Exercise sheet 4: Primitive recursive functions

Primitive recursive functions

- 1. Show that for all $n \in \mathbb{N}_0$, the constant function $g_n(x) = n$ is primitive recursive.
- 2. Show that each of the following are primitive recursive functions.

(a)
$$\Sigma(x, y) = x + y$$

(b) $\Pi(x, y) = xy$
(c) $Exp(x, y) = x^{y}$
(d) $Fac(x) = x!$
(e) $Pd(x) = \begin{cases} x - 1 & \text{if } x \ge 1 \\ 0 & \text{if } x = 0 \end{cases}$
(f) $^{\circ}d(x, y) = \begin{cases} x - y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$
(g) $^{\circ}D(x) = \begin{cases} 1 & \text{if } x = 0 \\ 0 & \text{if } x \neq 0 \end{cases}$
(h) $k(x, y) = |x - y|$
(i) $E(x, y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \neq y \end{cases}$

3. Summation and Products

(a) Let $f^{(2)}: \mathbb{N}_0^2 \to \mathbb{N}_0$. We define $F^{(2)}$ and $G^{(2)}$ by

$$F(x,y) = \sum_{k=0}^{y} f(x,k)$$
$$G(x,y) = \prod_{k=0}^{y} f(x,k)$$

Show that F and G are in **PRF**.

(b) More general, let $f^{(k+1)} \in \mathbf{PRF}$. We define $F^{(k+1)}$ and $G^{(k+1)}$ by

$$F(X, y) = \sum_{k=0}^{y} f(X, k)$$
$$G(X, y) = \prod_{k=0}^{y} f(X, k)$$

where X is a k-tuple. Show that F and G are in **PRF**.

4. Let $f^{(1)} \in \mathbf{PRF}$. We define a new function $F^{(2)}$, called *power function of f*, as

$$F(x,y) = (\underbrace{f \circ f \circ \cdots \circ f}_{y \text{ times}})(x)$$

or more formally,

$$F(x,y) = \begin{cases} x & \text{if } y = 0\\ (f \circ F)(x,y-1) & \text{if } y > 0 \end{cases}$$

Notation: $F(x, y) = f^y(x)$.

- (a) Show that $\Sigma(x, y) = s^y(x)$.
- (b) Show that if $f \in \mathbf{PRF}$, then $F \in \mathbf{PRF}$.
- (c) Write the function $^{\circ}d$ using the power function.

Primitive recursive sets

Reminder: Let $k \in \mathbb{N}$. A subset $A \subseteq \mathbb{N}_0^k$ is said to be a primitive recursive set $(A \in \mathbf{PRS})$ if its characteristic function $\chi_A : \mathbb{N}_0^k \to \mathbb{N}$ is primitive recursive.

- 5. Show that every unitary subset of \mathbb{N}_0 is in **PRS**.
- 6. Show that if $A, B \subseteq \mathbb{N}_0$ are in **PRS**, then $A \cup B, A \cap B$ and $\mathbb{N}_0 \setminus A$ are in **PRS**.
- 7. Show that every finite subset of \mathbb{N}_0 is in **PRS**.
- 8. Repeat the previous three exercises considering subsets of \mathbb{N}_0^k with $k \in \mathbb{N}$.
- 9. Show that the set of even numbers is in **PRS**.
- 10. Show that the set of numbers multiple of 3 is in **PRS**.

Tip: Show that the function $r_3 : \mathbb{N}_0 \to \mathbb{N}_0$ which takes a natural number and outputs the rest of its division by 3 is in **PRF**. Then write the characteristic function of the set of multiple of 3 in terms of r_3 .

Primitive recursive relations

Reminder: A relation $R \subseteq \mathbb{N}_0 \times \mathbb{N}_0$ is said to be a primitive recursive relation $(R \in \mathbf{PRR})$ if it is in **PRS**.

- 11. Show that $=, \neq, \leq$ and > are in **PRR**.
- 12. Prove that if $R, S \in \mathbf{PRR}$, then the following relations are also in \mathbf{PRR}
 - (a) $xTy = xRy \wedge xSy$
 - (b) $xUy = xRy \lor xSy$

(c)
$$x(\neg R)y = \neg (xRy)$$

13. Looking at the last exercises, is there any other way to prove $=, \geq \in \mathbf{PRR}$?

14. Let $R \in \mathbb{N}_0 \times \mathbb{N}_0$. We define $\bigwedge R$ and $\bigvee R$ as follows.

$$x(\bigwedge R)y = \forall k \in \mathbb{N}_0 \bullet 0 \le k \le y \Rightarrow xRk$$
$$x(\bigvee R)y = \exists k \in \mathbb{N}_0 \bullet 0 \le k \le y \land xRk$$

Show that if R is in **PRR**, then $\bigwedge R$ and $\bigvee R$ are also in **PRR**.

Extra

15. Show that the following function is primitive recursive.

$$f(x) = \begin{cases} x^2 & \text{if } x \text{ is multiple of } 3\\ x+3 & \text{if } x \text{ has a rest of } 1 \text{ when dividing by } 3\\ x! & \text{if } x \text{ has a rest of } 2 \text{ when dividing by } 3 \end{cases}$$

16. Show that the divisibility relation between natural numbers is in **PRR**.

Tip: Define the family of functions $r_a^{(1)}$ for a = 1, 2, ... such that $r_a^{(1)}(n)$ outputs the rest of the division of n by a. Then write the characteristic function of the relation in terms of those functions.