b/x] = (r + u)[b/x].
\]

\[(i)\text{ Let } \Gamma, x : U \vdash t : T \text{ as a consequence of rule } \equiv. \text{ Then } T \equiv R \text{ and } \Gamma, x : U \vdash t : R. \text{ By the induction hypothesis, } \Gamma \vdash t[b/x] : R. \text{ Hence, by rule } \equiv, \Gamma \vdash t[b/x] : T.
\]
4.4. Proof of Theorem 4.1

We are now ready to prove Theorem 4.1.

Proof. Let $t \rightarrow_R t'$ and $\Gamma \vdash t : T$. We proceed by induction on the rewrite relation.

Group E.

$0 \cdot t \rightarrow 0$ Consider $\Gamma \vdash 0 \cdot t : T$. By Lemma 4.10, we have that $T \equiv 0 \cdot R$ and $\Gamma \vdash t : R$. Then, by rule $0_I$, $\Gamma \vdash 0 : 0 \cdot R$. We conclude using rule $\equiv$.

$1 \cdot t \rightarrow t$ Consider $\Gamma \vdash 1 \cdot t : T$, then by Lemma 4.10, $T \equiv 1 \cdot R$ and $\Gamma \vdash t : R$. Notice that $R \equiv T$, so we conclude using rule $\equiv$.

$\alpha \cdot 0 \rightarrow 0$ Consider $\Gamma \vdash \alpha \cdot 0 : T$, then by Lemma 4.11, $T \equiv 0 \cdot R$. Hence by rules $\equiv$ and $0_I$, $\Gamma \vdash 0 : 0 \cdot 0 \cdot R$ and so we conclude using rule $\equiv$.

$\alpha \cdot (\beta \cdot t) \rightarrow (\alpha \cdot (\beta \cdot t)) : T$. By Lemma 4.10, $T \equiv \alpha \cdot R$ and $\Gamma \vdash \beta \cdot t : R$. By Lemma 4.10 again, $R \equiv \beta \cdot S$ with $\Gamma \vdash t : S$. Notice that $(\alpha \cdot \beta) \cdot S \equiv \alpha \cdot (\beta \cdot S) \equiv T$, hence by rules $\alpha_I$ and $\equiv$, we obtain $\Gamma \vdash (\alpha \cdot \beta) \cdot t : T$.

$\alpha \cdot (t + r) \rightarrow \alpha \cdot t + \alpha \cdot r$ Consider $\Gamma \vdash \alpha \cdot (t + r) : T$. By Lemma 4.10, $T \equiv \alpha \cdot R$ and $\Gamma \vdash t + r : R$. By Lemma 4.12 $\Gamma \vdash t : R_1$ and $\Gamma \vdash r : R_2$, with $R_1 + R_2 \equiv R$. Then by rules $\alpha_I$ and $+I$, $\Gamma \vdash \alpha \cdot t + \alpha \cdot r : \alpha \cdot R_1 + \alpha \cdot R_2$. Notice that $\alpha \cdot R_1 + \alpha \cdot R_2 \equiv \alpha \cdot (R_1 + R_2) \equiv \alpha \cdot R$ so we conclude using rule $\equiv$.

Group F.

$\alpha \cdot t + \beta \cdot t \rightarrow (\alpha + \beta) \cdot t$ Consider $\Gamma \vdash \alpha \cdot t + \beta \cdot t : T$, then by Lemma 4.12, $\Gamma \vdash \alpha \cdot t : T_1$ and $\Gamma \vdash \beta \cdot t : T_2$ with $T_1 + T_2 \equiv T$. Then by Lemma 4.10, $T_1 \equiv \alpha \cdot R$ and $T_2 \equiv \beta \cdot S$. Hence by rule $\alpha_I$, $\Gamma \vdash (\alpha + \beta) \cdot t : (\alpha + \beta) \cdot R$. Notice that $(\alpha + \beta) \cdot R \equiv \alpha \cdot R + \beta \cdot S \equiv T_1 + T_2 \equiv T$.

$\alpha \cdot t + t \rightarrow (\alpha + 1) \cdot t$ and $R = t + t \rightarrow (1 + 1) \cdot t$ The proofs of these two cases are simplified versions of the previous case.

$t + 0 \rightarrow t$ Consider $\Gamma \vdash t + 0 : T$. By Lemma 4.12, $\Gamma \vdash t : R$ and $\Gamma \vdash 0 : S$ with $R + S \equiv T$. In addition, by Lemma 4.11, $S \equiv 0 \cdot S'$. Notice that $R + 0 \cdot R \equiv R \geq R + 0 \cdot S' \equiv R + S \equiv T$.

Group B.

$(\lambda x. t) \ b \rightarrow t[b/x]$ Consider $\Gamma \vdash \lambda x. t : T$, then by Lemma 4.13, we have $\Gamma \vdash \lambda x. t : \sum_{i=1}^{n} \alpha_i \cdot \forall X_i. (U \rightarrow R_i)$ and $\Gamma \vdash b : \sum_{j=1}^{n} \beta_j \cdot U[\vec{A}/\vec{X}]$ where $\sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot R_i[\vec{A}/\vec{X}] \geq \gamma R$. However, we can simplify these types using Lemma 4.15, and so we have $\Gamma \vdash \lambda x. t : \forall X_i. (U \rightarrow R_i)$ and $\Gamma \vdash b : U[\vec{A}/\vec{X}]$ with $R[\vec{A}/\vec{X}] \geq \gamma R$. Note that $\vec{A} \notin TV(\Gamma)$ (from the arrow introduction rule). Hence, by Lemma 4.14, $\Gamma, x : V \vdash t : S$; with $V \rightarrow S \geq \gamma R, \forall X_i. (U \rightarrow R_i)$. Hence, by Lemma 4.9, $U \equiv V[\vec{B}/\vec{Y}]$ and $R \equiv S[\vec{B}/\vec{Y}]$ with $\vec{Y} \notin TV(\Gamma)$, so by Lemma 4.16(1), $\Gamma, x : U \vdash t : R$. Applying Lemma 4.16(1) once more, we have $\Gamma[\vec{A}/\vec{X}, x : U[\vec{A}/\vec{X}] \vdash t[b/x] : R[\vec{A}/\vec{X}]$. Since $\vec{X} \notin TV(\Gamma)$, $\Gamma[\vec{A}/\vec{X}] = \Gamma$ and we can apply Lemma 4.16(2) to get $\Gamma \vdash t[b/x] : R[\vec{A}/\vec{X}] \geq \gamma R, \forall X_i. (U \rightarrow R_i)$. We conclude using Remark 4.7.
Group A.

(t + r) \ u \rightarrow (t) \ u + (r) \ u \quad \text{Consider } \Gamma \vdash (t + r) \ u : T. \quad \text{Then by Lemma 4.13, } \Gamma \vdash t + r : \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) \quad \text{and } \Gamma \vdash u : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \quad \text{where } \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \geq_r \Gamma \ T. \quad \text{Then by Lemma 4.12, } \Gamma \vdash t : R_1 \quad \text{and } \Gamma \vdash r : R_2, \quad \text{with } R_1 + R_2 \equiv \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i). \quad \text{Hence, there exists } N_1, N_2 \subseteq \{1, \ldots, n\} \quad \text{such that}

\begin{align*}
R_1 & \equiv \sum_{i \in N_1 \setminus N_2} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha_i' \cdot \forall \vec{X} \cdot (U \rightarrow T_i) \\
R_2 & \equiv \sum_{i \in N_2 \setminus N_1} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha_i'' \cdot \forall \vec{X} \cdot (U \rightarrow T_i)
\end{align*}

where \( \forall i \in N_1 \cap N_2, \alpha_i' + \alpha_i'' = \alpha_i \). \quad \text{Therefore, using } \equiv \text{ we get}

\begin{align*}
\Gamma \vdash t : \sum_{i \in N_1 \setminus N_2} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha_i' \cdot \forall \vec{X} \cdot (U \rightarrow T_i) \\
\Gamma \vdash r : \sum_{i \in N_2 \setminus N_1} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha_i'' \cdot \forall \vec{X} \cdot (U \rightarrow T_i)
\end{align*}

So, using rule \( \rightarrow_E \), we get

\begin{align*}
\Gamma \vdash (t) \ u : \sum_{i \in N_1 \setminus N_2} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] + \sum_{i \in N_1 \cap N_2} \sum_{j=1}^{m} \alpha_i' \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \\
\Gamma \vdash (r) \ u : \sum_{i \in N_2 \setminus N_1} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] + \sum_{i \in N_1 \cap N_2} \sum_{j=1}^{m} \alpha_i'' \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}]
\end{align*}

Finally, by rule \( +_I \) we can conclude \( \Gamma \vdash (t) \ u + (r) \ u : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \).

We finish the case with Remark 4.7.

(t) \ (r + u) \rightarrow (t) \ r + (t) \ u \quad \text{Consider } \Gamma \vdash (t) \ (r + u) : T. \quad \text{By Lemma 4.13, } \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall \vec{X} \cdot (U \rightarrow T_i) \quad \text{and } \Gamma \vdash r + u : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \quad \text{where } \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \geq_r \Gamma \ T. \quad \text{Then by Lemma 4.12, } \Gamma \vdash r : R_1 \quad \text{and } \Gamma \vdash u : R_2, \quad \text{with } R_1 + R_2 \equiv \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}]. \quad \text{Hence, there exists } M_1, M_2 \subseteq \{1, \ldots, m\} \quad \text{such that}

\begin{align*}
R_1 & \equiv \sum_{j \in M_1 \setminus M_2} \beta_j \cdot U[\vec{A}_j/\vec{X}] + \sum_{j \in M_1 \cap M_2} \beta_j' \cdot U[\vec{A}_j/\vec{X}] \\
R_2 & \equiv \sum_{j \in M_2 \setminus M_1} \beta_j \cdot U[\vec{A}_j/\vec{X}] + \sum_{j \in M_1 \cap M_2} \beta_j'' \cdot U[\vec{A}_j/\vec{X}]
\end{align*}

where \( \forall j \in M_1 \cap M_2, \beta_j' + \beta_j'' = \beta_j \). \quad \text{Therefore, using } \equiv \text{ we get}

\begin{align*}
\Gamma \vdash r : \sum_{j \in M_1 \setminus M_2} \beta_j \cdot U[\vec{A}_j/\vec{X}] + \sum_{j \in M_1 \cap M_2} \beta_j' \cdot U[\vec{A}_j/\vec{X}] \\
\Gamma \vdash u : \sum_{j \in M_2 \setminus M_1} \beta_j \cdot U[\vec{A}_j/\vec{X}] + \sum_{j \in M_1 \cap M_2} \beta_j'' \cdot U[\vec{A}_j/\vec{X}]
\end{align*}
\[
\Gamma \vdash u : \sum_{j \in M_2 \setminus M_1} \beta_j U[\vec{A}_j/\vec{X}] + \sum_{j \in M_1 \cap M_2} \beta'_j U[\vec{A}_j/\vec{X}]
\]

So, using rule \( \rightarrow_E \), we get

\[
\Gamma \vdash (t) \ r : \sum_{i=1}^{n} \sum_{j \in M_1} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] + \sum_{i=1}^{n} \sum_{j \in M_1 \cap M_2} \alpha_i \times \beta'_j \cdot T_i[\vec{A}_j/\vec{X}]
\]

and

\[
\Gamma \vdash (t) \ u : \sum_{i=1}^{n} \sum_{j \in M_2} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] + \sum_{i=1}^{n} \sum_{j \in M_1 \cap M_2} \alpha_i \times \beta'_j \cdot T_i[\vec{A}_j/\vec{X}]
\]

Finally, by rule \( \vdash +_R \) we can conclude \( \Gamma \vdash (t) \ r + (t) \ u : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \).

We finish the case with Remark 4.7.

\((\alpha \cdot t) \ r \rightarrow \alpha \cdot (t) \ r\) Consider \( \Gamma \vdash (\alpha \cdot t) \ r : T \). Then by Lemma 4.13, \( \Gamma \vdash \alpha \cdot t : \sum_{i=1}^{n} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \) and \( \Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \), where \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \equiv \forall \vec{X}_i T \). Then by Lemma 4.10, \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \equiv \alpha \cdot R \) and \( \Gamma \vdash t : R \). By Lemma 4.2, \( R \equiv \sum_{i=1}^{n} \gamma_i \cdot V_i + \sum_{k=1}^{h} \eta_k \cdot X_k \), however it is easy to see that \( h = 0 \) and so \( R \equiv \sum_{i=1}^{n} \gamma_i \cdot V_i \). Without lost of generality (cf. previous case), take \( T_i \neq T_k \) for all \( i \neq k \) and \( h = 0 \), and notice that \( \sum_{i=1}^{n} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \equiv \sum_{i=1}^{n} \alpha_i \times \gamma_i \cdot V_i \). Then by Lemma 4.4, there exists a permutation \( p \) such that \( \alpha_i = \alpha \times \gamma_{p(i)} \) and \( \forall \vec{X}_i (U \rightarrow T_i) \equiv V_{p(i)} \). Without lost of generality let \( p \) be the trivial permutation, and so \( \Gamma \vdash t : \sum_{i=1}^{n} \gamma_i \cdot \forall \vec{X}_i (U \rightarrow T_i) \). Hence, using rule \( \rightarrow_E \), \( \Gamma \vdash (t) \ r : \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \). Therefore, by rule \( \alpha \cdot \alpha \), \( \Gamma \vdash (t) \ r : \alpha \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \). Notice that \( \alpha \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \gamma_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \equiv \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \). We finish the case with Remark 4.7.

\((t) \ (\alpha \cdot r) \rightarrow (\alpha \cdot t) \ (\alpha \cdot r)\) Consider \( \Gamma \vdash (t) \ (\alpha \cdot r) : T \). Then by Lemma 4.13, \( \Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \) and \( \Gamma \vdash \alpha \cdot r : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \), where \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \equiv \forall \vec{X}_i T \). Then by Lemma 4.10, \( \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \equiv \alpha \cdot R \) and \( \Gamma \vdash r : R \). By Lemma 4.2, \( R \equiv \sum_{j=1}^{m} \gamma_j \cdot V_j + \sum_{k=1}^{h} \eta_k \cdot X_k \), however it is easy to see that \( h = 0 \) and so \( R \equiv \sum_{j=1}^{m} \gamma_j \cdot V_j \). Without lost of generality (cf. previous case), take \( A_j \neq A_k \) for all \( j \neq k \), and notice that \( \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \equiv \sum_{j=1}^{m} \alpha \times \gamma_j \cdot V_j \). Then by Lemma 4.4, there exists a permutation \( p \) such that \( \beta_j = \alpha \times \gamma_{p(j)} \) and \( U[\vec{A}_j/\vec{X}] \equiv V_{p(j)} \). Without lost of generality let \( p \) be the trivial permutation, and so \( \Gamma \vdash r : \sum_{j=1}^{m} \gamma_j \cdot U[\vec{A}_j/\vec{X}] \). Hence, using rule \( \rightarrow_E \), \( \Gamma \vdash (t) \ r : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \gamma_j \cdot T_i[\vec{A}_j/\vec{X}] \). Therefore, by rule \( \alpha \cdot \alpha \), \( \Gamma \vdash (t) \ r : \alpha \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \gamma_j \cdot T_i[\vec{A}_j/\vec{X}] \). Notice that \( \alpha \cdot \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \gamma_j \cdot T_i[\vec{A}_j/\vec{X}] \equiv \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \). We finish the case with Remark 4.7.

\((0) \ t \rightarrow 0\) Consider \( \Gamma \vdash (0) \ t : T \). By Lemma 4.13, \( \Gamma \vdash 0 : \sum_{i=1}^{n} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \) and \( \Gamma \vdash t : \sum_{j=1}^{m} \beta_j \cdot U[\vec{A}_j/\vec{X}] \), where \( \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \equiv \forall \vec{X}_i T \). Then by Lemma 4.11, \( \sum_{i=1}^{n} \alpha_i \times \forall \vec{X}_i (U \rightarrow T_i) \equiv 0 \cdot R \). By Lemma 4.2, \( R \equiv \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\vec{A}_j/\vec{X}] \). We finish the case with Remark 4.7.
\[
\sum_{i=1}^{n'} \gamma_i \cdot V_i + \sum_{k=1}^{h} \eta_k \cdot X_k, \text{ however, it is easy to see that } h = 0 \text{ and so } R \equiv \sum_{i=1}^{n'} \gamma_i \cdot V_i. \text{ Without loss of generality, take } T_i \neq T_k \text{ for all } i \neq k, \text{ and notice that } \sum_{i=1}^{n'} \alpha_i \cdot \forall \vec{X}.(U \rightarrow T_i) \equiv \sum_{j=1}^{m'} 0 \cdot V_i. \text{ By Lemma 4.4, } \alpha_i = 0. \text{ Notice that by rule } \rightarrow_E, \Gamma \vdash (0) t: \sum_{i=1}^{n'} \sum_{j=1}^{m'} 0 \cdot T_i[\bar{A}_j/\bar{X}] \text{, hence by rules } 0_I \text{ and } \equiv, \Gamma \vdash 0: \sum_{i=1}^{n'} \sum_{j=1}^{m'} 0 \cdot T_i[\bar{A}_j/\bar{X}]. \text{ By Remark 4.7, } \Gamma \vdash 0: T. \]

\text{(t) } 0 \rightarrow 0 \text{ Consider } \Gamma \vdash (t) 0: T. \text{ By Lemma 4.13, } \Gamma \vdash t: \sum_{i=1}^{n'} \alpha_i \cdot \forall \vec{X}.(U \rightarrow T_i) \text{ and } \Gamma \vdash 0: \sum_{j=1}^{m'} \beta_j \cdot U[\bar{A}_j/\bar{X}], \text{ where } \sum_{i=1}^{n'} \sum_{j=1}^{m'} \alpha_i \times \beta_j \cdot T_i[\bar{A}_j/\bar{X}] \geq_{\forall \vec{X}} T. \text{ Then by Lemma 4.11, } \sum_{j=1}^{m'} \beta_j \cdot U[\bar{A}_j/\bar{X}] \equiv 0 \cdot R. \text{ By Lemma 4.2, } R \equiv \sum_{j=1}^{m'} \gamma_j \cdot V_j + \sum_{k=1}^{h} \eta_k \cdot X_k, \text{ however, it is easy to see that } h = 0 \text{ and so } R \equiv \sum_{j=1}^{m'} \gamma_j \cdot V_j. \text{ Without lost of generality, take } A_j \neq A_k \text{ for all } j \neq k, \text{ and notice that } \sum_{j=1}^{m'} \beta_j \cdot U[\bar{A}_j/\bar{X}] \equiv \sum_{j=1}^{m'} 0 \cdot V_j. \text{ By Lemma 4.4, } \beta_j = 0. \text{ Notice that by rule } \rightarrow_E, \Gamma \vdash (t) 0: \sum_{i=1}^{n'} \sum_{j=1}^{m'} 0 \cdot T_i[\bar{A}_j/\bar{X}], \text{ hence by rules } 0_I \text{ and } \equiv, \Gamma \vdash 0: \sum_{i=1}^{n'} \sum_{j=1}^{m'} 0 \cdot T_i[\bar{A}_j/\bar{X}]. \text{ By Remark 4.7, } \Gamma \vdash 0: T. \\

Contextual rules. Follows from the generation lemmas, the induction hypothesis and the fact that } \equiv \text{ is congruent.} \square

5. Strong normalisation

For proving strong normalisation of well-typed terms, we use reducibility candidates, a well-known method described for example in [22, Ch. 14]. The technique is adapted to linear combinations of terms.

A neutral term is a term that is not a lambda-abstraction and that does reduce to something. The set of closed neutral terms is denoted with } \mathcal{N}. \text{ We write } \Lambda_0 \text{ for the set of closed terms and } SN_0 \text{ for the set of closed, strongly normalising terms. If } t \text{ is any term, } \text{Red}(t) \text{ is the set of all terms } t' \text{ such that } t \rightarrow t'. \text{ It is naturally extended to sets of terms. We say that a set } S \text{ of closed terms is a reducibility candidate, denoted with } S \in \mathcal{RC} \text{ if the following conditions are verified:}

\begin{itemize}
  \item \textbf{RC}_1 \text{ Strong normalisation: } S \subseteq SN_0.
  \item \textbf{RC}_2 \text{ Stability under reduction: } t \in S \text{ implies } \text{Red}(t) \subseteq S.
  \item \textbf{RC}_3 \text{ Stability under neutral expansion: If } t \in \mathcal{N} \text{ and } \text{Red}(t) \subseteq S \text{ then } t \in S.
  \item \textbf{RC}_4 \text{ The common inhabitant: } 0 \in S.
\end{itemize}

We define the notion of algebraic context over a list of terms } \vec{t}, \text{ with the following grammar:

\[ F(\vec{t}), G(\vec{t}) \ ::= \ t_i \mid F(\vec{t}) + G(\vec{t}) \mid \alpha \cdot F(\vec{t}) \mid 0, \]

where } t_i \text{ is the } i\text{-th element of the list } \vec{t}. \text{ Given a set of terms } S = \{s_i\}_i \text{, we write } F(S) \text{ for the set of terms of the form } F(\vec{s}) \text{ when } F \text{ spans over algebraic contexts.}

We introduce a condition on contexts, which will be handy to define some of the operations on candidates:

24
CC \( F(\overline{s}) \in S \) implies \( \forall i, s_i \in S \).

We then define the following operations on reducibility candidates.

1. Let \( A \) and \( B \) be in \( \mathcal{RC} \). \( A \rightarrow B \) is the closure under \( \mathcal{RC}_3 \) and \( \mathcal{RC}_4 \) of the set of \( t \in A_0 \) such that \( (t) 0 \in B \) and such that for all base terms \( b \in A, (t) b \in B \).
2. If \( \{A_i\}_i \) is a family of reducibility candidates, \( \sum_i A_i \) is the closure under \( \mathcal{CC} \), \( \mathcal{RC}_2 \) and \( \mathcal{RC}_3 \) of the set

\[
\left\{ F(\overline{t}) \mid \text{for all } j, t_j \in A_i \text{ for some } i \right\}.
\]

**Remark 5.1.** Notice that \( \sum_{i=1}^l A \neq A \).

Before proving that these operators define reducibility candidates (Lemma 5.3), we will prove a result which simplifies its proof: a linear combination of strongly normalising terms, is strongly normalising (Lemma 5.2).

**Lemma 5.2.** If \( \{t_i\}_i \) are strongly normalising, then so is \( F(\overline{t}) \) for any algebraic context \( F \).

**Proof.** Let \( \overline{t} = t_1, \ldots, t_n \). We define two notions.

- A measure \( s \) on \( \overline{t} \) defined as the the sum over \( i \) of the sum of the lengths of all the possible rewrite sequences starting with \( t_i \).

- An algebraic measure \( a \) over algebraic contexts \( F(\cdot) \) defined inductively by \( a(t_i) = 1 \), \( a(F(\overline{t}) + F(\overline{t}')) = 2 + a(F(\overline{t})) + a(F(\overline{t}')) \), \( a(\alpha \cdot F(\overline{t})) = 1 + 2 \cdot a(F(\overline{t})) \), \( a(0) = 0 \).

We claim that for all algebraic contexts \( F(\cdot) \) and all strongly normalising terms \( t_i \) that are not linear combinations (that is, of the form \( x, \lambda x.r \) or \( (s) r \)), the term \( F(\overline{t}) \) is also strongly normalising.

The claim is proven by induction on \( s(\overline{t}) \).

- If \( s(\overline{t}) = 0 \). Then none of the \( t_i \) reduces. We show by induction on \( a(F(\overline{t})) \) that \( F(\overline{t}) \) is SN.
  - If \( a(F(\overline{t})) = 0 \), then \( F(\overline{t}) = 0 \) which is SN.
  - Suppose it is true for all \( F(\overline{t}) \) of algebraic measure less or equal to \( m \), and consider \( F(\overline{t}) \) such that \( a(F(\overline{t})) = m + 1 \). Since the \( t_i \) are not linear combinations and they are in normal form, because \( s(\overline{t}) = 0 \), then \( F(\overline{t}) \) can only reduce with a rule from Group E or a rule from group F. We show that those reductions are strictly decreasing on the algebraic measure, by a rule by rule analysis, and so, we can conclude by induction hypothesis.
    - \( a(0 \cdot F(\overline{t})) = 1 > 0 = a(0) \).
    - \( a(1 \cdot F(\overline{t})) = 1 + 2 \cdot a(F(\overline{t})) > a(F(\overline{t})) \).
    - \( a(\alpha \cdot 0) = 1 > 0 = a(0) \).
    - \( a(\alpha \cdot (\beta \cdot F(\overline{t}))) = 1 + 2 \cdot (1 + 2 \cdot a(F(\overline{t}))) > 1 + 2 \cdot a(F(\overline{t})) = a((\alpha \cdot \beta) \cdot F(\overline{t})) \).
This closes the proof of the claim. Now, consider any SN terms $F$ can be written as
\( \vec{t}\) such that $s(\vec{t}) = n + 1$. Again, we show that $F(\vec{t})$ is SN by induction on $s(F(\vec{t}))$.

- If $s(F(\vec{t})) = 0$, then $F(\vec{t}) = 0$ which is SN.
- Suppose it is true for all $F(\vec{t})$ of algebraic measure less or equal to $m$, and consider $F(\vec{t})$ such that $s(F(\vec{t})) = m + 1$. Since the $t_i$'s are not linear combinations, $F(\vec{t})$ can reduce in two ways:

\( F(t_1, \ldots, t_i, \ldots, t_k) \rightarrow F(t_1, \ldots, t'_i, \ldots, t_k) \) with $t_i \rightarrow t'_i$. Then $t'_i$ can be written as $H(r_1, \ldots, r_i)$ for some algebraic context $H$, where the $r_j$'s are not linear combinations. Note that
\[
\sum_{j=1}^{i} s(r_j) \leq s(t'_i) < s(t_i).
\]

Define the context
\[
G(t_1, \ldots, t_{i-1}, u_1, \ldots, u_i, t_{i+1}, \ldots, t_k) = F(t_1, \ldots, t_{i-1}, H(u_1, \ldots, u_i), t_{i+1}, \ldots, t_k).
\]

The term $F(\vec{t})$ then reduces to the term
\[
G(t_1, \ldots, t_{i-1}, r_1, \ldots, r_i, t_{i+1}, \ldots, t_k),
\]
where
\[
s(t_1, \ldots, t_{i-1}, r_1, \ldots, r_i, t_{i+1}, \ldots, t_k) < s(\vec{t}).
\]

Using the top induction hypothesis, we conclude that $F(t_1, \ldots, t'_i, \ldots, t_k)$ is SN.

- $F(\vec{t}) \rightarrow G(\vec{t})$, with $a(G(\vec{t})) < a(F(\vec{t}))$. Using the second induction hypothesis, we conclude that $G(\vec{t})$ is SN.

All the possible reducts of $F(\vec{t})$ are SN: so is $F(\vec{t})$.

This closes the proof of the claim. Now, consider any SN terms $\{t_i\}_i$ and any algebraic context $G(\vec{t})$. Each $t_i$ can be written as an algebraic sum of $x$'s, $\lambda x. s$'s and $(r)s$'s. It can be written as $F(\vec{t})$ for some $\vec{t}$. The hypotheses of the claim are satisfied: $G(\vec{t})$ is SN.
Lemma 5.3. If $A$, $B$ and all the $A_i$’s are in $\text{RC}$, then so are $A \rightarrow B$, $\sum_i A_i$ and $\cap_i A_i$.

Proof. First, we consider the case $A \rightarrow B$.

RC$_1$ We must show that all $t \in A \rightarrow B$ are in $SN_0$. We proceed by induction on the definition of $A \rightarrow B$.

- Assume that $t$ is such that for $r = 0$ and $r = b$, with $b \in A$, then $(t) r \in B$. Hence by RC$_1$ in $B$, $t \in SN_0$.
- Assume that $t$ is closed neutral and that $\text{Red}(t) \subseteq A \rightarrow B$. By induction hypothesis, all the elements of $\text{Red}(t)$ are strongly normalising: so is $t$.
- The last case is immediate: if $t$ is the term $0$, it is strongly normalising.

RC$_2$ We must show that if $t \rightarrow t'$ and $t \in A \rightarrow B$, then $t' \in A \rightarrow B$. We again proceed by induction on the definition of $A \rightarrow B$.

- Let $t$ such that $(t) 0 \in B$ and such that for all $b \in A$, $(t) b \in B$. Then by RC$_2$ in $B$, $(t') 0 \in B$ and $(t') b \in B$, and so $t' \in A \rightarrow B$.
- If $t$ is closed neutral and $\text{Red}(t) \subseteq A \rightarrow B$, then $t' \in A \rightarrow B$ since $t' \in \text{Red}(t)$.
- If $t = 0$, it does not reduce.

RC$_3$ and RC$_4$ Trivially true by definition.

Then we analyze the case $\sum_i A_i$.

RC$_1$ If $t = F(\vec{t'})$ when $F$ is an alg. context and $t'_i \in A_i$, the result is immediate using Lemma 5.2 and RC$_1$ on the $A_i$’s. If $t$ is closed neutral and $\text{Red}(t) \subseteq \sum_i A_i$, then $t$ is strongly normalising since all elements of $\text{Red}(t)$ are strongly normalising. Finally, if $t$ is equal to $0$, there is nothing to do.

RC$_2$ and RC$_3$ Trivially true by definition.

RC$_4$ Since $0$ is an algebraic context, it is also in the set.

Finally, we prove the case $\cap_i A_i$.

RC$_1$ Trivial since for all $i$, $A_i \subseteq SN_0$.

RC$_2$ Let $t \in \cap_i A_i$, then $\forall i, t \in A_i$ and so by RC$_2$ in $A_i$, $\text{Red}(t) \subseteq A_i$. Thus $\text{Red}(t) \subseteq \cap_i A_i$.

RC$_3$ Let $t \in \mathcal{N}$ and $\text{Red}(t) \subseteq \cap_i A$. Then $\forall i, \text{Red}(t) \subseteq A_i$, and thus, by RC$_4$ in $A_i$, $t \in A_i$, which implies $t \in \cap_i A_i$.

RC$_4$ By RC$_4$, for all $i$, $0 \in A_i$. Therefore, $0 \in \cap_i A_i$.

This concludes the proof of Lemma 5.3. \hfill $\Box$
A single type valuation is a partial function from type variables to reducibility candidates, that we define as a sequence of comma-separated mappings, with $\emptyset$ denoting the empty valuation: $\rho := \emptyset \mid \rho, X \mapsto A$. Type variables are interpreted using pairs of single type valuations, that we simply call valuations, with common domain: $\rho = (\rho_+, \rho_-)$ with $|\rho_+| = |\rho_-|$. Given a valuation $\rho = (\rho_+, \rho_-)$, the complementary valuation $\bar{\rho}$ is the pair $(\rho_-, \rho_+)$. We write $(X_+, X_-) \mapsto (A_+, A_-)$ for the valuation $(X_+ \mapsto A_+, X_- \mapsto A_-)$. A valuation is called valid if for all $X$, $\rho_-(X) \subseteq \rho_+(X)$.

From now on, we will consider the following grammar

$$U, V, W ::= U \mid X.$$ 

That is, we will use $U, V, W$ for unit and $X$-kind of variables.

To define the interpretation of a type $T$, we use the following result.

**Lemma 5.4.** Any type $T$, has a unique canonical decomposition $T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i$ such that for all $l, k$, $U_l \not\equiv U_k$.

**Proof.** By Lemma 4.2, $T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i + \sum_{j=1}^{m} \beta_j \cdot X_j$. Suppose that there exist $l, k$ such that $U_l \equiv U_k$. Then notice that $T \equiv (\alpha_l + \alpha_k) \cdot U_l + \sum_{j \neq l, k} \alpha_i \cdot U_i$. Repeat the process until there is no more $l, k$ such that $U_l \not\equiv U_k$. Proceed in the analogously to obtain a linear combination of different $X_j$.

The interpretation $[T]_\rho$ of a type $T$ in a valuation $\rho = (\rho_+, \rho_-)$ defined for each free type variable of $T$ is given by:

$$[X]_\rho = \rho_+(X),$$

$$[U \to T]_\rho = [U]_\rho \to [T]_\rho,$$

$$[\forall X.U]_\rho = \bigwedge_{\beta \in \text{RC}} [U]_{\rho, (X_+, X_-) \mapsto (A, B)}.$$

If $T \equiv \sum_i \alpha_i \cdot U_i$ is the canonical decomposition of $T$ and $T \not\equiv U$ then

$$[T]_\rho = \sum_i [U_i]_\rho.$$

From Lemma 5.3, the interpretation of any type is a reducibility candidate.

Reducibility candidates deal with closed terms, whereas proving the adequacy lemma by induction requires the use of open terms with some assumptions on their free variables, that will be guaranteed by a context. Therefore we use substitutions $\sigma$ to close terms:

$$\sigma := \emptyset \mid (x \mapsto b; \sigma),$$

then $t_\emptyset = t$ and $t_{x \mapsto b; \sigma} = t|b/x|_{\sigma}$. All the substitutions ends by $\emptyset$, hence we omit it when not necessary.

Given a context $\Gamma$, we say that a substitution $\sigma$ satisfies $\Gamma$ for the valuation $\rho$ (notation: $\sigma \in [\Gamma]_\rho$) when $(x : U) \in \Gamma$ implies $x_\sigma \in [U]_\rho$ (Note the change in polarity). A typing judgement $\Gamma \vdash t : T$, is said to be valid (notation $\Gamma \models t : T$) if:

- in case $T \equiv U$, then for every valuation $\rho$, and for every substitution $\sigma \in [\Gamma]_\rho$, we have $t_\sigma \in [U]_\rho$.
- in other case, that is, $T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i$ with $n > 1$, such that for all $i, j$, $U_i \not\equiv U_j$ (notice that by Lemma 5.4 such a decomposition always exists), then for every valuation $\rho$, and set of valuations $\{\rho_i\}_n$, where $\rho_i$ acts on $\text{FV}(U_i) \setminus \text{FV}(\Gamma)$, and for every substitution $\sigma \in [\Gamma]_\rho$, we have $t_\sigma \in \sum_{i=1}^{n} [U_i]_{\rho_i, \rho}$. 


Lemma 5.5. Given a (valid) valuation $\rho = (\rho_+, \rho_-)$, for all types $T$ we have $[T]_\rho \subseteq [T]_{\rho'}$.

Proof. Structural induction on $T$.

- $T = X$. Then $[T]_\rho = \rho_-(X) \subseteq \rho_+(X) = [T]_{\rho'}$.

- $T = U \to R$. Then $[U \to R]_\rho = [U]_\rho \to [R]_\rho$. By the induction hypothesis $[U]_\rho \subseteq [U]_{\rho'}$, and $[R]_\rho \subseteq [R]_{\rho'}$. We must show that $\forall t \in [U \to R]_\rho, t \in [U \to R]_{\rho'}$. Let $t \in [U \to R]_\rho = [U]_\rho \to [R]_\rho$. We proceed by induction on the definition of $\to$.

  - Let $t = \{t\} \in [R]_\rho$ and $\forall b \in [U]_{\rho'}, (t, b) \in [R]_\rho$. Notice that $(t, 0) \in [R]_\rho$, $\forall t \in [U]_\rho, b \in [R]_\rho$, and so $(t, b) \in [R]_\rho$. Thus $t \in [U]_\rho \to [R]_\rho = [U \to R]_\rho$.

  - Let $\text{Red}(t) \in [U \to R]_\rho$ and $t \in N$. By the induction hypothesis $\text{Red}(t) \in [U \to R]_{\rho'}$ and so, by $\text{RC3}$, $t \in [U \to R]_{\rho'}$.

- $T = \forall X. U$. Then $[\forall X. U]_\rho = \cap_{A \subseteq B \subseteq C} [U]_{\rho,(X_+, X_-) \to (A, B)}$. By the induction hypothesis $[U]_\rho \subseteq [U]_{\rho'}$, then $\forall A, B, [U]_{\rho,(X_+, X_-) \to (A, B)} \subseteq [U]_{\rho,(X_+, X_-) \to (A, B)}$. Thus we have $\cap_{A \subseteq B \subseteq C} [U]_{\rho,(X_+, X_-) \to (A, B)} \subseteq \cap_{A \subseteq B \subseteq C} [U]_{\rho,(X_+, X_-) \to (A, B)} = [\forall X. U]_{\rho'}$.

- $T \equiv \sum_i \alpha_i \cdot U_i$ and $T \neq U$. Then $[T]_\rho = \sum_i [[U_i]_\rho]$. By the induction hypothesis $[U_i]_\rho \subseteq [U_i]_{\rho'}$. We proceed by induction on the definition of $\sum_i [[U_i]_\rho]$.

  - Let $t = F(r)$ where $F$ is an algebraic context and $r \in [U_i]_\rho$. Note that by induction hypothesis $\forall r \in [U_i]_\rho, r \in [U_i]_{\rho'}$ and so the result holds.

  - Let $t \in \sum_i [U_i]_\rho$ and $t \to t'$. By the induction hypothesis $t \in \sum_i [U_i]_{\rho'}$, hence by $\text{RC2}$, $t' \in \sum_i [U_i]_{\rho'}$.

  - Let $\text{Red}(t) \in \sum_i [U_i]_{\rho'}$ and $t \in N$. By the induction hypothesis $\text{Red}(t) \in \sum_i [U_i]_{\rho'}$, and so, by $\text{RC3}$, $t \in \sum_i [U_i]_{\rho'}$. $\square$

Lemma 5.6. Let $\rho = (\rho_+, \rho_-)$ and $\rho' = (\rho'_+, \rho'_-)$ be two valid valuations such that $\forall X$, $\rho_-(X) \subseteq \rho_-(X)$ and $\rho_+(X) \subseteq \rho'_+(X)$. Then for any type $T$ we have $[T]_\rho \subseteq [T]_{\rho'}$ and $[T]_{\rho'} \subseteq [T]_{\rho'}$.

Proof. Structural induction on $T$.

- $T = X$. Then $[X]_\rho = \rho_+(X) \subseteq \rho'_+(X) = [X]_{\rho'}$.

- $T = U \to R$. Then $[U \to R]_\rho = [U]_\rho \to [R]_\rho$ and $[U \to R]_{\rho'} = [U]_{\rho'} \to [R]_{\rho'}$. By the induction hypothesis $[U]_{\rho'} \subseteq [U]_\rho$, $[U]_{\rho'} \subseteq [U]_\rho$, $[R]_\rho \subseteq [R]_{\rho'}$ and $[R]_{\rho'} \subseteq [R]_\rho$. We proceed by induction on the definition of $\to$ to show that $\forall t \in [U]_\rho \to [R]_\rho, t \in [U]_{\rho'} \to [R]_{\rho'} = [U \to R]_{\rho'}$.

  - Let $t \in \{t\} \in [R]_\rho$ and $\forall b \in [U]_{\rho'}, (r, b) \in [R]_\rho$. Notice that $(t, 0) \in [R]_\rho \subseteq [R]_{\rho'}$. Also, $\forall b \in [U]_{\rho'}, b \in [U]_\rho$ and then $(t, b) \in [R]_\rho \subseteq [R]_{\rho'}$.
Lemma 5.7. Let $\text{Red}(t) \in [U \rightarrow R]_\rho$ and $t \in N$. By the induction hypothesis $\text{Red}(t) \in [U \rightarrow R]_\rho$ and so, by $\text{RC}_3$, $t \in [U \rightarrow R]_\rho$.

Let $t = 0$. By $\text{RC}_4$, $0$ is in any reducibility candidate, in particular it is in $[U \rightarrow R]_\rho$.

Analogously, $\forall t \in [U]_\rho \rightarrow [R]_{\rho'}$, $t \in [U]_\rho \rightarrow [R]_\rho = [U \rightarrow R]_\rho$.

- $T = \forall X.U$. Then $[\forall X.U]_\rho = \cap_{A \in B \in [U]_\rho} [U]_\rho \rightarrow (X, \ldots) \rightarrow (A, B)$. By the induction hypothesis $[U]_\rho \subseteq [U]_{\rho'}$, then $\forall A, B, [U]_\rho, (X, \ldots) \rightarrow (A, B) \subseteq [U]_{\rho'}, (X, \ldots) \rightarrow (A, B)$. Hence $\cap_{A \in B \in [U]_\rho} [U]_\rho \rightarrow (X, \ldots) \rightarrow (A, B) \subseteq \cap_{A \in B \in [U]_{\rho'}} [U]_{\rho'} \rightarrow (X, \ldots) \rightarrow (A, B) = [\forall X.U]_{\rho'}$.

The case $[\forall X.U]_{\rho'} \subseteq [\forall X.U]_\rho$ is analogous.

- $T = \exists i \in N. A_i \cup \exists t \in \mathcal{N}$. Then $[T]_\rho = \exists i [U_i]_\rho$. By the induction hypothesis $[U_i]_\rho \subseteq [U_i]_{\rho'}$. We proceed by induction on the definition of $\exists i [U_i]_\rho$ to show that $\exists i [U_i]_\rho \subseteq \exists i [U_i]_{\rho'}$.

- Let $t = F(r)$ where $F$ is an algebraic context and $r \in [U_i]_\rho$. Note that by the induction hypothesis $\forall r, r \in [U_i]_\rho$, so $F(r) \in \exists i [U_i]_{\rho'} = [T]_{\rho'}$.

- Let $t \in [T]_\rho$ and $t \rightarrow t'$. By the induction hypothesis $t \in [T]_{\rho'}$, hence by $\text{RC}_2$, $t' \in [T]_{\rho'}$.

- Let $\text{Red}(t) \in [T]_\rho$ and $t \in \mathcal{N}$. By the induction hypothesis $\text{Red}(t) \subseteq [T]_{\rho'}$ and so, by $\text{RC}_3$, $t \in [T]_{\rho'}$.

The case $[T]_{\rho'} \subseteq [T]_\rho$ is analogous.

Lemma 5.7. Let $\{A_i\}_{i=1}^n$ be a family of reducibility candidates. If $s$ and $t$ both belongs to $\sum_{i=1}^n A_i$, then so does $s + t$.

Proof. By structural induction on $\sum_{i=1}^n A_i$.

- If $s$ and $t$ are respectively of the form $F(s')$ and $G(t')$, it is trivial.

- If only $s$ is of the form $F(s')$ and $t$ is such that $t' \rightarrow t$, with $t' \in \sum_{i=1}^n A_i$, then by the induction hypothesis $s + t' \in \sum_{i=1}^n A_i$. We conclude by $\text{RC}_2$.

- If $s$ is of the form $F(s')$ and $t$ is neutral such that $\text{Red}(t) \subseteq \sum_{i=1}^n A_i$, then we have to check that $\text{Red}(s + t) \subseteq \sum_{i=1}^n A_i$.

The possible cases are:

- $r = s + t'$, with $t' \in \text{Red}(t)$. Then we conclude by the induction hypothesis.

- $r = s' + t$, with $s' \in \text{Red}(s)$. By $\text{RC}_2$, $s' \in \sum_{i=1}^n A_i$, hence we conclude by the induction hypothesis.

- $s + t \rightarrow r$ with a rule from Group F. Cases:

  - Let $s = \alpha \cdot r$ and $t = \beta \cdot r$, so $s + t \rightarrow (\alpha + \beta) \cdot r$. Notice that $\sum_{i=1}^n A_i$. Since $s = F(s') = \alpha \cdot r$, the algebraic context $F(.)$ is of the form $\alpha \cdot G(.)$ and $r = G(s')$. Therefore, since $(\alpha + \beta) \cdot r = G'(s')$ where $G'(.) = (\alpha + \beta) \cdot G(.)$, we have that $t = \alpha \cdot r \in \sum_{i=1}^n A_i$.

  - $\alpha \cdot r + r \rightarrow (\alpha + 1) \cdot r$ and $r + r \rightarrow (1 + 1) \cdot r$ are analogous.
* Let $s = 0$ (notice that $t$ cannot be 0 since it is neutral), so $s + t \rightarrow t$.

Since $\sum_{i=1}^{n} A_i$, we are done.

The other cases are similar. □

**Lemma 5.8.** If $t \in \sum_{i=1}^{n} A_i$, then for any $\alpha$, $\alpha \cdot t \in \sum_{i=1}^{n} A_i$.

**Proof.** By induction on the algebraic size of $t$. If the size is 0, then the term $t$ is 0: since 0 belongs to any of the $A_i$, by definition $\alpha \cdot 0$ belongs to $\sum_{i=1}^{n} A_i$. Now, suppose that the result is true for any term of size less than $n$ and assume $t$ is of size $n + 1$. We proceed by structural induction on $\sum_{i=1}^{n} A_i$.

- If $t$ is of the form $F(t')$, it is trivial.
- If $F(s) \in \sum_{i=1}^{n} A_i$ and $s_i = t$, then by the induction hypothesis $\alpha \cdot F(s) \in \sum_{i=1}^{n} A_i$, hence we conclude with $\mathbf{RC}_2$ and $\mathbf{CC}$.
- If $t' \in \sum_{i=1}^{n} A_i$ and $t' \rightarrow t$, then by the induction hypothesis $\alpha \cdot t' \in \sum_{i=1}^{n} A_i$, and hence we conclude with $\mathbf{RC}_2$.
- If $t \in \mathcal{N}$ and $\text{Red}(t) \subseteq \sum_{i=1}^{n} A_i$, then we have to check that $\text{Red}(\alpha \cdot t) \subseteq \sum_{i=1}^{n} A_i$, so we can conclude with $\mathbf{RC}_3$.

Let $r \in \text{Red}(\alpha \cdot t)$, the possible cases are:

- $r = \alpha \cdot t'$ with $t' \in \text{Red}(t)$. Then we conclude by the induction hypothesis.
- $\alpha \cdot t \rightarrow r$ with a rule from Group E. Cases:
  * $\alpha = 0$ and $r = 0$, notice that $0 \in \sum_{i=1}^{n} A_i$.
  * $\alpha = 1$ and $r = t$, notice that $t \in \sum_{i=1}^{n} A_i$.
  * $t = 0$ and $r = 0$, notice that $0 \in \sum_{i=1}^{n} A_i$.
  * $t = \beta \cdot s$ and $r = (\alpha \cdot \beta) \cdot s$. By $\mathbf{CC}$, $s$ is in $\sum_{i=1}^{n} A_i$. Since its algebraic size is strictly smaller than the one of $t$, we can apply the induction hypothesis and deduce that $(\alpha \times \beta) \cdot s$ belongs to $\sum_{i=1}^{n} A_i$.
  * $t = t_1 + t_2$ and $r = \alpha \cdot t_1 + \alpha \cdot t_2$. By $\mathbf{CC}$, $t_1 \in \sum_{i=1}^{n} A_i$ and $t_2 \in \sum_{i=1}^{n} A_i$. Since their algebraic sizes are strictly smaller than the one of $t$, we can apply the induction hypothesis and deduce that both $\alpha \cdot t_1$ and $\alpha \cdot t_2$ belong to $\sum_{i=1}^{n} A_i$. We can conclude with Lemma 5.7. □

**Lemma 5.9.** Let $\vec{t} = \{t_j\}$ such that for all $j$, $t_j \in \sum_{i=1}^{n} A_i$. Then $F(\vec{t}) \in \sum_{i=1}^{n} A_i$.

**Proof.** We proceed by induction on the structure of $F(\vec{t})$.

- $0 \in \sum_{i=1}^{n} A_i$: by $\mathbf{RC}_4$.
- $t_j \in \sum_{i=1}^{n} A_i$: by hypothesis.
- If $F(\vec{t}) = F_1(\vec{t}) + F_2(\vec{t})$: by induction hypothesis, both $F_1(\vec{t})$ and $F_2(\vec{t})$ are in $\sum_{i=1}^{n} A_i$. We conclude with Lemma 5.7.
- If $F(\vec{t}) = \alpha \cdot F'(\vec{t})$: by induction hypothesis, $F'(\vec{t})$ is in $\sum_{i=1}^{n} A_i$. We conclude with Lemma 5.8. □
Lemma 5.10. Suppose that $\lambda x.s \in A \rightarrow B$ and $b \in A$, then $(\lambda x.s) b \in B$.

Proof. Induction on the definition of $A \rightarrow B$.

- If $\lambda x.s$ is in $\{t | (t) 0 \in B \text{ and } \forall b \in A, (t) b \in B\}$, then it is trivial
- $\lambda x.s$ cannot be in $A \rightarrow B$ by the closure under $RC_3$, because it is not neutral, neither by the closure under $RC_4$, because it is not the term $0$. 

Lemma 5.11. For any types $T$ and $A$, variable $X$ and valuation $\rho$, we have $[T[A/X]]_{\rho} = [T]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})}$ and $[T[A/X]]_{\rho} = [T]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})}$.

Proof. We proceed by structural induction on $T$. On each case we only show the case of $\rho$ since the $\hat{\rho}$ case follows analogously.

- $T = X$. Then $[X[A/X]]_{\rho} = [A]_{\rho} = [X]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})}$.
- $T = Y$. Then $[Y[A/X]]_{\rho} = [Y]_{\rho} = \rho_+ (Y) = [Y]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})}$.
- $T = U \rightarrow R$. Then $[(U \rightarrow R)[A/X]]_{\rho} = [U[A/X]]_{\rho} \rightarrow [R[A/X]]_{\rho}$. By the induction hypothesis, we have $[U[A/X]]_{\rho} \rightarrow [R[A/X]]_{\rho} = [U]_{\rho} \rightarrow [R]_{\rho} \rightarrow [R]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})} = [U \rightarrow R]_{\rho(X,X) \rightarrow ([A]_{\rho}, [A]_{\rho})}$.
- $T = \forall Y.V$. Then $[(\forall Y.V)[A/X]]_{\rho} = [\forall Y.V[A/X]]_{\rho}$ which by definition is equal to $\cap_{B \subseteq C \in RC} [V[A/X]]_{\rho} \cap (B.C)$ and this, by the induction hypothesis, is equal to $\cap_{B \subseteq C \in RC} [V[B.C]]_{\rho} = [\forall Y.V]_{\rho} \cap ([A]_{\rho}, [A]_{\rho})$.
- $T$ of canonical decomposition $\sum_{i} \alpha_i \cdot U_i$. Then $[T]_{\rho} = \sum_{i} [U_i]_{\rho}$, which by the induction hypothesis is equal to $\sum_{i} [U_i]_{\rho} \cap ([A]_{\rho}, [A]_{\rho}) = [T]_{\rho} \cap ([A]_{\rho}, [A]_{\rho})$.

Lemma 5.12 (Adequacy Lemma). Every derivable typing judgement is valid: For every valid sequent $\Gamma \vdash t : T$, we have $\Gamma \models t : T$.

Proof. The proof of the adequacy lemma is made by induction on the size of the typing derivation of $\Gamma \vdash t : T$. We look at the last typing rule that is used, and show in each case that $\Gamma \vdash t : T$, i.e. if $T \equiv \forall$, then $t_\sigma \in [U]_{\rho}$ or if $T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i$ in the sense of Lemma 5.4, then $t_\sigma \in [U_i]_{\rho_i}$ for every valuation $\rho$, set of valuations $\{\rho_i\}_n$, and substitution $\sigma \in [\Gamma]_{\rho}$ (i.e. substitution $\sigma$ such that $(x : V) \in \Gamma$ implies $x_\sigma \in [V]_{\rho}$).

Then for any $\rho$, $\forall \sigma \in [\Gamma, x : U]_{\rho}$ by definition we have $x_\sigma \in [U]_{\rho}$. From Lemma 5.5, we deduce that $x_\sigma \in [U]_{\rho}$.

$\Gamma \vdash t : T$
$\Gamma \vdash 0 : 0 \cdot T$
$\Gamma \vdash \lambda x.t : U \rightarrow T$

Let $T \equiv \forall$ or $T \equiv \sum_{i=1}^{n} \alpha_i \cdot U_i$ with $n > 1$. Then by the induction hypothesis, for any $\rho$, set $\{\rho_i\}_n$ not acting on $FV(\Gamma) \cup FV(U)$, and $\forall \sigma \in [\Gamma, x : U]_{\rho}$, we have $t_\sigma \in [U_i]_{\rho_i}$, or simply $t_\sigma \in [V]_{\rho}$, if $T \equiv \forall$.

In any case, we must prove that $\forall \sigma \in [\Gamma]_{\rho}$, $(\lambda x.t)_\sigma \in [U \rightarrow T]_{\rho, \rho'}$, or what is the same $\lambda x.t_\sigma \in [U]_{\rho, \rho'} \rightarrow [T]_{\rho, \rho'}$, where $\rho'$ does not act on $FV(\Gamma)$. If we can show that $b \in [U]_{\rho, \rho'}$ implies $(\lambda x.t_\sigma) b \in [T]_{\rho, \rho'}$, then we are done. Notice that $[T]_{\rho, \rho'} = \lambda x.t_\sigma \in [U]_{\rho, \rho'} \rightarrow [T]_{\rho, \rho'}$, where $\rho'$ does not act on $FV(\Gamma)$.
\[\sum_{i=1}^{n} [U]_{\rho,\rho'} \land [T]_{\rho,\rho'} = [V]_{\rho,\rho'}\] Since \((\lambda x.t_\sigma)b\) is a neutral term, we just need to prove that every one-step reduction of it is in \([T]_{\rho}\), which by RC₂ closes the case. By RC₁, \(t_\sigma\) and \(b\) are strongly normalising, and so is \(\lambda x.t_\sigma\). Then we proceed by induction on the sum of all the reduction paths starting from \((\lambda x.t_\sigma)\) plus the same sum starting from \(b\):

\[\lambda x.t_\sigma \rightarrow \lambda x.t'_\sigma\] with \(b \rightarrow b'\). Then \(b' \in [U]_{\rho,\rho'}\) and we close by induction hypothesis.

\((\lambda x.t_\sigma) b \rightarrow (\lambda x.t'_\sigma) b\) with \(t_\sigma \rightarrow t'\). If \(T \equiv \forall\), then \(t_\sigma \in [V]_{\rho,\rho'}\), and by RC₂ so is \(t'\). In other case \(t_\sigma \in \sum_{i=1}^{n} [U]_{\rho,\rho'}\) for any \(\{\rho_i\}_i\) not acting on \(FV(\Gamma)\), take \(\forall i, \rho_i = \rho'\), so \(t_\sigma \in [T]_{\rho,\rho'}\) and so are its reducts, such as \(t'\). We close by induction hypothesis.

\((\lambda x.t_\sigma) b \rightarrow t_\sigma[b/x]\) Let \(\sigma' = \sigma; x \mapsto b\). Then \(\sigma' \in [\Gamma, x : U]_{\rho,\rho'}\), so \(t_{\sigma'} \in [T]_{\rho,\rho'}\). Notice that \(t_\sigma[b/x] = t_{\sigma'}\).

\[\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i)\] \(\Gamma \vdash r : \sum_{j=1}^{m} \beta_j \cdot U[\bar{A} / \bar{X}]\) \(\rightarrow E\)

\[\Gamma \vdash (t) r : \sum_{i=1}^{n} \sum_{j=1}^{m} \alpha_i \times \beta_j \cdot T_i[\bar{A} / \bar{X}]\]

Without loss of generality, assume that the \(T_i\)'s are different from each other (similarly for \(\bar{A}\)). By the induction hypothesis, for any \(\rho, \{\rho_i\}_n, m\) not acting on \(FV(\Gamma)\), and \(\forall \sigma \in [\Gamma, \rho]\) we have 

\[t_\sigma \in \sum_{i=1}^{n} \bigcap_{k \in [K]_{\rho,\rho'} \\cap \bar{X}_k [L_{\rho,\rho}]}, \ \text{and} \ r_\sigma \in \sum_{j=1}^{m} [U[\bar{A} / \bar{X}]_{\rho,\rho} \land [u[\bar{A} / \bar{X}]_{\rho,\rho} = 1 \land [u[\bar{A} / \bar{X}]_{\rho,\rho} = 1\right] \rightarrow \sum_{j=1}^{m} [u[\bar{A} / \bar{X}]_{\rho,\rho}], or in case of \(n = m = \alpha_1 = 1, r_{\sigma} \in [U[\bar{A} / \bar{X}]_{\rho,\rho}]\). Notice that for any \(\bar{A}\), if \(U[\bar{A} / \bar{X}]\) is still unit.

For every \(i, j, k\), let \(T_i[\bar{A} / \bar{X}] = \sum_{k=1}^{r_{ij}} \delta_{ij} \cdot \forall \bar{X}^{ij}_k\). We must show that for any \(\rho,\) sets \(\{\rho_{ij,k}\}_{i,j,\rho}\) not acting on \(FV(\Gamma)\) and \(\forall \sigma \in [\Gamma, \rho]\) the term \((t) r_{\sigma}\) is in the set \(\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{k=1}^{r_{ij}} \delta_{ij} \cdot \forall \bar{X}^{ij}_k\). In case of \(n = m = \alpha_1 = 1, r_{11} = 1, ((t) r_{\sigma}) \in [W^{ij}_{ij}]\).

Since both \(t_\sigma\) and \(r_{\sigma}\) are strongly normalising, we proceed by induction on the sum of the lengths of their rewrite sequence. The set \(\text{Red}(((t) r_{\sigma})\) contains:

- \((t_\sigma) r'\) or \((t') r_{\sigma}\) when \(t_\sigma \rightarrow t'\) or \(r_{\sigma} \rightarrow r'\). By RC₂, the term \(t'\) is in the set \(\sum_{i=1}^{n} \bigcap_{\rho \in \forall \bar{X} \cdot \forall \bar{X} (U \rightarrow T_i)}\), or in case of \(n = m = \alpha_1 = 1, r_{11} = 1\). In any case, we conclude by the induction hypothesis.

- \((t_{1,\sigma}) r_{\sigma} + (t_{2,\sigma}) r_{\sigma}\) with \(t_{\sigma} = t_{1,\sigma} + t_{2,\sigma}\), where, \(t = t_1 + t_2\). Let \(s\) be the size of the \(t_{1,\sigma} \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i)\). By Lemma 4.12, there exists \(R_1 + R_2 = \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i)\) such that \(t_{1,\sigma} \vdash R_1\) and \(\Gamma \vdash t_{2,\sigma} : R_2\) can be derived with a derivation tree of size \(s - 1\) if \(R_1 + R_2 = \sum_{i=1}^{n} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i)\), or of size \(s - 2\) in other case. In such case, there exists \(N_1, N_2 \subseteq \{1, \ldots, n\}\) with \(N_1 \cup N_2 = \{1, \ldots, n\}\) such that

\[R_1 = \sum_{i \in N_1} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) + \sum_{i \in N_2} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i)\] and
\[ R_2 \equiv \sum_{i \in N_1 \cap N_2} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha''_i \cdot \forall \bar{X}.(U \rightarrow T_i) \]

where \( \forall i \in N_1 \cap N_2, \alpha'_i + \alpha''_i = \alpha_i \). Therefore, using \( \equiv \) we get

\[ \Gamma \vdash t_1 : \sum_{i \in N_1 \cap N_2} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha'_i \cdot \forall \bar{X}.(U \rightarrow T_i) \]

and

\[ \Gamma \vdash t_2 : \sum_{i \in N_1 \cap N_2} \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) + \sum_{i \in N_1 \cap N_2} \alpha''_i \cdot \forall \bar{X}.(U \rightarrow T_i) \]

with a derivation three of size \( s - 1 \). So, using rule \( \rightarrow_E \), we get

\[ \Gamma \vdash (t_1) r : \sum_{i \in N_1 \cap N_2} \sum_{j=1}^m \alpha_i \times \beta_j \cdot T_i[\bar{A}_j/\bar{X}] + \sum_{i \in N_1 \cap N_2} \sum_{j=1}^m \alpha'_i \times \beta_j \cdot T_i[\bar{A}_j/\bar{X}] \]

and

\[ \Gamma \vdash (t_2) r : \sum_{i \in N_1 \cap N_2} \sum_{j=1}^m \alpha_i \times \beta_j \cdot T_i[\bar{A}_j/\bar{X}] + \sum_{i \in N_1 \cap N_2} \sum_{j=1}^m \alpha''_i \times \beta_j \cdot T_i[\bar{A}_j/\bar{X}] \]

with a derivation three of size \( s \). Hence, by the induction hypothesis the term \((t_1) r_\sigma\) is in the set \( \sum_{i=1 \ldots n, j=1 \ldots m, k=1 \ldots r} [W_{i,j}^{ij}]^V_{\rho,\rho,\rho,\rho} \), and the term \((t_2) r_\sigma\) is in \( \sum_{i=1 \ldots n, j=1 \ldots m, k=1 \ldots r} [W_{i,j}^{ij}]^V_{\rho,\rho,\rho,\rho} \). Hence, by Lemma 5.7 the term \((t_1) r_\sigma + (t_2) r_\sigma\) is in the set \( \sum_{i=1 \ldots n, j=1 \ldots m, k=1 \ldots r} [W_{i,j}^{ij}]^V_{\rho,\rho,\rho,\rho} \). The case where \( m = \alpha_1 = \beta_1 = 1 \), and \( \text{card}(N_1) \) or \( \text{card}(N_2) \) is equal to 1 follows analogously.

- \((t_\sigma) r_1 + (t_\sigma) r_2\) with \( r_\sigma = r_1 + r_2 \), Analogous to previous case.

- \( \gamma \cdot (t'_\sigma) r_\sigma \) with \( t_\sigma = \gamma \cdot t'_\sigma \), where \( t = \gamma \cdot t' \). Let \( s \) be the size of the derivation of \( \Gamma \vdash \gamma \cdot t' : \sum_{i=1}^n \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) \). Then by Lemma 4.10, \( \sum_{i=1}^n \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) \equiv \alpha \cdot R \) and \( \Gamma \vdash t' : R \). If \( \sum_{i=1}^n \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) \equiv \alpha \cdot R \), such a derivation is obtained with size \( s - 1 \), in other case it is obtained in size \( s - 2 \) and by Lemma 4.2, \( R \equiv \sum_{i=1}^n \gamma_i \cdot V_i + \sum_{k=1}^h \lambda_k \cdot \bar{X}_k \), however it is easy to see that \( h = 0 \), so \( R \equiv \sum_{i=1}^n \gamma_i \cdot V_i \). Notice that \( \sum_{i=1}^n \alpha_i \cdot \forall \bar{X}.(U \rightarrow T_i) \equiv \sum_{i=1}^n \alpha \cdot \gamma_i \cdot V_i \). Then by Lemma 4.4, there exists a permutation \( p \) such that \( \alpha_i = \alpha \cdot \gamma_{p(i)} \) and \( \forall \bar{X}.(U \rightarrow T_i) \equiv V_{p(i)} \). Then by rule \( \equiv \), in size \( s - 1 \) we can derive \( \Gamma \vdash t' : \sum_{i=1}^n \gamma_i \cdot \forall \bar{X}.(U \rightarrow T_i) \). Using rule \( \rightarrow_E \), we get \( \Gamma \vdash (t') r : \sum_{i=1}^m \sum_{j=1}^n \gamma_i \cdot \beta_j \cdot T_i[\bar{A}_j/\bar{X}] \) in size \( s \). Therefore, by the induction hypothesis, \((t'_\sigma) r_\sigma\) is in the set \( \sum_{i=1 \ldots n, j=1 \ldots m, k=1 \ldots r} [W_{i,j}^{ij}]^V_{\rho,\rho,\rho,\rho} \). We conclude with Lemma 5.8.

- \( \gamma \cdot (t_\sigma) r_\sigma \) with \( r_\sigma = \gamma \cdot t'_\sigma \), Analogous to previous case.

- 0 with \( t_\sigma = 0 \), or \( r_\sigma = 0 \). By \( R C_4 \), 0 is in every candidate.

- The term \( t'_\sigma[r_\sigma/x] \), when \( t_\sigma = \lambda x. t' \) and \( r \) is a base term. Note that this term is of the form \( t'_\sigma \) where \( \sigma' = \sigma ; x \rightarrow r \). We are in the situation where the types of \( t \) and \( r \) are respectively \( \forall \bar{X}.(U \rightarrow T) \) and \( U[\bar{A}/\bar{X}] \), and so \( \sum_{i,j,k}[W_{i,j}^{ij}]^V{\rho,\rho,\rho,\rho} = \)
\[
\sum_{k=1}^{r} [\mathcal{W}_k]_{\rho_1, \rho_k}, \text{ where we omit the index } "11" \text{ (or directly } [\mathcal{W}]_\rho \text{ if } r = 1). \text{ Note that }
\lambda x.t'_\sigma \in [\forall X.(U \to T)]_{\rho, \rho'} = \cap_{\bar{A}, \bar{B} \in \text{RC}} [U \to T]_{\rho, \rho'}(\bar{X}, \bar{X}) \to (\bar{A}, \bar{B})
\]

for all possible \( \rho' \) such that \( [\rho'] \) does not intersect \( \text{FV}(\Gamma) \). Choose \( \bar{A} \) and \( \bar{B} \) equal to \( [\bar{A}]_{\rho, \rho'} \) and choose \( \rho'_- \) to send every \( X \) in its domain to \( \cap_k \rho_k - (X) \) and \( \rho'_+ \) to send all the \( X \) in its domain to \( \sum_k \rho_k + (X) \). Then by definition of \( \to \) and Lemma 5.11,
\[
\lambda x.t'_\sigma \in [U \to T]_{\rho, \rho'}(\bar{X}, \bar{X}) \to ([\bar{A}]_{\rho, \rho'}. ([A]_{\rho, \rho'}) = [U[\bar{A}/\bar{X}]]_{\rho, \rho'} \to [T]_{\rho, \rho'}(\bar{X}, \bar{X}) \to ([\bar{A}]_{\rho, \rho'}. ([A]_{\rho, \rho'})).
\]

Since \( r \in [U[\bar{A}/\bar{X}]]_{\rho, \rho'} \), using Lemmas 5.10 and 5.11,
\[
(\lambda x.t_\sigma) r \in [T]_{\rho, \rho'}(\bar{X}, \bar{X}) \to ([\bar{A}]_{\rho, \rho'}. ([A]_{\rho, \rho'}) = [T[\bar{A}/\bar{X}]]_{\rho, \rho'} \to \sum_{k=1}^{n} [\mathcal{W}_k]_{\rho, \rho'} \text{ or just } [\mathcal{W}]_1_{\rho, \rho'} \text{ if } n = 1.
\]

Now, from Lemma 5.6, for all \( k \) we have \( [\mathcal{W}_k]_{\rho, \rho'} \subseteq [\mathcal{W}_k]_{\rho_1, \rho_k} \). Therefore
\[
(\lambda x.t_\sigma) r \in \sum_{k=1}^{n} [\mathcal{W}_k]_{\rho, \rho_k}.
\]

Since the set \( \text{Red}((\{t\}_\sigma) r)_\sigma \subseteq \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{r} [\mathcal{W}]_{\rho, \rho_1, \rho_k} \), we can conclude by RC$_{\bar{X}}$.

\[
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot U_i \quad X \notin \text{FV}(\Gamma)
\]

By the induction hypothesis, for any \( \rho \), set \( \{\rho_i\}_n \) not acting on \( \text{FV}(\Gamma) \), we have \( \forall \sigma \in [\Gamma]_\rho \), \( t_\sigma \in \sum_{i=1}^{n} [U_i]_{\rho, \rho_i} \) (or \( t_\sigma \in [U_1]_{\rho, \rho_1} \) if \( n = \alpha_1 = 1 \)). Since \( X \notin \text{FV}(\Gamma) \), we can take \( \rho_i = \rho_i'(X, X) \mapsto (A, B) \), then for any \( A \subseteq B \), we have \( t_\sigma \in \sum_{i=1}^{n} [U_i]_{\rho, \rho_i'}(X, X) \mapsto (A, B) \) (or \( t_\sigma \in [U_1]_{\rho, \rho_1'}(X, X) \mapsto (A, B) \) if \( n = 1 \)).

Since it is valid for any \( A \subseteq B \), we can take all the intersections, thus we have \( t_\sigma \in \sum_{i=1}^{n} \cap_{\bar{A}, \bar{B} \in \text{RC}} [U_i]_{\rho, \rho_i'}(X, X) \mapsto (A, B) = \sum_{i=1}^{n} [\forall X. U_i]_{\rho, \rho_i'} \) (or if \( n = 1 \) simply \( t_\sigma \in \cap_{\bar{A}, \bar{B} \in \text{RC}} [U_1]_{\rho, \rho_1'}(X, X) \mapsto (A, B) = [\forall X. U_1]_{\rho, \rho_1'} \)).

\[
\Gamma \vdash t : \sum_{i=1}^{n} \alpha_i \cdot \forall X. U_i
\]

By the induction hypothesis, for any \( \rho \) and \( \{\rho_i\}_n \), we have \( \forall \sigma \in [\Gamma]_\rho \), the term \( t_\sigma \) is in \( \sum_{i=1}^{n} [\forall X. U_i]_{\rho, \rho_i} = \sum_{i=1}^{n} \cap_{\bar{A}, \bar{B} \in \text{RC}} [U_i]_{\rho, \rho_i'}(X, X) \mapsto (A, B) \) (or if \( n = 1 \), \( t_\sigma \) is in the set \( [\forall X. U_1]_{\rho, \rho_1} = \cap_{\bar{A}, \bar{B} \in \text{RC}} [U_1]_{\rho, \rho_1'}(X, X) \mapsto (A, B) \)). Since it is in the intersections, we can choose \( A = [\bar{A}]_{\rho, \rho_1} \) and \( B = [\bar{A}]_{\rho, \rho_1} \), and then \( t_\sigma \in \sum_{i=1}^{n} [U_i]_{\rho, \rho_i'}(X \mapsto A) = \sum_{i=1}^{n} [U_i[A/X]]_{\rho, \rho_i'} \) (or \( t_\sigma \in [U_1[A/X]]_{\rho, \rho_1'} \), if \( n = 1 \)).
\[ \Gamma \vdash t : T \]
\[ \Gamma \vdash \alpha \cdot t : \alpha \cdot T \]

Let \( T \equiv \sum_{i=1}^{n_1} \alpha_i \cdot U_i \), so \( \alpha \cdot T \equiv \sum_{i=1}^{n_1} \alpha \times \beta_i \cdot U_i \). By the induction hypothesis, for any \( \rho \), we have \( \forall \sigma \in [\Gamma]_{\rho}, t_\sigma \in \sum_{i=1}^{n_1} [U_i]_{\rho, \rho} \). By Lemma 5.8, \( (\alpha \cdot t)_\sigma = \alpha \cdot t_\sigma \in \sum_{i=1}^{n_1} [U_i]_{\rho, \rho} \). Analogous if \( n = 1 \).

\[ \Gamma \vdash t : T \quad \Gamma \vdash r : R \quad \Gamma \vdash t + r : T + R \]

Let \( T \equiv \sum_{i=1}^{n_1} \alpha_i \cdot U_{i1} \) and \( R \equiv \sum_{j=1}^{m_2} \beta_j \cdot U_{j2} \). By the induction hypothesis, for any \( \rho \), \( \{\alpha_i\}_n \), \( \{\beta_j\}_m \), we have \( \forall \sigma \in [\Gamma]_{\rho}, t_\sigma \in \sum_{i=1}^{n_1} [U_{i1}]_{\rho, \rho} \) and \( r_\sigma \in \sum_{j=1}^{m_2} [U_{j2}]_{\rho, \rho} \). Then by Lemma 5.7, \( (t + r)_\sigma = t_\sigma + r_\sigma \in \sum_{i=1}^{n_1} [U_{i1}]_{\rho, \rho} \).

Analogous if \( n = 1 \) and/or \( m = 1 \).

\[ \Gamma \vdash t : T \quad T \equiv R \quad \Gamma \vdash t : R \]

Let \( T \equiv \sum_{i=1}^{n_1} \alpha_i \cdot U_{i1} \) in the sense of Lemma 5.4, then since \( T \equiv R \), \( R \) is also equivalent to \( \sum_{i=1}^{n_1} \alpha_i \cdot U_{i1} \), so \( \Gamma \vdash t : T \Rightarrow \Gamma \vdash t : R \).

**Theorem 5.13** (Strong normalisation). If \( \Gamma \vdash t : T \) is a valid sequent, then \( t \) is strongly normalising.

**Proof.** If \( \Gamma \) is the list \( (x_i : U_i) \), the sequent \( \vdash \lambda x_1 \ldots x_n . t : U_1 \rightarrow \cdots \rightarrow (U_n \rightarrow T) \cdots \) is derivable. Using Lemma 5.12, we deduce that for any valuation \( \rho \) and any substitution \( \sigma \in [\Gamma]_{\rho} \), we have \( \lambda x_1 \ldots x_n . t_\sigma \in [\Gamma_{\rho}] \). By construction, \( \sigma \) do not does anything on \( t \). \( t_\sigma = t \). Since \( [T]_{\rho} \) is a reducibility candidate, \( \lambda x_1 \ldots x_n . t \) is strongly normalising and hence \( t \) is strongly normalising.

6. Interpretation of typing judgements

6.1. The general case

In the general case the calculus can represent infinite-dimensional linear operators such as \( \lambda x . x \), \( \lambda x. y \), \( \lambda x. f (x) \), \( \ldots \) and their applications. Even for such general terms \( t \), the vectorial type system provides much information about the superposition of basis terms \( \sum_{i=1}^{n_1} \alpha_i \cdot b_i \) to which \( t \) reduces, as explained in Theorem 6.1. How much information is brought by the type system in the finitary case is the topic of Section 6.2.

**Theorem 6.1** (Characterisation of terms). Let \( T \) be a generic type with canonical decomposition \( \sum_{i=1}^{n_1} \alpha_i \cdot U_i \), in the sense of Lemma 5.4. If \( \Gamma \vdash t : T \), then \( t \rightarrow \sum_{i=1}^{n_1} \sum_{j=1}^{m_2} \beta_{ij} \cdot b_{ij} \), where for all \( i \), \( \vdash \beta_{ij} : U_i \) and \( \sum_{j=1}^{m_2} \beta_{ij} = \alpha_i \), and with the convention that \( \sum_{j=1}^{m_2} \beta_{ij} = 0 \) and \( \sum_{j=1}^{m_2} \beta_{ij} \cdot b_{ij} = 0 \).

**Proof.** We proceed by induction on the maximal length of reduction from \( t \).

- Let \( t = b \) or \( t = 0 \). Trivial using Lemma 4.15 or 4.11, and Lemma 5.4.
- Let \( t = (t_1) \cdot t_2 \). Then by Lemma 4.13, \( \vdash t_1 : \sum_{k=1}^{p_1} \gamma_k \cdot \forall X . (U \rightarrow T_k) \) and \( \vdash t_2 : \sum_{l=1}^{p_2} \delta_l \cdot U[A_{i1}/X] \), where \( \sum_{k=1}^{p_1} \sum_{l=1}^{p_2} \gamma_k \times \delta_l \cdot T_k[A_{i1}/X] \geq v, g, T \), for some \( V \).
- Without loss of generality, consider these two types to be already canonical decompositions, that is, for all \( k_1, k_2, T_{k_1} \neq T_{k_2} \) and for all \( l_1, l_2, U[A_{i1}/X] \neq U[A_{i2}/X] \) (in other case, it suffices to sum up the equal types). Hence, by the induction hypothesis, \( t_1 \rightarrow^{*} \sum_{k=1}^{p_1} \sum_{l=1}^{p_2} \psi_{ks} \cdot b_{ks} \) and \( t_2 \rightarrow^{*} \sum_{i=1}^{q_1} \phi_{tr} \cdot b_{tr}^i \), where for all \( k, b_{ks} : \forall X . (U \rightarrow T_k) \) and \( \sum_{s=1}^{q_1} \psi_{ks} = \gamma_k \), and for all \( l, \vdash b_{tr}^i : \)
Let \( t = \alpha \cdot r \). Then by Lemma 4.10, \( \vdash r : R \), with \( \alpha \cdot R \equiv T \). Hence, using Lemmas 5.4 and 4.4, \( R \) has a type decomposition \( \sum_{i=1}^{n} \gamma_{i} \cdot U_{i} \), where \( \alpha \times \gamma_{i} = \alpha_{i} \). Hence, by the induction hypothesis, \( r \rightarrow^{*} \sum_{i=1}^{n} \beta_{ij} \cdot b_{ij} \), where for all \( i \), \( \vdash b_{ij} : U_{i} \) and \( \sum_{j=1}^{m_{i}} \beta_{ij} = \gamma_{i} \). Notice that \( t = \alpha \cdot r \rightarrow^{*} \alpha \cdot \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \beta_{ij} \cdot b_{ij} \rightarrow^{*} \sum_{i=1}^{n} \sum_{j=1}^{m_{i}} \alpha \times \beta_{ij} \cdot b_{ij} \), and \( \alpha \cdot \sum_{j=1}^{m_{i}} \beta_{ij} = \sum_{j=1}^{m_{i}} \alpha \times \beta_{ij} = \alpha \times \gamma_{i} = \alpha_{i} \).

Let \( t = t_{1} + t_{2} \). Then by Lemma 4.12, \( \vdash t_{1} : T_{1} \) and \( \vdash t_{2} : T_{2} \), with \( T_{1} + T_{2} \equiv T \). By Lemma 5.4, \( T_{1} \) has canonical decomposition \( \sum_{j=1}^{n} \beta_{j} \cdot V_{j} \). \( T_{2} \) has canonical decomposition \( \sum_{k=1}^{n} \gamma_{k} \cdot W_{k} \). Hence, by the induction hypothesis, \( t_{1} \rightarrow^{*} \sum_{j=1}^{n} \delta_{ij} \cdot b_{ij} \) and \( t_{2} \rightarrow^{*} \sum_{k=1}^{n} \epsilon_{ks} \cdot b_{ks} \), where for all \( j \), \( \vdash b_{ij} : V_{j} \) and \( \sum_{i=1}^{m_{j}} \delta_{ij} = \beta_{ij} \), and for all \( k \), \( \vdash b_{ks} : W_{k} \) and \( \sum_{s=1}^{m_{k}} \epsilon_{ks} = \gamma_{k} \). In for all \( j,k \) we have \( V_{j} \neq W_{k} \), then we are done since the canonical decomposition of \( T \) is \( \sum_{j=1}^{n} \beta_{j} \cdot V_{j} + \sum_{k=1}^{n} \gamma_{k} \cdot W_{k} \). In other case, suppose there exists \( j',k' \) such that \( V_{j'} = W_{k'} \), then the canonical decomposition of \( T \) would be \( \sum_{j=1}^{n,j \neq j'} \beta_{j} \cdot V_{j} + \sum_{k=1}^{n} \gamma_{k} \cdot W_{k} + (\beta_{j'} + \gamma_{k'}) \cdot V_{j'} \). Notice that \( \sum_{i=1}^{n} \delta_{ij} + \sum_{s=1}^{m_{i}} \epsilon_{ks} = \beta_{ij} + \gamma_{k} \).

6.2. The finitary case: Expressing matrices and vectors

In what we call the “finitary case”, we show how to encode finite-dimensional linear operators, i.e. matrices, together with their applications to vectors, as well as matrix and tensor products. Theorem 6.2 shows that we can encode matrices, vectors and operations upon them, and the type system will provide the result of such operations.

6.2.1. In 2 dimensions

In this section we come back to the motivating example introducing the type system and we show how \( X^{\text{rec}} \) handles the Hadamard gate, and how to encode matrices and vectors.

With an empty typing context, the booleans \( \text{true} = \lambda x. \lambda y. x \) and \( \text{false} = \lambda x. \lambda y. y \) can be respectively typed with the types \( T = \forall X Y. Y \rightarrow (Y \rightarrow X) \) and \( F = \forall X Y. X \rightarrow (Y \rightarrow Y) \). The superposition has the following type \( \vdash \alpha \cdot \text{true} + \beta \cdot \text{false} : \alpha \cdot T + \beta \cdot F \). (Note that it can also be typed with \( (\alpha + \beta) \cdot \forall X Y. X \rightarrow X \rightarrow X \).

The linear map \( U \) sending \( \text{true} \) to \( a \cdot \text{true} + b \cdot \text{false} \) and \( \text{false} \) to \( c \cdot \text{true} + d \cdot \text{false} \), that is

\[
\text{true} \mapsto a \cdot \text{true} + b \cdot \text{false}, \\
\text{false} \mapsto c \cdot \text{true} + d \cdot \text{false}
\]

is written as

\[
U = \lambda x. \{((x)[a \cdot \text{true} + b \cdot \text{false}])[c \cdot \text{true} + d \cdot \text{false}]\}.
\]

The following sequent is valid:

\[
\vdash U : \forall X. ((I \rightarrow (a \cdot T + b \cdot F)) \rightarrow (I \rightarrow (c \cdot T + d \cdot F)) \rightarrow I \rightarrow X) \rightarrow X.
\]
This is consistent with the discussion in the introduction: the Hadamard gate is the case \( a = b = c = \frac{\sqrt{2}}{2} \) and \( d = -\frac{\sqrt{2}}{2} \). One can check that with an empty typing context, \((U)\) \texttt{true} is well-typed of type \(a \cdot T + b \cdot F\), as expected since it reduces to \(a \cdot \texttt{true} + b \cdot \texttt{false}\).

The term \((H) \frac{\sqrt{2}}{2} \cdot (\texttt{true} + \texttt{false})\) is well-typed of type \(T + 0 \cdot F\). Since the term reduces to \texttt{true}, this is consistent with the subject reduction: we indeed have \(T \sqsubseteq T + 0 \cdot F\).

But we can do more than typing 2-dimensional vectors \(2 \times 2\)-matrices: using the same technique we can encode vectors and matrices of any size.

6.2.2. Vectors in \(n\) dimensions

The 2-dimensional space is represented by the span of \(\lambda x_1 x_2.x_1\) and \(\lambda x_1 x_2.x_2\): the \(n\)-dimensional space is simply represented by the span of all the \(\lambda x_1 \cdots x_n.x_i\), for \(i = 1 \cdots n\). As for the two dimensional case where

\[
\vdash \alpha_1 \cdot \lambda x_1 x_2.x_1 + \alpha_2 \cdot \lambda x_1 x_2.x_2 : \alpha_1 \cdot \forall X_1 X_2.X_1 + \alpha_2 \cdot \forall X_1 X_2.X_2,
\]

an \(n\)-dimensional vector is typed with

\[
\vdash \sum_{i=1}^{n} \alpha_i \cdot \lambda x_1 \cdots x_n.x_i : \sum_{i=1}^{n} \alpha_i \cdot \forall X_1 \cdots X_n.X_i.
\]

We use the notations

\[
e^n_i = \lambda x_1 \cdots x_n.x_i, \quad E^n_i = \forall X_1 \cdots X_n.X_i
\]

and we write

\[
\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix}_{n} \text{ term} = \begin{pmatrix}
\alpha_1 \cdot e^n_1 \\
\vdots \\
\alpha_n \cdot e^n_n
\end{pmatrix} = \sum_{i=1}^{n} \alpha_i \cdot e^n_i,
\]

\[
\begin{bmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{bmatrix}_{n} \text{ type} = \begin{pmatrix}
\alpha_1 \cdot E^n_1 \\
\vdots \\
\alpha_n \cdot E^n_n
\end{pmatrix} = \sum_{i=1}^{n} \alpha_i \cdot E^n_i.
\]

6.2.3. \(n \times m\) matrices

Once the representation of vectors is chosen, it is easy to generalize the representation of \(2 \times 2\) matrices to the \(n \times m\) case. Suppose that the matrix \(U\) is of the form

\[
U = \begin{pmatrix}
\alpha_{11} & \cdots & \alpha_{1m} \\
\vdots & \ddots & \vdots \\
\alpha_{n1} & \cdots & \alpha_{nm}
\end{pmatrix},
\]

38
then its representation is

$$[U]^{\text{term}}_{n \times m} = \lambda x. \left\{ \left( \left( \begin{array}{ccc} \alpha_{11} \cdot e_i^0 & \cdots & \alpha_{1m} \cdot e_i^0 \\ \vdots & \ddots & \vdots \\ \alpha_{n1} \cdot e_i^n & \cdots & \alpha_{nm} \cdot e_i^n \\ \end{array} \right) \right) \right\}$$

and its type is

$$[U]^{\text{type}}_{n \times m} = \forall X. \left( \left( \begin{array}{c} \alpha_{11} \cdot E_1^n \\ \vdots \\ \alpha_{n1} \cdot E_n^n \\ \end{array} \right) \rightarrow \cdots \rightarrow \left( \begin{array}{c} \alpha_{1m} \cdot E_1^n \\ \vdots \\ \alpha_{nm} \cdot E_n^n \\ \end{array} \right) \rightarrow [X] \rightarrow X, \right)$$

that is, an almost direct encoding of the matrix $U$.

We also use the shortcut notation

$$\text{mat}(t_1, \ldots, t_n) = \lambda x. ((x) [t_1]) \ldots [t_n]$$

### 6.2.4. Useful constructions

In this section, we describe a few terms representing constructions that will be used later on.

**Projections.** The first useful family of terms are the projections, sending a vector to its $i^{\text{th}}$ coordinate:

$$\left( \begin{array}{c} \vdots \\ \alpha_i \\ \vdots \\ \alpha_n \end{array} \right) \mapsto \left( \begin{array}{c} 0 \\ \vdots \\ \alpha_i \\ \vdots \\ 0 \end{array} \right).$$

Using the matrix representation, the term projecting the $i^{\text{th}}$ coordinate of a vector of size $n$ is

$$p_i^n = \text{mat}(0, \ldots, 0, e_i^n, 0, \ldots, 0).$$

We can easily verify that

$$
\vdash p_i^n : \begin{bmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & 1 & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{bmatrix}^{\text{type}}_{n \times n}
$$

and that

$$(p_i^n) \left( \sum_{i=1}^n \alpha_i \cdot e_i^n \right) \rightarrow^* \alpha_{i0} \cdot e_{i0}^n.$$
Vectors and diagonal matrices. Using the projections defined in the previous section, it is possible to encode the map sending a vector of size $n$ to the corresponding $n \times n$ matrix:

$$
\begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n
\end{pmatrix}
\mapsto
\begin{pmatrix}
\alpha_1 & 0 \\
\vdots & \ddots \\
0 & \alpha_n
\end{pmatrix}
$$

with the term

$$
\text{diag}^n = \lambda b. \text{mat}((p^1_n)\{b\}, \ldots, (p^n_n)\{b\})
$$

of type

$$
\vdash \text{diag}^n : \begin{bmatrix}
\begin{array}{c}
\alpha_1 \\
\vdots \\
\alpha_n
\end{array}
\end{bmatrix}^{\text{type}} \rightarrow \begin{bmatrix}
\alpha_1 & 0 \\
\vdots & \ddots \\
0 & \alpha_n
\end{bmatrix}^{n \times n}_{\text{type}}.
$$

It is easy to check that

$$
(\text{diag}^n) \left[ \sum_{i=1}^n \alpha_i \cdot e^n_i \right] \mapsto^* \text{mat}(\alpha_1 \cdot e^n_1, \ldots, \alpha_n \cdot e^n_n)
$$

Extracting a column vector out of a matrix. Another construction that is worth exhibiting is the operation

$$
\begin{pmatrix}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{m1} & \cdots & \alpha_{mn}
\end{pmatrix}
\mapsto
\begin{pmatrix}
\alpha_{11} \\
\vdots \\
\alpha_{m1}
\end{pmatrix}
$$

It is simply defined by multiplying the input matrix with the $i$th base column vector:

$$
\text{col}^n_i = \lambda x. (x) e^n_i
$$

and one can easily check that this term has type

$$
\vdash \text{col}^n_i : \begin{bmatrix}
\begin{array}{c}
\alpha_{11} \\
\vdots \\
\alpha_{m1}
\end{array}
\end{bmatrix}^{\text{type}}_{m \times n} \rightarrow \begin{bmatrix}
\alpha_{11} \\
\vdots \\
\alpha_{m1}
\end{bmatrix}^{m}_{\text{type}}.
$$

Note that the same term $\text{col}^n_i$ can be typed with several values of $m$.

6.2.5. A language of matrices and vectors

In this section we formalize what was informally presented in the previous sections: the fact that one can encode simple matrix and vector operations in $\mathcal{L}_c$, and the fact that the type system serves as a witness for the result of the encoded operation.

We define the language $\text{Mat}$ of matrices and vectors with the grammar

$$
M, N ::= \zeta \mid M \otimes N \mid (M) N \\
u, v ::= \nu \mid u \otimes v \mid (M) u,
$$

40
where \( \zeta \) ranges over the set matrices and \( \nu \) over the set of (column) vectors. Terms are implicitly typed: types of matrices are \((m, n)\) where \( m \) and \( n \) ranges over positive integers, while types of vectors are simply integers. Typing rules are the following.

\[
\begin{align*}
\zeta & \in \mathbb{C}^{m \times n} & M : (m, n) & \quad N : (m', n') \\
\zeta : (m, n) & \quad M \otimes N : (mm', mm') & M : (m, n') & \quad N : (n', n) \\
(\zeta M) N & : (m, mn) & (M \nu) : (m, n') & \quad \nu : m \\
\end{align*}
\]

The operational semantics of this language is the natural interpretation of the terms as matrices and vectors. If \( M \) computes the matrix \( \zeta \), we write \( M \downarrow \zeta \). Similarly, if \( \nu \) computes the vector \( \nu \), we write \( \nu \downarrow \nu \).

Following what we already said, matrices and vectors can be interpreted as types and terms in \( \lambda_{vec} \). The map \( J^{-}K \)\textsubscript{term} sends terms of \( \text{Mat} \) to terms of \( \lambda_{vec} \) and the map \( J^{-}K \)\textsubscript{type} sends matrices and vectors to types of \( \lambda_{vec} \).

- Vectors and matrices are defined as in Sections 6.2.2 and 6.2.3.
- As we already discussed, the matrix-vector multiplication is simply the application of terms in \( \lambda_{vec} \):

\[
[(M) \ u]_{\text{term}} = ([M]_{\text{term}})[u]_{\text{term}}
\]

- The matrix multiplication is performed by first extracting the column vectors, then performing the matrix-vector multiplication: this gives a column of the final matrix. We conclude by recomposing the final matrix column-wise.

That is done with the term

\[
\text{app} = \lambda xy.\text{mat}((x)((\text{col}_1^m)y), \ldots, (x)((\text{col}_n^m)y))
\]

and its type is

\[
\left[ \begin{array}{ccc}
\alpha_{11} & \cdots & \alpha_{1n} \\
\vdots & \ddots & \vdots \\
\alpha_{m1} & \cdots & \alpha_{mn}
\end{array} \right]_{m \times n} \quad \rightarrow \quad 
\left[ \begin{array}{ccc}
\beta_{11} & \cdots & \beta_{1k} \\
\vdots & \ddots & \vdots \\
\beta_{n1} & \cdots & \beta_{nk}
\end{array} \right]_{n \times k} \quad \rightarrow \quad 
\left[ \begin{array}{c}
\sum_{i=1}^{n} \alpha_{ji} \beta_{il}
\end{array} \right]_{m \times k}
\]

Hence,

\[
[(M) \ N]_{\text{term}} = ([\text{app}] [M]_{\text{term}}) [N]_{\text{term}}
\]

- For defining the the tensor of vectors, we need to multiply the coefficients of the vectors:

\[
\left( \begin{array}{c}
\alpha_1 \\
\vdots \\
\alpha_n
\end{array} \right) \otimes \left( \begin{array}{c}
\beta_1 \\
\vdots \\
\beta_m
\end{array} \right) = 
\left( \begin{array}{c}
\alpha_1 \beta_1 \\
\vdots \\
\alpha_1 \beta_m \\
\alpha_n \beta_1 \\
\vdots \\
\alpha_n \beta_m
\end{array} \right);
\]
We perform this operation in several steps: First, we map the two vectors \((\alpha_i)_i\) and \((\beta_j)_j\) into matrices of size \(mn \times mn\):

\[
\begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n \\
\end{pmatrix} \mapsto \begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n \\
\end{pmatrix} \times m \\
\text{and} \\
\begin{pmatrix}
\beta_1 \\
\vdots \\
\beta_m \\
\end{pmatrix} \mapsto \begin{pmatrix}
\beta_1 \\
\vdots \\
\beta_m \\
\end{pmatrix} \times m
\]

These two operations can be represented as terms of \(\lambda \text{vec}\) respectively as follows:

\[
m_1^{n,m} = \lambda b. \text{mat} \left\{ \begin{pmatrix}
(p^n_1)\{b\} \\
\vdots \\
(p^n_n)\{b\} \\
\end{pmatrix} \times m \\
\right\} \\
and \\
m_2^{m,n} = \lambda b. \text{mat} \left\{ \begin{pmatrix}
(p^m_1)\{b\} \\
\vdots \\
(p^m_m)\{b\} \\
\end{pmatrix} \times m \\
\right\}
\]

It is now enough to multiply these two matrices together to retrieve the diagonal:

\[
\begin{pmatrix}
\alpha_1 \\
\vdots \\
\alpha_n \\
\end{pmatrix} \times \begin{pmatrix}
\beta_1 \\
\vdots \\
\beta_m \\
\end{pmatrix} = \begin{pmatrix}
\alpha_1 \beta_1 \\
\vdots \\
\alpha_n \beta_m \\
\end{pmatrix}
\]

and this can be implemented through matrix-vector multiplication:

\[
tens^{n,m} = \lambda bc.((m_1^{n,m})b) \left((m_2^{m,n})c\right) \left(\sum_{i=1}^{mn} e^n_i\right).
\]

Hence, if \(u : n\) and \(v : m\), we have

\[
\|u \otimes v\|_{\text{term}} = ((\text{tens}^{n,m}) [u]_{\text{term}} [v]_{\text{term}})
\]

- The tensor of matrices is done column by column:
If $M$ be a matrix of size $m \times m'$ and $N$ a matrix of size $n \times n'$. Then $M \otimes N$ has size $m \times n$, and it can be implemented as

$$
\text{Tens}^{m,n} = \lambda b c . \text{mat}((\text{tens}^{m,n}) (\text{col}_m^b) \text{col}_m^c) \cdots ((\text{tens}^{m,n}) (\text{col}_m^n) \text{col}_m^n)
$$

Hence, if $M : (m, m')$ and $N : (n, n')$, we have

$$
[M \otimes N]_{\text{term}} = ((\text{Tens}^{m,n}) [M]_{\text{term}}) [N]_{\text{term}}
$$

**Theorem 6.2.** The denotation of Mat as terms and types of $X^{\text{ec}}$ are sound in the following sense.

\[ M \downarrow \zeta \quad \text{implies} \quad \vdash [M]_{\text{term}} : [\zeta]_{\text{type}}, \]
\[ u \downarrow \nu \quad \text{implies} \quad \vdash [u]_{\text{term}} : [\nu]_{\text{type}}. \]

**Proof.** The proof is a straightforward structural induction on $M$ and $u$. \qed

### 6.3. $X^{\text{ec}}$ and quantum computation

In quantum computation, data is encoded on normalised vectors in Hilbert spaces. For our purpose, their interesting property is to be module over the ring of complex numbers. The smallest non-trivial such space is the space of *qubits*. The space of qubits is the two-dimensional vector space $\mathbb{C}^2$, together with a chosen orthonormal basis $\{\left\vert 0 \right\rangle, \left\vert 1 \right\rangle\}$. A quantum bit (or qubit) is a normalised vector $\alpha \left\vert 0 \right\rangle + \beta \left\vert 1 \right\rangle$, where $|\alpha|^2 + |\beta|^2 = 1$. In quantum computation, the operations on qubits that are usually considered are the *quantum gates*, i.e. a chosen set of unitary operations. For our purpose, their interesting property is to be *linear*.

The fact that one can encode quantum circuits in $X^{\text{ec}}$ is a corollary of Theorem 6.2. Indeed, a quantum circuit can be regarded as a sequence of multiplications and tensors of matrices. The language of term can faithfully represent those, where as the type system can serve as an abstract interpretation of the actual unitary map computed by the circuit.

We believe that this tool is a first step towards lifting the “quantumness” of algebraic lambda-calculi to the level of a type based analysis. It could also be a step towards a “quantum theoretical logic” coming readily with a Curry-Howard isomorphism. The logic we are sketching merges intuitionistic logic and vectorial structure, which makes it intriguing.

The next step in the study of the quantumness of the linear algebraic lambda-calculus is the exploration of the notion of orthogonality between terms, and the validation of this notion by means of a compilation into quantum circuits. The work of [32] shows that it is worthwhile pursuing in this direction.
Acknowledgements. We would like to thank Gilles Dowek and Barbara Petit for enlightening discussions.

Supported by the Intelligence Advanced Research Projects Activity (IARPA) via Department of Interior National Business Center contract number D12PC00527. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Disclaimer: The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of IARPA, DoI/NBC, or the U.S. Government.

References


