Exercise sheet 4: Primitive recursive functions

Primitive recursive functions

1. Show that for all $n \in \mathbb{N}_{0}$, the constant function $g_{n}(x)=n$ is primitive recursive.
2. Show that each of the following are primitive recursive functions.
(a) $\Sigma(x, y)=x+y$
(b) $\Pi(x, y)=x y$
(c) $\operatorname{Exp}(x, y)=x^{y}$
(d) $\operatorname{Fac}(x)=x$!
(e) $\operatorname{Pd}(x)= \begin{cases}x-1 & \text { if } x \geq 1 \\ 0 & \text { if } x=0\end{cases}$
(f) ${ }^{\circ} d(x, y)= \begin{cases}x-y & \text { if } x \geq y \\ 0 & \text { if } x<y\end{cases}$
(g) ${ }^{\circ} D(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { if } x \neq 0\end{cases}$
(h) $k(x, y)=|x-y|$
(i) $E(x, y)= \begin{cases}1 & \text { if } x=y \\ 0 & \text { if } x \neq y\end{cases}$
3. Summation and Products
(a) Let $f^{(2)}: \mathbb{N}_{0}^{2} \rightarrow \mathbb{N}_{0}$. We define $F^{(2)}$ and $G^{(2)}$ by

$$
\begin{aligned}
& F(x, y)=\sum_{k=0}^{y} f(x, k) \\
& G(x, y)=\prod_{k=0}^{y} f(x, k)
\end{aligned}
$$

Show that F and G are in PRF.
(b) More general, let $f^{(k+1)} \in \mathbf{P R F}$. We define $F^{(k+1)}$ and $G^{(k+1)}$ by

$$
\begin{aligned}
& F(X, y)=\sum_{k=0}^{y} f(X, k) \\
& G(X, y)=\prod_{k=0}^{y} f(X, k)
\end{aligned}
$$

where X is a k-tuple. Show that F and G are in PRF.
4. Let $f^{(1)} \in \mathbf{P R F}$. We define a new function $F^{(2)}$, called power function of f, as

$$
F(x, y)=(\underbrace{f \circ f \circ \cdots \circ f}_{y \text { times }})(x)
$$

or more formally,

$$
F(x, y)= \begin{cases}x & \text { if } y=0 \\ (f \circ F)(x, y-1) & \text { if } y>0\end{cases}
$$

Notation: $F(x, y)=f^{y}(x)$.
(a) Show that $\Sigma(x, y)=s^{y}(x)$.
(b) Show that if $f \in \mathbf{P R F}$, then $F \in \mathbf{P R F}$.
(c) Write the function ${ }^{\circ} d$ using the power function.

Primitive recursive sets

Reminder: Let $k \in \mathbb{N}$. A subset $A \subseteq \mathbb{N}_{0}^{k}$ is said to be a primitive recursive set $(A \in \mathbf{P R S})$ if its characteristic function $\chi_{A}: \mathbb{N}_{0}^{k} \rightarrow \mathbb{N}$ is primitive recursive.
5. Show that every unitary subset of \mathbb{N}_{0} is in PRS.
6. Show that if $A, B \subseteq \mathbb{N}_{0}$ are in PRS, then $A \cup B, A \cap B$ and $\mathbb{N}_{0} \backslash A$ are in PRS.
7. Show that every finite subset of \mathbb{N}_{0} is in PRS.
8. Repeat the previous three exercises considering subsets of \mathbb{N}_{0}^{k} with $k \in \mathbb{N}$.
9. Show that the set of even numbers is in PRS.
10. Show that the set of numbers multiple of 3 is in PRS.

Tip: Show that the function $r_{3}: \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$ which takes a natural number and outputs the rest of its division by 3 is in PRF. Then write the characteristic function of the set of multiple of 3 in terms of r_{3}.

Primitive recursive relations

Reminder: A relation $R \subseteq \mathbb{N}_{0} \times \mathbb{N}_{0}$ is said to be a primitive recursive relation ($R \in \mathbf{P R R}$) if it is in PRS.
11. Show that $=, \neq \leq$ and $>$ are in $\mathbf{P R R}$.
12. Prove that if $R, S \in \mathbf{P R R}$, then the following relations are also in $\mathbf{P R R}$
(a) $x T y=x R y \wedge x S y$
(b) $x U y=x R y \vee x S y$
(c) $x(\neg R) y=\neg(x R y)$
13. Looking at the last exercises, is there any other way to prove $=,>\in \mathbf{P R R}$?
14. Let $R \in \mathbb{N}_{0} \times \mathbb{N}_{0}$. We define $\bigwedge R$ and $\bigvee R$ as follows.

$$
\begin{aligned}
& x(\bigwedge R) y=\forall k \in \mathbb{N}_{0} \bullet 0 \leq k \leq y \Rightarrow x R k \\
& x(\bigvee R) y=\exists k \in \mathbb{N}_{0} \bullet 0 \leq k \leq y \wedge x R k
\end{aligned}
$$

Show that if R is in $\mathbf{P R R}$, then $\bigwedge R$ and $\bigvee R$ are also in $\mathbf{P R R}$.

Extra

15. Show that the following function is primitive recursive.

$$
f(x)= \begin{cases}x^{2} & \text { if } x \text { is multiple of } 3 \\ x+3 & \text { if } x \text { has a rest of } 1 \text { when dividing by } 3 \\ x! & \text { if } x \text { has a rest of } 2 \text { when dividing by } 3\end{cases}
$$

16. Show that the divisibility relation between natural numbers is in PRR.

Tip: Define the family of functions $r_{a}^{(1)}$ for $a=1,2, \ldots$ such that $r_{a}^{(1)}(n)$ outputs the rest of the division of n by a. Then write the characteristic function of the relation in terms of those functions.

