
École doctorale de sciences mathématiques de Paris
centre

Thèse de doctorat
Discipline : Mathématiques

présentée par

Grace Younes

Computation of the L∞-norm of
finite-dimensional linear systems

dirigée par Fabrice Rouillier – Alban Quadrat

Soutenue le 20/01/2022 devant le jury composé de :

M. Olivier Bachelier Université de Poitiers rapporteur

Mme. Catherine Bonnet Inria Saclay-̂Ile-de-France examinatrice

Mme. Mioara Joldes LAAS-CNRS examinatrice

M. Laureano Gonzalez-Vega Universidad de Cantabria rapporteur

M. Alban Quadrat Inria Paris-Sorbonne Université co-directeur

M. Fabrice Rouillier Inria Paris-Sorbonne Université directeur

Mme. Annick Valibouze Sorbonne Université-LIP6 examinatrice

2

Institut de mathématiques de Jussieu-

Paris Rive gauche. UMR 7586.

Bôıte courrier 247

4 place Jussieu

75 252 Paris Cedex 05

Université de Paris.

École doctorale de sciences

mathématiques de Paris centre.

Bôıte courrier 290

4 place Jussieu

75 252 Paris Cedex 05

3

It’s not about achieving the goal.

It’s about who you have to become in

order to achieve the goal.

The juice is in the growth.

Tony Robbins.

4

Acknowledgments

First of all, I would like to thank my thesis supervisors, Fabrice Rouillier and Alban Quadrat.

Without them, the work would not have been complete. I thank them for their support and

their wise advice during my thesis. Their in-depth knowledge enabled me to carry out this

work. In addition, I thank them for their patience, good humor during each meeting, for

knowing how to make the work environment so pleasant, even during Covid lockdown, and

for being there with me to guide me and listen to me. I learned a lot from them. They have

helped me deepen my work so that I can be proud of the work done today. I am deeply

grateful to them.

I would like also to thank Yacine Bouzidi for collaborating with us during the first year

of my Ph.D. I appreciate the moral and technical support he showed me, and all the ideas we

discussed together thanks to which I got to know more about computational mathematics

and the subject in general.

I express my sincere thanks to Olivier BACHELIER and Laureano GONZÁLEZ-VEGA

for agreeing to be reporters and to devote time to examining the manuscript. They did me

the honor of studying it carefully and I had the pleasure to read their reports and comments

on the work. I am very honored to also thank Catherine BONNET, Mioara JOLDES, and

Annick VALIBOUZE for having accepted the invitation to be among the jury of my thesis.

I would then like to thank all the staff of Inria Paris, in particular the members of the

OURAGAN team Antonin Guilloux, Elias Tsigaridas, Josué Tonelli-Cueto, Pierre-Vincent

Koseleff... for their scientific knowledge and their friendly exchanges during these three

years, and with whom we did all the (online) seminars and we kept a pleasant and enjoyable

interaction even during the Covid lockdown. A big thank you also to the members of

the IMJ-PRG and to all the staff of Sorbonne University, where I was well received and

surrounded during these three years, in particular to Elisha Falbel who was my tutor during

this stay.

I express my thanks to my present and past colleagues in IMJ-PRG, Mathieu, Thibault,

Jean-Michel, Thomas, Thomas, Haowen, Anna, Anna, Eva, Linyuan, Sylvain, Sudarshan,

5

6

Thiago, Nelson, Léo, Raphaël, Adrien, Nathanaël, Yicheng, Chenyu, Jacques, Arnaud,

Gabriel... Your special personalities made the stay at Sorbonne University (15-16-5ème)

very particular, enjoyable and funny. I wish you a very good continuation in your future

life and career. Also thanks to my special office-mate Mahya, who was the first person I

met on my arrival to IMJ-PRG. Thank you for your help, for the beautiful times we have

spent inside and outside the office, and for all the jokes and loud laughs. Also to Christina

who was the only one with whom I could discuss a little about formal calculus subjects, and

to my genius office-mate Hernan, thank you for your time to answer my questions and for

trying to provide help as much as you could. To Christophe, thank you for all the help and

the encouragements. And to Perla, thank you for all the jokes and the lebanese-y chit-chats

we shared during coffee and lunch breaks. Thank you also for your funny stories and your

academic and fitness encouragements.

I want also to thank all my friends in France who was there for me whenever I needed

them. Thanks to Tonia for all her support and for the enjoyable times we spent together,

and to Wafa for her help and with whom I spent great times in France. Thanks to Cynthia,

Issa, Mirella, Thurayia, Dia, and Randa for the beautiful gatherings in Paris. Thanks to

Marianne with whom I always shared the news of my Ph.D. and was always supportive and

encouraging and full of wise advise and to Elie for his help and support. I also thank my

childhood friends in Lebanon, Patricia, Catherine, Pamela, Maria, Melissa and Jennyfer for

the warm times we spent during my holidays in Lebanon.

My biggest gratitude is towards my lovely family. To the memory of my father Elias,

thank you for all the hard work you did for me to be here today. Your memory will always

encourage me through hard times. To my beautiful mother Rouba, thank you for your

unconditional love and your tireless efforts and support in every path I take to achieve my

dreams and goals. Without you I would not be here today. To my beautiful sisters Reine

and Eliane, thank you for loving me and for showing me always how proud you are of

me. Also thanks to my little adorable Adib for just existing in my world. Thanks to my

grandma Samia for her love and prayers. Thanks to my precious uncles (khalo) Ghassan,

Anwar and Hadi for always advising me, supporting me, loving me and treating me like a

rockstar. I appreciate and thank God for your presence in my life. Thanks to my uncles

Tony, Georges, Raymond and Pierre and my sweet untie Nada for their support and advice.

To my favourite person Georges, thank you for your presence, motivation, support, and for

cheering me up during every stressful moment in my thesis and my stay in France. Thank

you also for always believing in my potential and pushing me forward.

Thank you God for everything.

Résumé

Dans cette thèse, nous étudions le problème du calcul de la norme L∞ des systèmes de

dimension finie, linéaires et invariants dans le temps. Ce problème est ramené au calcul de

la y-projection maximale des solutions réelles (x, y) d’un système d’équations polynomiales

bivariées Σ =
{
P = 0, ∂P

∂x
= 0
}
, où P ∈ Z[x, y]. Nous utilisons alors des méthodes classiques

de calcul formel pour résoudre ce problème. En particulier, nous étudions alternativement

une méthode basée sur des représentations univariées rationnelles, une méthode basée sur la

séparation des racines, et enfin une méthode basée sur la variation de signes des coefficients

dominants d’une suite signée de sous-résultants (suite de Sturm-Habicht) et l’identification

d’un intervalle isolant pour la y-projection maximale des solutions réelles de Σ. Nous calcu-

lons ensuite la complexité binaire dans le pire des cas de chacune des méthodes proposées

et nous comparons leur comportement théorique. Enfin, nous implémentons chacune des

méthodes sous Maple et nous comparons leur comportement pratique (complexité moyenne).

Une généralisation des algorithmes précédents au cas de polynômes P dépendants aussi

de paramètres α = [α1, . . . , αd] ∈ Rd est finalement proposée. Pour cela, nous résolvons

le problème en utilisant la notion de Décomposition Cylindrique Algébrique, classique en

géométrie algébrique.

Mots-clés

Calcul de la norme L∞, Systèmes polynomiaux, Solutions réelles maximales, Calcul sym-

bolique, Calcul de complexité, Implémentation, Théorie du contrôle.

7

8

Computation of the L∞-norm of
finite-dimensional linear systems

In this dissertation, we study the computation of the L∞-norm of finite-dimensional

linear time-invariant systems. This problem is first reduced to the computation of the

maximal y-projection of the real solutions (x, y) of a bivariate polynomial equations system

Σ =
{
P = 0, ∂P

∂x
= 0
}
, where P ∈ Z[x, y]. Then, we use standard computer algebra methods

to solve this problem. In particular, we alternatively study a method based on rational uni-

variate representations, a method based on root separation, and finally a method first based

on the sign variation of the leading coefficients of a signed subresultant sequence (Sturm-

Habicht) and on the identification of an isolating interval for the maximal y-projection of

the real solutions of Σ. We then compute the worst-case bit complexity of each method and

compare their theoretical behavior. We also implement each method in Maple and compare

their practical behavior (average complexity). A generalization of the above algorithms is

finally proposed to the case where the polynomial P also depends on a set of parameters

α = [α1, . . . , αd] ∈ Rd. To do that, we solve the problem using the notion of the Cylindrical

Algebraic Decomposition, well-known in algebraic geometry.

Keywords

L∞-norm computation, Polynomial systems, Maximal real roots, Symbolic computation,

Complexity computation, Implementation, Control theory.

Contents

Introduction 11

0.1 Existing methods . 13

0.1.1 Numerical approach . 13

0.1.2 Symbolic-numeric approach . 14

0.2 Proposed methods . 16

0.2.1 Non-parametric case . 17

0.2.2 Parametric case . 19

1 Problem Motivation From Control Theory 21

1.1 Definition of a linear time-invariant system 21

1.2 Stability of LTI systems . 25

1.3 Maximum energy gain and L∞-norm . 30

1.4 A real algebraic geometric reformulation . 37

1.5 Existing computational methods . 44

1.6 Robust control theory in a nutshell . 47

2 Prerequisite in Computer Algebra 55

2.1 Notations . 55

2.2 Greatest common divisor . 58

2.3 Resultant of two polynomials . 61

2.4 Subresultant sequence . 64

2.5 Sturm-Habicht Sequence . 70

2.5.1 Sturm-Habicht sequence and real roots of polynomials 72

2.6 Univariate polynomials and Root isolation 76

2.6.1 Subdivision-based algorithms for root isolation 78

2.7 Solving bivariate algebraic systems . 81

2.7.1 Rational Univariate Representation – RUR 84

9

10 CONTENTS

2.8 Systems depending on parameters . 89

2.8.1 Discriminant variety . 90

2.8.2 Cylindrical Algebraic Decomposition 92

3 L∞-norm Computation 97

3.1 Non-parametric case problem . 97

3.1.1 RUR method . 98

3.1.2 Root separation method . 107

3.1.3 Sturm-Habicht method . 115

3.2 Parametric case . 123

4 Application 133

4.1 Implementation and experiments . 133

4.2 Some numerical method drawbacks . 135

4.3 Practical examples . 138

5 Conclusion 149

Introduction

My research program within OURAGAN team (Inria Paris) focuses on the development of

new algorithms for the study of the maximal y-projection of the real solutions of a bivariate

polynomial system describing the critical points of a bivariate polynomial depending or not

on parameters.

Through its various applications in control theory (robust and optimal control) [107,

45, 44], robotics [85, 68], and signal processing [75, 71], etc., the study of the real solutions

of a bivariate polynomial system depending on parameters is a classic problem, abundantly

studied in computer algebra (see, e.g., [28, 63, 43, 65] and the references therein).

An example of an application worth mentioning is the recent work carried out by

Guillaume Rance in his PhD thesis [77], in collaboration with the Safran Electronics &

Defense company. The objective of this work was to compute the H∞ controllers for gyro-

stabilized systems depending on parameters. An important result of this work was to show

that the problem is reduced to that of the study of maximum real solutions of some algebraic

systems. To solve this last problem, the choice was made to use classical techniques of

symbolic computation such as Rational Univariate Representation, discriminant variety or

the cylindrical algebraic decomposition. In few words, the idea is to calculate an algebraic

variety in the parameter space that decomposes the latter into cells. Within the obtained

cells, the branches of the solutions of the system remain regular. This guarantees that the

maximum solution does not change within the same cell which allows, for instance, the

engineers to follow it easily by means of numerical methods.

In the continuation of this work, the problem that interests us is a certified computation

of the L∞-norm of finite-dimensional linear time-invariant dynamical control systems.

An interesting thing about dynamical systems is that they can be represented by ordi-

nary differential equations. This is due to the property saying that the manner the system

is changing at any given time is a function of its current state. For any dynamical system, if

we take a look at how the energy changes by analyzing the relationship between the states

and their derivatives, we can make conclusion about some physical properties of the sys-

11

12 INTRODUCTION

tem, stability for instance. If the energy is being dissipated over time, then the system is

stable, and the faster the energy is dissipated the more stable the system is. However, if

the energy is growing unbounded over time, then the system is said to be unstable. This

notion of stability is a deep-rooted property of the system due to the connection between

the states of the system and their derivatives. Moreover, the way the system moves can also

be influenced by external forces being added or removed over time. Hence, the evolution of

a dynamical system is a function of the current state as well as any external inputs. With

this being said, a state-space representation [20, 107], precisely introduced in the next chap-

ter, is simply a restructure of the high order differential equations into a set of first order

differential equations that focus on the relationship between derivatives, current states, and

external inputs, which makes the system easier to analyze.

State-space representation is based on the state vector x that is the vector of all state

variables. The variation of the state vector is a linear combination of the current state plus

a linear combination of the external inputs. The way that every state changes in terms of

the input of the system can leave us with a set of first order differential equations, which will

be considered here as a system of linear equations, that we can package into a matrix form.

This allows to apply linear algebra methods and have access to some useful and important

mathematical tools for studying dynamical systems (see, e.g., [20, 107] and the references

therein).

Furthermore, the control theory in control systems engineering deals with the control of

continuously operating dynamical systems engineered processes and machines. This special

characteristic allows the control systems to play an important role in the development

and advancement of modern technology and civilization. The aim is to develop a control

model for controlling dynamical systems using a control action in an optimum manner

ensuring control stability. This criterion was highly studied and many projects aimed its

establishment since 19th century. In addition, a controller with requisite corrective behaviour

is required along with other aspects such as controllability and observability (see, e.g., [20,

107]).

To arrange controllers to achieve these requirements, in modern control theory, H∞

methods are used [106, 56, 99, 39, 102, 107, 33]. To use these methods, a control designer

expresses the control problem as a mathematical optimization problem and then finds the

controller that solves this optimization. After initiating this theory [106], G. Zames for-

mulated a basic feedback problem as an optimization problem with an operator norm, in

particular, an H∞-norm. The H∞-norm has become popular in control theory since the

concept of robustness, which plays a fundamental role in control theory, can easily be refor-

0.1. EXISTING METHODS 13

mulated in the frequency domain using this particular norm. But, to apply H∞ techniques

successfully, an important level of mathematical understanding is needed.

This norm can either be computed numerically via, e.g., bisection algorithms for the

search of imaginary eigenvalues of Hamiltonian matrices [19, 22] or symbolically via, e.g.,

the maximal real root γ of a univariate polynomial n(ω, γ) depending on parameters ω [24]

or as the maximal γ-projection of a real curve bounded on the γ-direction as followed in

this dissertation. In this case, if the dynamical system, represented by its transfer matrix

F , depends on a parameter set α, namely, on unfixed values, then the L∞-norm of F is

a function of those parameters α. Hence, the parameter space has to be decomposed into

different “cells” above each an expression of the searched function γ can be identified.

0.1 Existing methods

In this section, we discuss the existing numerical and symbolic methods for the computa-

tion of the L∞-norm of finite-dimensional linear time-invariant systems. Then, in the next

section, we briefly introduce the proposed methods that compute the L∞-norm when the

transfer matrix does not depend on parameters. This case is then a stepping stone for

generalising the study to the parametric dependency situation.

0.1.1 Numerical approach

Contrary to the standard L2-norm, no tractable formula is known for the characterization

of the L∞-norm of finite-dimensional systems (i.e., systems defined either by linear ordinary

differential equations or by linear recurrence equations) [39, 107]. Hence, the standard

methods for the L∞-norm computation are numerical (e.g., search for imaginary eigenvalues

computation of Hamiltonian matrices, bisection algorithms).

For instance, in the late 90’s, few algorithms demonstrating fast convergence of iterative

approaches and exploiting the properties of the singular values of the transfer matrices have

been developed.

S. Boyd, V. Balakrishnan and P. Kabamba established in [19] a correspondence between

the singular values of a transfer matrix evaluated along the imaginary axis and the imaginary

eigenvalues of a related Hamiltonian matrix. Their proof, based on a simple linear algebraic

approach, uses a more intuitive explanation based on quadratic optimal control problem.

Their result gave way to a simple bisection algorithm to compute the L∞-norm of a transfer

matrix.

14 INTRODUCTION

Similarly, based on the relation between the singular values of the transfer function

matrix and the eigenvalues of a related Hamiltonian matrix, N. A. Bruinsmaa and M. Stein-

bucha developed in [22] a fast algorithm to compute the L∞-norm of a transfer function

matrix with guaranteed accuracy.

Recently, the methods reported in [60] and [8] compute the L∞-norm via localizing the

common roots of two or three polynomials. In their paper [60], M. Kano and M. C. Smith

first reduce the problem to the localization of the real solutions of a bivariate polynomial

and then use Sturm chain tests to guarantee the accuracy of their algorithm.

In [8], using techniques involving structured linearization of the Bezoutian matrices,

M. N. Belur and C. Praagman addressed the computation of the L∞-norm by directly

computing the isolated common zeros of two bivariate polynomials. In their paper, using

numerical experiments on random transfer functions, the proposed method to L∞-norm

computation is then compared with that of N. A. Bruinsmaa and M. Steinbucha [22].

In [12], P. Benner, V. Sima and M. Voigt constructed algorithms for the computation of

the L∞-norm of transfer functions related to descriptor systems, both in the continuous and

discrete-time context. This was done by computing the eigenvalues of certain structured

matrix pencils by transforming them to skew-Hamiltonian/Hamiltonian matrix pencils, us-

ing the original data. To increase robustness and efficiency of their method, they further

applied a structure-preserving algorithm to compute the desired eigenvalues.

However, all these methods are numeric and are devoted to linear systems free of

parameters. Putting apart the case of parameters dependency, it is worth mentioning that

with numerical methods, the result is usually obtained within a short time but with a slight

error up to a precise accuracy. In contrast, when using symbolic methods, the result usually

takes more time to be computed but is certified to be exact.

0.1.2 Symbolic-numeric approach

Contrary to numeric algorithms, symbolic algorithms are certified. By certified algorithms,

we mean “guaranteed methods”, that is to say, a method that, for any input, computes a

result without ambiguities after a finite number of steps.

In particular, the algorithms that can structurally enter in an indefinite loop or even

return a false result are excluded from this category of algorithms. However, in the case

where such an algorithm is not able to return a solution of a given problem, it can simply

return an answer explaining this situation.

This does not preclude having algorithms dedicated to certain constraints on the original

problem as long as they are verifiable by at least one other guaranteed algorithm. Methods

0.1. EXISTING METHODS 15

depending on “generic” options, making the algorithm probabilistic, even if the probability

of the error is low, are excluded from this range of algorithms, unless another algorithm can

prior be used to verify the “genericity” of the considered option.

By considering the L∞-norm computation of transfer matrices depending on parame-

ters, we can find few methods based on symbolic computation such as [2, 45, 61]. Symbolic

approaches for solving parametric optimization problems have some advantages over their

numerical counterparts: for instance, using symbolic approaches, non-convex feasible re-

gions would not represent a theoretical concern. On the other hand, symbolic approaches

do not suffer from the size of the feasible parameter regions, even when unbounded. In fact,

the symbolic methods divide the parameter space into connected components according to

singularities, which are a natural measure of the complexity of the solving process. Paper

[38] is an example on the crucial difficulties that approximation methods used in parametric

optimization by the numerical approaches can face.

Following the work done in [60] by M. Kano and M. C. Smith, where they developed a

validated numerical algorithm for the L∞-norm computation, in [24], C. Chen, M. Moreno

Mazza and Y. Xie provided an equivalent study using the theory of border polynomials,

which makes the presentation of their solution simpler. In fact, they reduced the prob-

lem of computing the L∞-norm of finite-dimensional time-invariant linear systems to the

computation of the supremum of the real roots of a univariate polynomial. Then, using

real comprehensive triangular decomposition and cylindrical algebraic decomposition, they

generalised their non-parametric approach to the parametric case, i.e., when the transfer

matrix depends on parameters. This approach decomposes the space of parameter values

into connected open sets, named cells, where the number of real solutions of the system

does not change when the parameters vary within the same cell.

Similarly to the work done in [24] and following the study in [60], we first study the

computation of the L∞-norm of finite-dimensional linear time-invariant systems that do not

depend on parameters. Then, for the cases depending on parameters, we basically extend

our approach using a cylindrical algebraic decomposition. To do that, in the parameter

free case, we first further study the properties of the bivariate polynomial P (x, y) that

characterizes when the maximal singular value of the transfer matrix is larger than or equal

to y. Then, for the study of the L∞-norm, using the properties of this polynomial, we can

propose three different certified symbolic-numeric algorithms that compute the maximal

y-projection of the real solutions (x, y) of the bivariate polynomial zero-dimensional system

Σ = {P = 0, ∂P
∂x

= 0}, where P ∈ Z[x, y]. We then study the efficiency of the three

proposed methods by computing the asymptotic theoretical complexity of each of them. This

16 INTRODUCTION

represents the number of binary operations of an algorithm. Note that binary complexity

is different form the arithmetic complexity that only represents the number of arithmetic

operations, i.e., each operation is assumed to have a unit cost whatever the sizes of the

operands are.

It is however worthwhile mentioning that the asymptotic theoretical complexity is usu-

ally an upper bound in the worst case scenario, which therefore does not necessarily measure

the average behavior of the methods, and rarely allows to obtain an objective comparisons

on their effective speed of execution. Thus, for studying the efficiency of the algorithms,

we rely on one more indicator, namely the time of execution of the implemented meth-

ods. Hence, we have implemented the proposed methods using Maple tools, and we have

compared their average behaviours for some random matrices.

In general, another important indicator of efficiency of an implemented algorithm is the

consequent memory occupation. In fact, it is common to see effective methods in terms of

computation or arithmetic, or even binary complexity, but without practical advantages due

to a prohibitive memory occupation. But, in our study, for each algorithm, we shall only

be interested in the first two indicators that are the asymptotic worst case bit complexity

and the practical speed.

0.2 Proposed methods

Based on standard computer algebra concepts, methods and implementations, we aim at

developing new methods for the study the computation of the L∞-norm of finite-dimensional

linear time-invariant systems:

1. When the system does not depend on parameters, then the problem of L∞-norm

computation is reduced to the computation of the maximal y-projection of the real

solutions (x, y) of the zero-dimensional system of bivariate polynomial equations

Σ =
{
P = 0, ∂P

∂x
= 0
}
, where P ∈ Z[x, y].

2. When the system depends on a set of parameters α = [α1, . . . , αd] ∈ Rd, we study

the system Σ =
{
P = 0, ∂P

∂x
= 0

}
, where P ∈ Z[α][x, y]. The problem of L∞-norm

computation is then reduced to partitioning the parameters space into cells, where

above each cell, we can represent the maximal y-projections of the real solutions

(x, y) of Σ as a real function of α.

In the next paragraph, we briefly introduce the proposed methods, which will be further

explained in Section 3.1 and Section 3.2.

0.2. PROPOSED METHODS 17

0.2.1 Non-parametric case

Given two coprime polynomials P and Q (in our case Q = ∂P
∂x
) in Z[x, y] of degrees bounded

by d and of coefficients bitsize bounded by τ , we propose two different approaches for

computing the maximal y-projection of the real solutions of Σ. The first approach computes

a linear separating form and the second uses the real root counting of a univariate polynomial

with algebraic coefficients.

Separating linear form

Two methods used in this dissertation require putting the system in a local generic position,

i.e., require to finding a separating linear form y+ a x that defines a shear of the coordinate

system (x, y), i.e., (x, y) 7−→ (x, t − a x), so that no two distinct solutions of the sheared

polynomial equations system (sheared system for short), defined by

Σa =
{
P (x, t− a x) = 0, Q(x, t− a x) = 0

}
,

are horizontally aligned. This approach has long been used in the computer algebra litera-

ture. For instance, as shown in [16, 17], a separating linear form y+a x with a ∈ {0, . . . , 2 d4}
can be computed. As studied in [17], we can then use a Rational Univariate Representa-

tion (RUR) for the sheared system Σa followed by the computation of isolating boxes for

its real solutions. We simply apply this approach (i.e., the so-called RUR method) to the

polynomial system associated with the L∞-norm computation problem and then choose the

maximal y-projection of the real solutions of the system. We mention that this value is

represented by its isolating interval with respect to the univariate polynomial embodying

the y-projection of the system solutions, that is the resultant polynomial Res(P,Q, x). The

complexity analysis shows that this algorithm performs ÕB

(
dy d

3
x (d

2
y + dx dx + dx τ)

)
bit

operations in the worst case, where

dx = max
(
degx(P), degx(Q)

)
, dy = max

(
degy(P), degy(Q)

)
,

and τ is the maximal coefficient bitsize of the polynomials P and Q. We develop this method

in Subsection 3.1.1.

Alternatively, we can also localize the maximal y-projection of the real solutions of the

polynomial equations system Σ by only applying a linear separating form on the system Σ

and without computing isolating boxes for the whole system solutions. The linear separating

18 INTRODUCTION

form t = y + s x proposed in [25] preserves the order of the solutions of the sheared system

Σs =
{
P (x, , t− s x) = 0, Q(x, t− s x) = 0

}
with respect to the y-projection of the solutions of the original system Σ. In other words,

with this linear separating form t = y + s x, we obtain:

t1 = y1 + s x1 < t2 = y2 + s x2 =⇒ y1 ≤ y2.

Thus, the projection of the solutions of Σs onto the new separating axis t can be done so that

we can simply choose the y-projection corresponding to the maximal t-projection of the real

solutions of Σs. The drawback of this method lies on the growth of the size of the coefficients

of the sheared system for the linear separating form t = y + s x due to the large size of s.

The complexity analysis shows that this algorithm performs ÕB

(
d3x d

4
y τ
(
d2x + dx dy + d2y

))
bit operations in the worst case. This method is developed in Subsection 3.1.2.

Real roots counting

The third method, developed in Subsection 3.1.3, localizes the maximal y-projection of the

system real solutions − denoted by ȳ − by first isolating the real roots of the univariate

resultant polynomial Res(P, ∂P
∂x
, x) and then verifying the existence of at least one real

root of the greatest common divisor gcd
(
P (x, ȳ), ∂P

∂y
(x, ȳ)

)
∈ R[x] of P (x, ȳ) and ∂P

∂x
(x, ȳ).

However, the polynomial P , corresponding to our modeled problem, defines a plane real

algebraic curve bounded in the y-direction by the value that we are aiming at computing.

Thus, a resulting key point is that the number of real roots of gcd
(
P (x, ȳ), ∂P

∂x
(x, ȳ)

)
is equal

to the number of real roots of P (x, ȳ). Hence, we can simply compute the Sturm-Habicht

sequence [53] of P (x, ȳ) for counting the number of its real roots without any consequent

overhead. Since the gcd polynomial has a larger size than the polynomial P , then this key

point leads to a better complexity in the worst case. We mention that the Sturm-Habicht

sequence corresponding to P (x, ȳ) ∈ R[x] is a signed subresultant sequence of the polynomials

P (x, ȳ) ∈ R[x] and its derivative with respect to x. Being already computed to obtain

Res(P, ∂P
∂x
, x), the practical and theoretical complexities are mainly carried by the complexity

of evaluating the leading coefficients with respect to x of the subresultant polynomials (called

the principal subresultant coefficients) over the real value ȳ. Additionally, if the real plane

algebraic curve P (x, y) = 0 has no real isolated singular points, then the complexity can be

further improved since, in this case, the evaluation is done over a rational number instead

of an algebraic number. It is worthwhile mentioning that this improvement is theoretically

0.2. PROPOSED METHODS 19

slight. In fact, for evaluating over an algebraic number, say ȳ, we are technically evaluating

over two rational numbers, that are mainly the endpoints of the isolating interval of the

algebraic value ȳ as a real root of the resultant polynomial Res(P, ∂P
∂x
, x). The complexity

analysis shows that the proposed algorithm performs ÕB

(
d4x d

2
y (dy+τ)

)
bit operations in the

worst case and ÕB(d
4
x d

2
y τ), when the plane curve P (x, y) = 0 has no real isolated singular

points.

0.2.2 Parametric case

Given a set of parameters α = [α1, . . . , αd] ∈ Rd and a well-behaved system

Σ =

{
P = 0 ,

∂P

∂x
= 0

}
,

where P ∈ Z[α][x, y], we aim at representing the “maximal” y-projection of the real solutions

of Σ as a function of the parameters α.

In applications, the structure of the solution set is dependent on the parameters varia-

tion, i.e., for a precise parameter values, the system has real solutions, and more generally,

for a precise parameter values, the system has a constant number of real solutions. Thus,

to solve the well-behaved system Σ, it is crucial to choose a finite number of representative

“good” parameter values that cover all possible cases. In contrast, the “bad” parameter val-

ues are mainly represented by the so-called discriminant variety − proposed by D. Lazard

and F. Rouillier [63] as a generalization of the well-known discriminant of a univariate

polynomial − which defines the parameters leading to non-generic solutions of the system.

In Section 3.2, we propose an algorithm that, using a cylindrical algebraic decomposition,

decomposes the parameter space, mainly the space of “good” parameter values, into a finite

disjoint union of connected open sets (called cells) such that the system has a constant

number of real solutions and the order of the y-projection of the solutions does not change

when a parameter value varies within the same cell. We are then able to represent the

searched value as a function of the parameters over a given cell.

20 INTRODUCTION

Chapter 1

Problem Motivation From Control

Theory

In this chapter, we first present definitions and reminders on finite-dimensional continuous-

time linear time-invariant control systems, i.e., control systems defined by linear differential

equations with constant coefficients [20, 39, 101, 107]. Then, we show that the maximum

gain of a continuous-time linear time-invariant control system is equal to the L∞-norm of

its transfer matrix [39, 101, 107]. The computation of the L∞-norm of a transfer matrix can

be reduced to the study of the critical points of a real plane algebraic curve [60]. Finally,

we give a short overview of robust control theory where the L∞-norm plays a fundamental

role.

1.1 Definition of a linear time-invariant system

Definition 1.1. A state-space representation of a finite-dimensional linear time-invariant

(LTI) dynamical system is given by
ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t) +Du(t),

x(t0) = x0,

(1.1)

where ẋ(t) = dx(t)
dt

denotes the time derivative of the state vector x with respect to the

continuous-time variable t, u is the input, y the output, t0 ∈ R is the initial instant and x0

the initial state, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.

This state-space representation is referred to as (A,B,C,D).

21

22 CHAPTER 2

A control system with single-input (m = 1) and single-output (p = 1) is called a

single-input and single-output (SISO) system. Otherwise, it is called a multiple-input and

multiple-output (MIMO) system (if m = 1 and p > 1 (resp., m > 1 and p = 1), it is

sometimes also called SIMO (resp., MISO)).

Without loss of generality, we can assume that t0 = 0 and u = 0 for t < 0.

By the standard Cauchy theorem, given a regular vector-valued function u, (1.1) has a

unique regular state x and a unique regular output y. More precisely, integrating (1.1) by

means of the variation of constants method, we obtain:
x(t) = eA t x0 +

∫ t

0

eA (t−τ)B u(τ) dτ ,

y(t) = C eA t x0 + C

∫ t

0

eA (t−τ) B u(τ) dτ +Du(t).

(1.2)

Through the choice of the input u, the behavior of the state x, and thus of the input y

can be influenced to achieve desired goals (e.g., reaching a given state xT ∈ Rn at given time

t = T (controllability), design a feedback law between x and u (state feedback) or between y

and u (output feedback) which achieves a certain goal such that stabilizing an unstable system

(stabilization problems), minimizing a given energy integral (optimal control), etc.). The

study of systems of the form (1.1) and their extensions − including differential time-delay,

partial differential equations, recurrence relations, etc. − is at the heart of an engineering

science called automatic control theory and at a mathematical theory called control theory.

See, e.g., [20, 39, 101, 107] and the references therein.

Example 1. To better illustrate the state-space representation, consider the example of a

mass connected to a spring of spring constant k and to a damper of damping coefficient b.

Let f(t) be the external force applied to the mass m on a certain time t > 0, that leads to

a variation in its position z(t).

Figure 1.1: Spring mass damper system

1.1. DEFINITION OF A LINEAR TIME-INVARIANT SYSTEM 23

Newton’s second law shows that z satisfies the ordinary differential equation:

m
d2z(t)

dt2
= f(t)− b

dz(t)

dt
− k z(t). (1.3)

The state variables x1(t) and x2(t) can be chosen to be the position z(t) and the velocity

ż(t) =
dz(t)

dt
of the mass.

By rewriting (1.3) accordingly, we obtain mẋ2(t) = u(t) − b x2(t) − k x1(t), where

ẋ1(t) = x2(t). We can then rearrange equations to obtain the following linear system of

ordinary differential equations:
ẋ1(t) = ż(t) = x2(t),

ẋ2(t) = −
k

m
x1(t)−

b

m
x2(t) +

1

m
u(t),

y(t) = x1(t).

Finally, in matrix-vector, we obtain the following linear system:

(
ẋ1(t)

ẋ2(t)

)
=

 0 1

− k

m
− b

m

(x1(t)

x2(t)

)
+

 0
1

m

u(t),

y(t) =
(
1 0

)(x1(t)

x2(t)

)
.

Hence, the state-space representation of this spring mass damper system is defined by

(A, B, C, D), where:

A =

 0 1

− k

m
− b

m

 , B =

 0
1

m

 , C =
(
1 0

)
, D = 0. (1.4)

Let L (f) denote the Laplace transform of a real-valued function f with support on

R+ := {t ∈ R | t > 0} defined by

L (f)(s) =

∫ +∞

0

e−s t f(t) dt,

where s ∈ C (the Laplace variable) is such that Re(s) > α for a certain abscissa α. Note that

the Laplace transform is well-defined for f ∈ L1(R+), where L1(R+) denotes the Banach

space of all the Lebesgue measurable functions on R+ for which the absolute value is Lebesgue

24 CHAPTER 2

integrable, i.e.:

∥ f ∥1 :=
∫ +∞

0

|f(t)| dt < +∞.

More generally, the Laplace transform can be defined for tempered distributions. For in-

stance, if H denotes the Heaviside distribution, i.e., H(t) = 1 for t > 0 and 0 for t < 0,

then we have L (H) = s−1, and if δ is the Dirac distribution, i.e., δ = Ḣ in the sense of the

distribution theory, then we have L (δ) = 1.

Using the standard identity L (ẋ)(s) = sL (x)(s) − x(0) for regular functions x (ob-

tained by an integration by parts) and assuming that x0 = x(0) = 0, the relation between

an input vector-valued function u and the corresponding output vector-valued function y

defined by (1.1) takes the form of

Y (s) = G(s)U(s),

where U = L (u) and Y = L (y) are the Laplace transforms of u and y, and:

G(s) = C (s In − A)−1B +D. (1.5)

The matrix G is called the transfer matrix of (1.1). If p = m = 1, i.e., (1.1) is SISO, then

the function G is called the transfer function of (1.1).

For a square matrix M ∈ R[s]n×n, we denote the determinant of M by det(M) and

by adj(M) the adjugate matrix of M defined as the transpose of the cofactor matrix of M .

Hence, we have

(s In − A)−1 =
1

det(s In − A)
adj(s In − A), (1.6)

where s In − A and adj(s In − A) both belong to R[s]n×n, which shows that:

G(s) =
1

det(s In − A)
C adj(s In − A)B +D ∈ R(s)p×m. (1.7)

Hence, the entries of the matrix G of (1.1) are real rational functions of s. In the control

theory literature, G is simply called a (real) rational matrix.

Using (1.7) and the fact that the polynomial matrix adj(s In − A) is defined by the

(n−1)× (n−1)-minors of s In−A, we can easily check that all the rational function entries

of G are proper in the sense that the degree of their numerator is less than or equal to

the degree of their denominator. Note that the degrees of the denominators of the entries

of G can be strictly less than n due to simplifications occurring in (1.7). Hence, we have

G(∞) := lim|s|→+∞ G(s) = D. This definition can be extended to general matrices with

1.2. STABILITY OF LTI SYSTEMS 25

rational function entries.

Definition 1.2. A matrix T ∈ R(s)p×m is proper (resp., strictly proper) if T (∞) is finite,

i.e., there exists T∞ ∈ Rp×m such that T (∞) = T∞ (resp., T (∞) = 0).

Example 2. Let us compute the transfer function G of the linear system defined in Exam-

ple 1. Using the matrices defined in (1.4), we first get

s I2 − A =

 s −1
k

m
s+

b

m

 ⇒ (s I2 − A)−1 =
1

ms2 + b s+ k

(
ms+ b m

−k ms

)
,

which yields the following transfer function:

G(s) =
1

ms2 + b s+ k

(
1 0

)(ms+ b m

−k ms

) 0
1

m

 =
1

ms2 + b s+ k
.

G is strictly proper since G(∞) = 0. Finally, if we now observe both x1 and x2, i.e., the

displacement and the velocity of the spring, then we have y = C x, where C = I2 and

x = (x1 x2)
T , which yields the strictly proper transfer matrix:

G′(s) =

 1

ms2 + b s+ k
s

ms2 + b s+ k

 .

1.2 Stability of LTI systems

We first study the asymptotic behavior of the solutions of ẋ(t) = Ax(t), i.e., of (1.1) where

u = 0. Hence, setting u = 0 for t ≥ 0 in (1.2), we get that the solution x(t) = eA t x0 tends to

0 for t tending to +∞, i.e., limt→+∞ x(t) = 0, if and only if all the eigenvalues of A ∈ Rn×n

have strictly negative real parts. Hence, we can introduce the following definition.

Definition 1.3. A matrix A ∈ Rn×n is said to be (asymptotically) stable if all of its eigen-

values have strictly negative real part, i.e., all the eigenvalues of A belong to the open left

half-plane C− := {s ∈ C | Re(s) < 0}.

Using (1.7), the denominators of the entries of G are factors of the polynomial

det(s In − A), whose zeros of det(s In − A) are the eigenvalues of A. Hence, the poles of

the entries of G are included in the eigenvalues of A. In particular, if A is stable, then all

the poles of the entries of G have strictly negative real part.

26 CHAPTER 2

Definition 1.4. A matrix T ∈ R(s)p×m is said to be stable if all the entries of T have poles

in C− := {s ∈ C | Re(s) < 0}.

Example 3. We consider again Examples 1 and 2. We can check that det(s I2 − A) =

s2 + b s/m+ k/m. When the damping coefficient b > 0 is small, i.e., when the discriminant

∆ := (b2 − 4 km)/m2 of det(s I2 − A) is strictly negative, the two complex solutions of

det(s I2 − A) are defined by

s± =
−b± δ i

2m
,

where δ =
√
4 km− b2. When ∆ = 0, s± = −b/2m. When b > 0 is large, i.e., when the

discriminant ∆ = (b2− 4 km)/m2 of det(s I2 − A) is strictly positive, the two real solutions

of det(s I2 − A) are defined by s± = (−b ±
√
∆)/2. In this case, i.e., when ∆ > 0, we can

easily check that the real solutions are both strictly negative by noticing the positive sign

of their product k/m. Consequently, in the three cases ∆ < 0, ∆ = 0, and ∆ > 0, the

solutions have strictly negative real parts, i.e., s± ∈ C−, for all b > 0. Thus, the linear

system ẋ(t) = Ax(t), where A is defined by (1.4), is asymptotically stable for all b > 0.

We now study the stability of the solutions of the linear system (1.1), i.e., when u is

not reduced to 0. To do that, we first state a few remarks. The transfer matrix G − given

by (1.5) − is the Laplace transform of the input-output operator, which maps an input u to

an output y, defined by:

y(t) = C

∫ t

0

eA (t−τ) B u(τ) dτ +Du(t). (1.8)

If L −1 denotes the inverse Laplace transform and if we set

K := L −1(G) = C eA t BH(t) +D δ, (1.9)

where H (resp., δ) is the Heaviside (resp., Dirac) distribution, then we can rewrite the above

input-output operator as the convolution operator y = K ⋆ u, namely:

y(t) =

∫ +∞

0

C eA (t−τ) BH(t− τ)u(τ) dτ +D δ ⋆ u(t)

=

∫ t

0

C eA (t−τ) B u(τ) dτ +Du(t).

(1.10)

Indeed, Laplace transform maps convolutions to products and δ is a unit for the convolution

product, i.e., δ ⋆ u = u. To simplify the notations, we shall sometimes identify the above

convolution operator with its kernel matrix K.

1.2. STABILITY OF LTI SYSTEMS 27

Example 4. We consider again Examples 1, 2 and 3. Let us compute the kernel matrix

K of the convolution operator associated to the system defining Example 1. Using (1.9),

we have to compute eA t. By Cayley–Hamilton theorem, we have eA t = c0(t) I2 + c1(t)A.

Using the notations of Example 3, the characteristic polynomial of A is s2+ b s/m+ k/m =

(λ−s+)(λ−s−). If P denotes the matrix formed by the eigenvectors respectively associated

with the eigenvalues s+ and s− (i.e., (1 s+)
T , resp., (1 s−)

T), then we have:(
es+ t 0

0 es− t

)
= P−1 eA t P = P−1 (c0(t) I2 + c1(t)A) P

= c0(t) I2 + c1(t)

(
s+ 0

0 s−

)
.

In other words, c0 and c1 satisfy the following linear system:{
es+t = c0(t) + c1(t) s+,

es−t = c0(t) + c1(t) s−.

Solving the above linear system, we then obtain:
c0(t) =

s− es+ t − s+ es− t

s− − s+
,

c1(t) =
es− t − es+ t

s− − s+
.

Hence, we obtain:

K(t) = C eA t BH(t) =
c1(t)

m
H(t).

Alternatively, we can write:

G(s) =
1

ms2 + b s+ k
=

1

m (λ− s+)(λ− s−)
=

1

m (s− − s+)

(
1

s− s−
− 1

s− s+

)
= L −1

(
1

m (s− − s+)

(
es− t − es+ t

)
H(t)

)
.

Since G = L (K), we find again that K(t) = c1H(t)/m

If A is stable, then the entries of the matrix K, defined by (1.9), belong to A :=

L1(R+) ⊕ R δ := {f + λ δ | f ∈ L1(R+), λ ∈ R}. A is a Banach algebra (Wiener-Laplace

28 CHAPTER 2

algebra) for the sum and the convolution ⋆, and for the norm:

∥ f + λ δ ∥A := ∥ f ∥1 +|λ|.

For more details, see Section 6.4.1 of [101] and the references therein.

To simplify the account, we first suppose that p = m = 1, i.e., (1.1) is SISO, so that

K ∈ A. If L∞(R+) denotes the Banach space formed by the Lebesgue measurable real-valued

functions on R+ that are essentially bounded, i.e.,

∥ f ∥∞ := ess.supt∈R+
|f(t)] < +∞,

then the input-output operator (1.8) or, equivalently, (1.9) clearly satisfies:

∥ y ∥∞ ≤ ∥ K ∥A ∥ u ∥∞ .

See, e.g., Theorem 30 (page 298) of [101]. Hence, if A is stable, then a bounded input u

yields a bounded output y. We then say that (1.9) is bounded input bounded output (BIBO).

Moreover, we get

∥ K ∥L(L∞,L∞) := sup
0̸=u∈L∞(R+)

∥ y ∥∞
∥ u ∥∞

≤ ∥ K ∥A,

which shows that the norm of the input-output operator for the ∞-norm is bounded by

∥ K ∥A. In fact, the equality can be proved (see, e.g., Point 3 on page 301 of [101]). Hence,

∥ K ∥A corresponds to the maximum gain of the input-output operator (1.8) for the ∞-

norm, i.e., its “maximum amplification”. It is an important information about the system

(1.1). Its computation requires an integral calculation, which might be difficult.

Example 5. Let us consider the kernel matrix K defined in Example 4. Let us study if K

is Lebesgue integrable when ∆ < 0 (see Example 3). Using the notations of Example 3, we

have

∥ K ∥1 =
∫ +∞

0

∣∣∣∣ es− t − es+ t

m (s− − s+)

∣∣∣∣ dt = ∫ +∞

0

∣∣∣∣∣e
(−b−δ i)

2m
t − e

(−b+δ i)
2m

t

δ i

∣∣∣∣∣ dt
=

1

δ

∫ +∞

0

∣∣∣∣e−b t
2m

(
cos

(
δ t

2m

)
− i sin

(
δ t

2m

)
− cos

(
δ t

2m

)
− i sin

(
δ t

2m

))∣∣∣∣ dt
=

2

δ

∫ +∞

0

e
−b t
2m

∣∣∣∣sin(δ t

2m

)∣∣∣∣ dt
≤ 2

δ

∫ +∞

0

e
−b t
2m dt =

2

δ

[
e

−b t
2m

−b
2m

]+∞

0

=
4m

δ b
,

1.2. STABILITY OF LTI SYSTEMS 29

since b > 0 ((1.4) is stable by Example 3), which shows that K ∈ A and:

∥ K ∥L(L∞,L∞) ≤ ∥ K ∥A = ∥ K ∥1 ≤ 4
m

δ b
.

Let us now consider the Hilbert space L2(R+) defined by the Lebesgue measurable

real-valued functions on R+ that are bounded for the 2-norm:

∥ f ∥2 :=

√∫ +∞

0

|f(t)|2 dt.

If A is stable, i.e., K ∈ A, then it can be proved that y = K⋆u ∈ L2(R+) for all u ∈ L2(R+).

Hence, an input u with a finite energy yields an output y with a finite energy. Moreover,

we have:

∀ u ∈ L2(R+), ∥ y ∥2 ≤ ∥ K ∥A ∥ u ∥2 . (1.11)

Note that a similar result holds for the Banach space Lp(R+) for 1 ≤ p ≤ ∞ (which

shows that Lp(R+) is an A-module for 1 ≤ p ≤ ∞). See, e.g., Theorem 30 on page 298 of

[101]. These results yield the following definition.

Definition 1.5. An LTI system (1.2) of state-space representation (A,B,C,D) is

(asymptotically/input-output) stable if A is stable.

Example 6. The poles of G (resp., G′) defined in Example 2 are defined by the two zeros of

the polynomial det(s I2 − A), whose real parts are strictly negative (see Example 3). Hence,

the control linear system (1.4) is stable.

Since L2(R+) plays an important role in practice, it is important to compute the oper-

ator norm of the input-output operator (1.9) for the 2-norm, namely:

∥ K ∥L(L2,L2) := sup
0̸=u∈L2(R+)

∥ y ∥2
∥ u ∥2

. (1.12)

This operator norm corresponds to the maximum energy gain of (1.9) or, equivalently, of

the linear system (1.2). Note that the identity (1.11) shows that:

∥ K ∥L(L2,L2) ≤ ∥ K ∥A . (1.13)

The computation of the norm (1.12) has many applications in control theory, especially

in the so-called robust control theory and more particularly in the H∞ control [39, 107, 33].

30 CHAPTER 2

The goal of this dissertation to investigate this question for general finite-dimensional linear

time-invariant systems.

Remark 1.1. More general classes of linear control systems (e.g., differential time-delay,

partial differential equations) can be defined by means of more general classes of transfer

matrices G (e.g., non rational transfer matrices) and of convolution kernels K. We shall

only consider here rational transfer matrices.

We state again a standard result of control theory.

Theorem 1.1. Any proper rational matrix T ∈ R(s)p×m can be realized by an LTI system

(1.1), i.e., there exist n ≥ 1 and (A, B, C, D) such that:

T = C (s In − A)−1B +D.

Moreover, the state-space representation (A, B, C, D) of T can be chosen to be both con-

trollable and observable, i.e., such that we have respectively:

rankR(B AB A2B . . . An−1B) = n, rankR

C

C A

...

C An−1

 = n.

Such a realization is called minimal. For a minimal realization (A, B, C, D) of T , the poles

of the entries of T are exactly the eigenvalues of the matrix A.

According to Theorem 1.1, any proper rational matrix is the transfer matrix of a certain

linear time-invariant system defined by a state-space representation (1.1). This dissertation

aims at computing the operator norm (1.12) for an LTI system defined by a stable and

proper rational transfer matrix G. In the next section section, we shall explain how this

computation is related to the L∞-norm computation of the transfer matrix G.

1.3 Maximum energy gain and L∞-norm

We are going to derive a more tractable characterization of the operator norm (1.12). To

do that, we need to introduce a few more functional spaces.

1.3. MAXIMUM ENERGY GAIN AND L∞-NORM 31

Let C+ := {s ∈ C | Re s ≥ 0} be the closed right half-plane, i.e., the complement of

C− in C. If d ∈ R[s], then complex zero set of d is denoted by:

VC(⟨d⟩) := {s ∈ C | d(s) = 0}.

Finally, if p1, p2 are two univariate polynomials with coefficients in a field, then gcd(p1, p2)

denotes the greatest common divisor of p1 and p2 (see Section 2.2).

Using Definitions 1.2 and 1.4, we can check again that the set of SISO proper and stable

transfer functions form an algebra over R.

Definition 1.6. Let RH∞ be the R-algebra of proper and stable real rational functions,

namely:

RH∞ :=
{n
d
| n, d ∈ R[s], gcd(n, d) = 1, degs(n) ≤ degs(d), VC(⟨d⟩) ∩ C+ = ∅

}
.

Example 7. For instance, 1/(s + 1), (s − 1)/(s + 1) and (s − 1)/(s + 1)2 belong to RH∞

but s, s2/(s+ 1), 1/(s− 1) and 1/(s2 + 1) do not belong to RH∞.

A stable and proper rational transfer matrix G ∈ R(s)p×m satisfies:

G ∈ RHp×m
∞ .

An element g of RH∞ is holomorphic and bounded on C+, i.e.:

∥ g ∥∞ := sup
s∈C+

|g(s)| < +∞.

Hence, RH∞ is an R-sub-algebra of the Hardy algebra H∞(C+) of bounded holomorphic

functions on C+ [33, 107]. Note that H∞(C+) is a Banach algebra, namely, a Banach

space and a C-algebra which satisfies ∥ f g ∥∞≤∥ f ∥∞ ∥ g ∥∞ (i.e., the multiplication is

continuous) (see, e.g., [33] and the references therein).

In the control theory literature, H∞(C+) is usually denoted by H∞(C+).

Example 8. If τ > 0, then e−τ s ∈ H∞(C+), ∥ e−τ s ∥∞= 1, but e−τ s /∈ RH∞. Similarly,

e−τ s/(s+1) ∈ H∞(C+) but it does not belong to RH∞. Note that e−τ s/(s+1) corresponds

to the transfer function of the time-invariant infinite-dimensional linear system (differential

time-delay system):

ẋ(t) + x(t) = u(t− τ).

32 CHAPTER 2

For an introduction to the theory of infinite-dimensional systems (i.e., systems defined by

partial differential equations or by differential time-delay equations) and the H∞ methods

for this class of systems, see [33] and the references therein.

If g ∈ H∞(C+), the maximum modulus principle of complex analysis yields:

∥ g ∥∞ = ess.supω∈R|g(i ω)|.

If g ∈ RH∞, then we can consider its restriction g|iR on the imaginary axis iR :=

{i ω | ω ∈ R}. Clearly, g|i R ∈ L∞(iR), where L∞(iR) denotes the Banach space of essentially

bounded Lebesgue measurable functions on iR. More precisely, g|iR belongs to the R-

subalgebra RL∞ of L∞(iR) of the real rational functions on the imaginary axis which are

proper and have no poles on iR, i.e.,

RL∞ :={
n(i ω)

d(i ω)
| n, d ∈ R[i ω], gcd(n, d) = 1, degω(n) ≤ degω(d), VC(⟨d⟩) ∩ iR = ∅

}
,

or simply the algebra of real rational functions with no poles on iP1(R), where:

P1(R) := R ∪ {∞}.

We can now come back to the problem studied in this dissertation, namely, the char-

acterization of the operator norm (1.12) for a stable SISO linear system (1.1), i.e., for

G = L (K) ∈ RH∞. A standard result on H∞ asserts that:

∥ K ∥L(L2,L2) := sup
0̸=u∈L2(R+)

∥ y ∥2
∥ u ∥2

= ∥ G ∥∞:= sup
s∈C+

|G(s)| = sup
ω∈R
|G|iR(i ω)|. (1.14)

Hence, the maximum energy gain of the convolution operator (1.10), i.e., of (1.8), is exactly

the maximum of the modulus of the Laplace transform G of its kernel K, i.e., of G = L (K),

or equivalently, the maximum peak of its continuous restriction G|iR over all the frequencies

i ω with ω ∈ P1(R), i.e.:

sup
ω∈R
|G|iR(i ω)| = max

z∈iP1(R)= iR∪{i∞}
|G(z)| = max{max

z∈iR
|G(z)|, |G(i∞)|}.

In control theory literature, the graph of the function ω ∈ R −→ |G(i ω)| is called Bode

magnitude plot and the ∞-norm is then the peak value of this graph.

More generally, if G ∈ RL∞ then, as explained above, ∥ G ∥∞ is the supremum of the

1.3. MAXIMUM ENERGY GAIN AND L∞-NORM 33

continuous function ω ∈ P1(R) := R ∪ {∞} 7−→ |G(i ω)|, and thus, we have

∥ G ∥∞= max
ω∈P1(R)

|G(i ω)|,

i.e., ∥ G ∥∞= max {|G(i∞)|, γmax}, where:

γmax := max
ω∈R
|G(i ω)| = max

{
γ ≥ 0 ∈ R | ∃ ω ∈ R : γ2 = |G(i ω)|2

}
.

Hence, γ > ∥ G ∥∞ if and only if γ > |G(i∞)| and Φγ(i ω) := γ2 − |G(i ω)|2 ̸= 0 for all

ω ∈ R. This result will be generalized to the matrix case in Proposition 1.1.

Using |G(i ω)|2 = G(−i ω)G(i ω) ∈ R(ω2), a first method for computing ∥ G ∥∞ consists

in first computing the zeros of the numerator of d|G(i ω)|2
dω

, then evaluating |G(i ω)| on these

zeros and finally choosing the maximal occurring value, that to say γ̄, and (iii) ∥ G ∥∞=

max{|G(i∞)|, γ̄}.
More explicitly, if we write G as G = a/b, where a, b ∈ R[s] are two coprime polynomials,

namely, gcd(a, b) = 1, q = degs(a) ≤ r = degs(b), and b does not vanish on iR, then

G(i∞) = 0 if q < r (i.e., if G is strictly proper) or G(i∞) = ar/br if q = r (i.e., if G is

proper), where ar = Lcs(a) (resp., br = Lcs(b)) is the leading coefficient of the polynomial

a (resp., b) in s. Moreover, we can write |G(i ω)|2 = |a(i ω)|2/|b(i ω)|2 = N(ω)/D(ω), where

N,D ∈ R[ω2] are coprime, i.e., gcd(D,N) = 1. Since b(i ω) has not real roots, D(ω) ̸= 0 for

all ω ∈ R. If we note Z := {ω ∈ R | N ′(ω)D(ω)−N(ω)D′(ω) = 0}, then we get:

∥ G ∥∞= max{|G(i∞)|, γ̄}, γ̄ := max
ω∈Z

{
(N(ω)/D(ω))1/2

}
.

Remark 1.2. If Z ∩ VR(⟨D′(ω)⟩) = VR(⟨N ′(ω)D(ω), D′(ω)⟩) = ∅, note that:

γ̄ = max
ω∈Z

{
(N ′(ω)/D′(ω))

1/2
}
.

Example 9. If G = (2 s + 1)/(s + 1), then N(ω) = 4ω2 + 1, D(ω) = ω2 + 1, Z = {0},
γ̄ = (N(0)/D(0))1/2 = 1, |G(i∞)| = 2, and thus, ∥ G ∥∞= max{2, γ̄} = 2.

Example 10. If G = (s+ 1)/(s− 1), then G ∈ RL∞ but G /∈ RH∞ since G has a pole at

1 ∈ C+. We have |G(i ω)|2 = |1 + i ω|2/|1 − i ω|2 = 1, and thus, N = 1, D = 1, Z = R,

γ̄ = 1 and |G(i∞)| = 1, which finally shows that ∥ G ∥∞= 1.

Finally, let us give an example which depends on parameters.

34 CHAPTER 2

Example 11. In Example 5, we obtained an upper bound for ∥ K ∥L(L∞,L∞), where K

is the convolution kernel defined in Example 4 of the system defined in Example 1. Now,

according to (1.14) and using G = L (K), we have:

∥ K ∥L(L2,L2) =

∥∥∥∥ 1

ms2 + b s+ k

∥∥∥∥
∞

= sup
ω∈R

∣∣∣∣ 1

m (i ω)2 + b i ω + k

∣∣∣∣
= sup

ω∈R

1√
(k −mω2)2 + (b ω)2

=

(
inf
ω∈R

√
(k −mω2)2 + (b ω)2

)−1

.

Hence, N = 1, D = (k−mω2)2+(b ω)2 and Z = {ω ∈ R | D′(ω) = 0}. Hence, computing the

extrema of D, we get that D′(ω) = 2ω (2m2 ω2− 2mk+ b2), which implies that D′(ω) = 0

if and only if ω0 = 0 or ω± = ± 1

m

√
2 km− b2

2
if 0 < b ≤

√
2 km, and thus:

√
D(0) = k,

√
D(ω±) =

b
√
4 km− b2

2m
=

b δ

2m
.

If 0 < b <
√
2 km, we have the following variations of the function D

ω

D′(ω)

√
D(ω)

−∞ ω− 0 ω+ +∞

− 0 + 0 − 0 +

+∞+∞
b δ

2m

b δ

2m

kk b δ

2m

b δ

2m

+∞+∞

which yields:

∥ K ∥L(L2,L2) = ∥ G ∥∞ =
2m

b
√
4 km− b2

. (1.15)

If b =
√
2 km, then D′(ω) = 4m2 ω3, which yields ω± = ω0 = 0 and:

∥ K ∥L(L2,L2) = ∥ G ∥∞ =
1

k
.

If
√
2 km < b, then ω± are complex numbers, which yields:

∥ K ∥L(L2,L2) = ∥ G ∥∞ =
1

k
.

Using closed-form expression (1.15) for ∥ G ∥∞ with respect to the system parameters

1.3. MAXIMUM ENERGY GAIN AND L∞-NORM 35

m, k and 0 < b <
√
2 km, we can notice that

∥ G ∥∞ =

√
m

k
b−1 +

1

8 k
√
mk

b+O(b3),

which shows the behaviour of the operator gain ∥ K ∥L(L2,L2) with respect to a small

damping coefficient b. This result is coherent with the fact for b = 0, the transfer function

G0 = 1/(ms2 + k) has then two poles ±
√

k

m
i on the imaginary axis, showing that the

system (1.4) is then unstable, ∥ G0 ∥∞= +∞ and G0 /∈ RL∞. Finally, we can check that

this gain becomes singular on the algebraic set ∆ = b2 − 4mk = 0 in the parameter space

{m, k, b}.

A rich interplay between mathematical system theory, operator theory and complex

analysis has provided a more tractable characterization of the maximum energy gain of a

stable SISO linear system (1.1) in terms of the maximum modulus on the imaginary axis of

the proper and stable transfer function G(s) = C (s In − A)−1B + D of (1.1). This result

advocates for the study of the computation of the ∞-norm of a rational functions with no

poles on iP1(R).

Example 12. Let us consider the following linear time-invariant system{
ẋ(t) = −x(t)− u(t),

y(t) = x(t) + u(t),
(1.16)

i.e., A = −1, B = −1, C = 1 and D = 1. Clearly, A is stable, and thus, so is (1.16).

Let X = L (x) (resp., U = L (u), Y = L (y)) be the Laplace transform of x (resp., u,

y). Then, the transfer function of (1.16) is defined by Y (s) = X(s) + U(s), where X(s) =

−U(s)/(s + 1), i.e., G = s/(s + 1) ∈ RH∞. We have ∥ G ∥∞= supω∈R |ω|/
√
1 + ω2 = 1.

The convolution kernel K of (1.16) is defined by K(t) = −e−t H(t) + δ, which satisfies

∥ K ∥A=∥ e−tH(t) ∥1 +1 = 2. Hence, this example shows that the inequality (1.13) can be

strict, i.e.:

∥ K ∥L(L2,L2) = ∥ G ∥∞ < ∥ K ∥A .

To extend the above results to MIMO systems, we generalize the different functional

spaces to consider matrices. We first state a few standard notations.

Definition 1.7. Let M ∈ Cm×n be a m× n matrix with complex entries.

1. The complex conjugate transpose/Hermitian transpose of M is the matrix M⋆ ∈ Cn×m

36 CHAPTER 2

obtained by transposing of the complex conjugate M , i.e.:

M⋆ = M
T
.

2. The largest singular value of M , denoted by σ(M), is the square root of the largest

eigenvalue of the positive semi-definite matrix M⋆M ∈ Cn×n.

If x ∈ Cn and ∥ x ∥2=
√
x⋆ x =

√∑n
i=1 |xi|2, then we state again that:

σ̄(M) = sup
0̸=x∈Cm

∥M x ∥2
∥ x ∥2

. (1.17)

We extend the Banach spaces L2, L∞ and H∞ for matrix-valued functions.

Definition 1.8. 1. Let L2(R+) be the Hilbert space of Lebesgue measurable matrix-

valued functions defined on R+ bounded for the 2-norm, namely,

∥ F ∥2 :=

√∫ +∞

0

Tr(F ⋆(t)F (t)) dt,

where Tr denotes the standard trace of the corresponding matrix.

2. Let L∞(iR) be the Banach space of Lebesgue measurable matrix-valued functions

defined on R essentially bounded, namely:

∥ F ∥∞ = ess.supω∈R σ(F (i ω)).

3. Let H∞(C+) be the Hardy algebra of holomorphic functions defined on C+ bounded

for the ∞-norm:

∥ F ∥∞ = sup
s∈C+

σ(F (s)).

Now, if we consider a stable MIMO linear system (1.1) defining a transfer matrix

G ∈ RHp×m
∞ , then G ∈ H∞(C+), where H∞(C+) is defined in Definition 1.8, and ∥ G ∥∞

= sups∈C+
σ(G(s)). Again, the restriction G|iR of G to the imaginary axis iR belongs to

L∞(iR+) defined in Definition 1.8, and ∥ G|iR ∥∞ = ess.supω∈R σ(G|iR(i ω)). Similarly, a

standard result shows that:

∥ G ∥∞ = ∥ G|iR ∥∞ .

Considering the input-output operator (1.8) or, equivalently, the convolution operator

(1.10), where the kernel K = L −1(G) ∈ Ap×m is defined by (1.9), then a standard result

1.4. A REAL ALGEBRAIC GEOMETRIC REFORMULATION 37

on H∞ shows that

∥ K ∥L(L2,L2) := sup
0̸=u∈L2(R+)

∥ y ∥2
∥ u ∥2

= ∥ G ∥∞ = ∥ G|iR ∥∞, (1.18)

where, by Definition 1.8, we have:

∥ u ∥2=

√√√√∫ +∞

0

m∑
i=1

|ui(t)|2 dt, ∥ y ∥2=

√√√√∫ +∞

0

p∑
i=1

|yi(t)|2 dt.

See, e.g., Theorem 4.4 of [107]. Hence, the computation of the maximum energy gain of a

stable MIMO linear system (1.1) is equivalent to computing the L∞-norm of its proper and

stable transfer matrix G, i.e., of G ∈ RHp×m
∞ .

1.4 A real algebraic geometric reformulation

Using computer algebra methods (symbolic-numeric methods), in this dissertation, we study

the problem of the (certified) computation of the norm ∥ G|iR ∥∞ for G ∈ RHp×m
∞ , or, more

generally, the computation of ∥ F ∥∞ for F ∈ RLp×m
∞ . This last problem can be reduced to

the study of the extremal real zeros of a certain polynomial system. To see that, we use the

following characterization of ∥ F ∥∞.

Proposition 1.1 ([107, 60]). Let F ∈ RLp×m
∞ , γ > 0 and:

Φγ(i ω) = γ2 Im − F T (−i ω)F (i ω).

Then, γ > ∥ F ∥∞ if and only if γ > σ (F (i∞)) and:

∀ ω ∈ R, det(Φγ(i ω)) ̸= 0.

The sketch of the proof of Proposition 1.1 is the following: using (1.17), ∥ F ∥∞ < γ if

and only if

supω∈R supx∈Cm

∥ F (i ω)x ∥2
∥ x ∥2

< γ

⇔ ∀ ω ∈ R, ∀ x ∈ Cm, ∥ F (i ω)x ∥2 < γ2 ∥ x ∥2
⇔ ∀ ω ∈ R, ∀ x ∈ Cm, x⋆ F T (−i ω)F (i ω)x < γ2 x⋆ x

⇔ ∀ ω ∈ R, ∀ x ∈ Cm, x⋆
(
γ2 Im − F T (−i ω)F (i ω)

)
x > 0,

38 CHAPTER 2

i.e., if and only if Φγ(i ω) = γ2 Im − F T (−i ω)F (i ω) > 0 for all ω ∈ R, namely, the

square hermitian matrix Φγ(i ω) is positive definite. Using the continuity of the function

ω ∈ P1(R) 7−→ F (i ω), and thus, the continuity of the function ω ∈ P1(R) 7−→ Φγ(i ω),

we obtain that Φγ(i ω) > 0 for all ω ∈ P1(R) if and only if Φγ(i∞) > 0 and Φγ(i ω) is

non-singular for all ω ∈ R, i.e., if and only if σ (F (i∞)) < γ and det(Φγ(i ω)) ̸= 0 for all

ω ∈ R, which proves the result.

Since F is a proper rational matrix, F (i∞) is a constant matrix and σ (F (i∞)) can

be computed by standard linear algebra methods.

Example 13. If F (s) = C (s In − A)−1B + D, then F (i∞) = D. Hence, the condition

Φγ(i∞) > 0 amounts to saying that γ2 Im −DT D > 0, i.e., σ(D) < γ.

Hence, to compute the maximal singular value of F (i ω), we have to compute the

maximal real value γ satisfying that a real value ω exists such that det(Φγ(i ω)) vanishes.

Since det(Φγ(i ω)) is a real rational function of ω and γ (in fact a real rational function of

ω2 and γ2 by the parity of Φγ), we can write det(Φγ(i ω)) = n(ω, γ)/d(ω), where n(ω, γ) ∈
R[γ, ω] and d(ω) ∈ R[ω] are coprime. Since F has no poles on the imaginary axis, d(ω) does

not vanish on R. Hence, to compute the L∞-norm of F , it suffices to compute the maximal

real value γ such that there exists at least one real value ω for which n(ω, γ) vanishes.

Hence, we are led to studying the γ-extremal points (and thus, the critical points) of the

following real plane algebraic curve:

C := {(ω, γ) ∈ R2 | n(ω, γ) = 0}. (1.19)

This problem belongs to the realm of real algebraic geometry.

Let us now state important properties on C. Using F (i ω) ∈ RLp×m
∞ and the definition

of RL∞, we can check that F T (−i ω) ∈ RLm×p
∞ . In other words, RL∞ is a R-sub-algebra of

the von Neumann algebra L∞(iR) which is equipped with the involution f 7−→ f ⋆ defined by

f ⋆(i ω) = f(−i ω) for all f ∈ RL∞. Therefore, we get that Φγ ∈ RLm×m
∞ . Now, a standard

result of module theory on the determinant of matrices with entries in a commutative ring

asserts that detΦγ = γ2m +
∑m−1

k=0 a2k γ
2 k, where a2k ∈ RL∞ for k = 0, . . . ,m− 1. The

coefficients a2k are real proper rational functions without poles on the imaginary axis iR.

Writing a2k = n2k/d2k, where d2k, n2k ∈ R[ω] are coprime, then d2k have no real roots and

deg d2k ≤ deg n2k for k = 0, . . . ,m− 1. Hence, we have:

detΦγ =∏m−1
k=0 d2k(ω) γ

2m +
∏m−2

k=0 d2k(ω)n2(m−1)(ω) γ
2(m−1) + . . .+

∏m−1
k=1 d2k(ω)n0(ω)∏m−1

k=0 d2k(ω)
.

1.4. A REAL ALGEBRAIC GEOMETRIC REFORMULATION 39

Let us note:

A2m =
m−1∏
k=0

d2k(ω), A2(m−1) =
m−2∏
k=0

d2k(ω)n2(m−1)(ω), . . . , A0 =
m−1∏
k=1

d2k(ω)n0(ω).

Since the d2k’s have no real roots, then detΦγ = 0 is equivalent to the bivariate polynomial

equation
∑m

k=0 A2k(ω) γ
2k = 0. Let g ∈ R[ω] be the greatest common divisor of the A2k’s

and set Ā2k := A2k/g ∈ R[ω] for k = 0, . . . ,m. Then, we get:

n(ω, γ) =
m∑
k=0

Ā2k(ω) γ
2k, d(ω) = Ā2m(ω).

Since the Ā2k’s has no common factor, the above polynomial n cannot be divided by a pure

polynomial of ω. Hence, the real plane algebraic curve C does not contain vertical lines

ω = ω⋆ ∈ R. Moreover, the leading coefficient of n(ω, γ) seen as polynomial in γ is Ā2m(ω),

whose roots are among those of A2m(ω). Since A2m has no real roots so has Ā2m. Hence,

the real plane algebraic curve C has no vertical asymptotes.

Using the fact that deg d2k ≤ deg n2k for k = 0, . . . ,m, degA2k ≤ degA2m for k =

0, . . . ,m − 1, and thus, deg Ā2k ≤ deg Ā2m for k = 0, . . . ,m − 1. Let J be the set

formed by the indices j’s such that deg Ā2j is equal to deg Ā2m, that is to say, J = {j ∈
J0, . . . ,mK | deg Ā2j = deg Ā2m}. Then, the leading coefficient of the polynomial n(ω, γ)

seen as a polynomial in ω is
∑

j∈J C2j γ
2j, where C2j is the leading coefficient of Ā2j. Hence,

n(ω, γ) =
(∑

j∈J C2j γ
2j
)
ω2l + r(γ, ω), where 2 l = deg Ā2m and the terms in r(γ, ω) have

degrees in ω strictly less than 2 l. Thus, C has horizontal asymptotes for the real solutions

of the polynomial: ∑
j∈J

C2j γ
2j = 0. (1.20)

In particular, we note that C is bounded in the direction of γ, i.e., no real branch in γ(ω) of

C goes to infinity when ω tends to infinity. This shows again that ∥ F ∥∞ is bounded, i.e.,

finite. Moreover, the real plane algebraic curve C is then unbounded in the direction of ω for

the real γ satisfying (1.20) since the degree in ω of the polynomial n(ω, γ) then drops. Since

by construction, ω can tend to∞, (1.20) has then at least one real root. Using detΦγ(ω) = 0

for all ω ∈ R, we get limω→+∞ detΦγ(ω) = 0, i.e., det
(
γ2 Im − F T (i∞)F (i∞)

)
= 0, which

shows that the horizontal asymptotes in the direction of γ are the singular values of F (i∞).

For instance, if F ∈ RL∞ is strictly proper, then F (i∞) = 0 and γ = 0 is the only horizontal

asymptote of the real plane algebraic curve C.

40 CHAPTER 2

Figure 1.2: Plot of C for m = 3, k = 2 and b = 3/2, where ω/γ is in the horizontal/vertical
axis.

Example 14. Let us consider again Examples 1 and 2. We have:

Φγ(i ω) = γ2 − 1

(m (−i ω)2 + b (−i ω) + k)

1

(m (i ω)2 + b (i ω) + k)

=
((k −mω2)2 + (b ω)2) γ2 − 1

(k −mω2)2 + (b ω)2
.

Hence, we have A2 = (k−mω2)2+(b ω)2, A0 = −1, g = 1, Ā2 = A2, Ā0 = A0, which shows

that n(ω, γ) = ((k −mω2)2 + (b ω)2) γ2 − 1 = b2 γ2 ω4 + Since G = 1/(ms2 + b s + k)

has no poles on the imaginary axis, degγ n(ω, γ) = 2 for all ω ∈ R and degω n(ω, γ) = 4 if

γ ̸= 0 and b ̸= 0, and degω n(ω, γ) = 0 if γ = 0. Hence, for all numeric values b ̸= 0, m ̸= 0

and k ̸= 0, the real algebraic curve C = {(ω, γ) ∈ R2 | ((k −mω2)2 + (b ω)2) γ2 − 1 = 0}
is bounded in the direction of γ and unbounded in the direction of ω with a horizontal

asymptote at G(i∞) = 0. In Figure 1.2, we can visualize the curve C for the particular

numerical values m = 3, k = 2 and b = 3/2.

1.4. A REAL ALGEBRAIC GEOMETRIC REFORMULATION 41

Example 15. Let us consider the following transfer matrix:

F =

10 s

s+ 1
1

0
5 s

s+ 1

 ∈ RH2×2
∞ .

We can easily check that:

n(ω, γ) = (γ4 − 126 γ2 + 2500)ω4 + (2 γ4 − 127 γ2)ω2 + γ4 − γ2.

We have

F (i∞) =

(
10 1

0 5

)
,

whose singular values are the positive real γ satisfying γ4 − 126 γ2 + 2500 = 0, namely,(√
226 +

√
26
)
/2 and

(√
226−

√
26
)
/2.

A reformulation of Proposition 1.1 for F ∈ RL∞ is the following result.

Corollary 1.1. Let F = a/b ∈ RL∞, where a, b ∈ R[i ω] are coprime polynomials, i.e.,

gcd(a, b) = 1, A2 = |b(i ω)|2, A0 = |a(i ω)|2, g = gcd(A2, A0), Ā2 = A2/g, Ā0 = A0/g

and n(ω, γ) = Ā2(ω) γ
2 − Ā0(ω). If Lcω(n) denotes the leading coefficient of n seen as a

polynomial in ω,

VR

(〈
n,

∂n

∂ω

〉)
:=

{
(ω, γ) ∈ R2 | n(ω, γ) = 0,

∂n(ω, γ)

∂ω
= 0

}
,

and πγ : R2 −→ R the projection onto the γ-axis, i.e., πγ(ω, γ) = γ, then:

∥ F ∥∞= max

{
πγ

(
VR

(〈
n,

∂n

∂ω

〉))
∪ VR (⟨Lcω(n)⟩)

}
. (1.21)

As explained above, the computation of ∥ F ∥∞ is connected to the study of the critical

points of the real algebraic curve C = {(ω, γ) ∈ R2 | n(ω, γ) = 0} (namely, the common

zeros of the polynomial system formed by n(ω, γ) = 0 and ∂n(ω, γ)/∂ω = 0), where the

bivariate polynomial n satisfies the properties:

1. n(ω, γ) = Ā2m(ω) γ
2m+ Ā2(m−1)(ω) γ

2(m−1)+ . . .+ Ā0(ω), where the greatest common

divisor of the Ā2k’s is 1, deg(Āi) ≤ deg(Ā2m), i = 0, . . . , 2 (m−1) and Ā2m has no real

roots ω. The real plane algebraic curve C has no vertical lines nor vertical asymptotes

and is bounded in the direction γ.

42 CHAPTER 2

2. n(ω, γ) = B2l(γ)ω
2 l + B2(l−1)(γ)ω

2(l−1) + . . . + B0(γ), where the roots of B2l are the

singular values of the real matrix F (i∞) and their opposite. The real plane algebraic

curve C is unbounded in the direction ω.

Remark 1.3. Note that l can be reduced to 0 in the above Point 2. For instance, if we

consider the all-pass system defined by F (s) = (1 − a s)/(1 + a s), where a ∈ R, then we

have Φγ(i ω) = γ2 − F (−i ω)F (i ω) = γ2 − 1, which yields l = 0.

Remark 1.4. Note that the bivariate polynomial n does not need to be square-free, namely,

divisors of n can be a square of a non-constant polynomial. For instance, if we consider the

following transfer matrix

F =

1

s+ 1
0

0
1

s+ 1

 ∈ RH2×2
∞ ,

then we can easily show that n(ω, γ) = (−(ω2 + 1) γ2 + 1)2. The study of the real plane

algebraic curve C can then be done by means of the square-free part n̄ of n, namely, n̄ =

−(ω2 + 1) γ2 + 1.

Remark 1.4 shows that it is advantageous to study the critical points of the real plane

algebraic curve C by considering the square-free part n̄ of n.

To finish this section, we give an equivalent formulation of the above characterization

of the L∞-norm of LTI systems. This equivalent formulation is intensively used in control

theory and for the numerical computation of L∞-norm as we shall explain in Section 1.5.

Let G ∈ R(s)p×m be such that G|iR ∈ RLp×m
∞ . Moreover, let us consider Φγ(s) =

γ2 Im − GT (−s)G(s). Above, we showed that ∥ G ∥∞ < γ if and only if Φγ(i∞) > 0 and

Φγ(i ω) is non-singular for all ω ∈ R. Let us now suppose that G(s) = C (s In−A)−1B+D

and set R = γ2 Im −DT D, where γ > 0 is not a singular value of D. Now, by elementary

algebraic calculations, it can be proved that

Φγ(s)
−1 = C ′ (s I2n −Hγ)

−1B′ +D′,

where:

Hγ =

(
A+BR−1DT C BR−1BT

−CT (Ip +DR−1DT)C −
(
A+BR−1DT CT

)T
)
, D′ = R−1,

B′ =

(
BR−1

−CT DR−1

)
, C ′ =

(
R−1DT C R−1BT

)
.

1.4. A REAL ALGEBRAIC GEOMETRIC REFORMULATION 43

For more details, see [22]. Instead of studying the real zeros of Φγ(i ω), we can study the

real poles of the matrix Φγ(i ω)
−1 = C ′ (i ω I2n−Hγ)

−1B′+D′. Using the identity (1.7), the

poles of Φγ(i ω)
−1 are among the imaginary eigenvalues of Hγ. If no pole-zero cancellations

occur in the entries of the matrix Φγ(i ω)
−1, then the poles of Φγ(i ω)

−1 are exactly the

imaginary eigenvalues of Hγ. It can easily be proved that no such pole-zero cancellations

can happen (i.e., if i ω is an eigenvalue of Hγ, then i ω is not an uncontrollable mode, as

well as not an unobservable mode) [19, 22]. Hence, the poles of Φγ(i ω)
−1 are exactly the

eigenvalue i ω of Hγ. In other words, the curve C defined by (1.19) can simply be defined

as the characteristic polynomial of the above matrix Hγ.

We get the following characterization of an upper bound of the L∞-norm.

Theorem 1.2 ([19, 22, 107]). Let G = C (s In − A)−1B + D be a transfer matrix, where

A has no eigenvalues on the imaginary axis, i.e., such that G ∈ RLp×m
∞ . Let γ > 0 and

R = γ2 Im −DT D. Then, the following assertions are equivalent:

1. ∥ G ∥∞ < γ,

2. σ(D) < γ and the matrix Hγ has no imaginary eigenvalues.

Example 16. Consider again Example 1. Then, D = 0, R = γ2 and:

Hγ =

(
A B γ−2BT

−CT C −AT

)
=

0 1 0 0

− k

m
− b

m
0

1

m2 γ2

−1 0 0
k

m

0 0 −1 b

m

.

Thus, the characteristic polynomial of Hγ is given by:

p(λ, γ) =
((mγ)2 λ4 + (2 km− b2) γ2 λ2 + (k γ)2 − 1)

(mγ)2
.

Finally, if we set λ = i ω into p and consider the numerator n of the corresponding result,

then we obtain n(ω, γ) = ((k − mω)2 + (b ω)2) γ2 − 1 and we find again the real plane

algebraic curve C defined in Example 14.

Remark 1.5. In the literature, we can also see Theorem 1.2 with the matrix

H ′
γ =

(
A−BR′−1DT C −γ B R′−1BT

γ CT S ′−1C −
(
A−BR′−1DT CT

)T
)

(1.22)

44 CHAPTER 2

instead of Hγ, where R′ = DT D − γ2 Im and S ′ = DDT − γ2 Ip. See, e.g., [19, 22]. To

explain the equivalence, we first note that R = −R′. Then, that all U ∈ Cq×r and V ∈ Cr×q,

we have

(
Iq + U (Ir − V U)−1 V

)
(Iq − U V) = Iq − U V + U (Ir − V U)−1 (Ir − V U)V = Iq,

which proves the standard identity (Iq−U V)−1 = Iq +U (Ir−V U)−1 V . Setting U = D/γ

and V = DT/γ, we then get Ip −DR′−1DT = −γ2 S ′−1. Finally, we can easily check that

H ′
γ is similar to Hγ for the following invertible transform:

T =

(
In 0

0 γ In

)
.

The matrix H ′
γ is called a Hamiltonian matrix since it satisfies the identity

J−1H ′
γ J = −H ′

γ
T
,

where J is the standard matrix defined by:

J =

(
0 In

−In 0

)
.

According to Theorem 1.2, the search for ∥ G ∥∞ can be reduced to the problem of

finding the maximal γ > 0 for which the characteristic polynomial of the matrix Hγ or,

equivalently, of the Hamiltonian matrix H ′
γ, has no imaginary eigenvalues. Since

det(i ω I2n −Hγ) = det
(
i ω I2n −H ′

γ

)
= 0 is equivalent to n(ω, γ) = 0, we are also led to

the study of extremal points, for the projection onto the γ-axis, of the real plane algebraic

curve C defined by (1.19).

1.5 Existing computational methods

Until the end of the eighties, it does not seem that much attention has been paid to the

problem of computing the L∞-norm for LTI systems. For SISO systems, as explained in

Section 1.3, this problem corresponds to the peak value of the function ω ∈ R 7−→ |G(i ω)|,
i.e., the peak value of the so-called Bode magnitude plot. Equivalently, this norm corresponds

to the farthest point from the origin (for the distance defined by the modulus) of the complex

implicit rational curve ω ∈ R 7−→ G(i ω) = Re(G(i ω))+i Im(G(i ω)) ∈ C, called the Nyquist

1.5. EXISTING COMPUTATIONAL METHODS 45

plot. The maximum of |G(i ω)| can also be computed by means of studying the real roots of

the univariate polynomial d|G(i ω)|2/dω = 0 as shown in Example 11. Graphical methods

were mainly used to get an approximation of ∥ G ∥∞.

For MIMO systems, ∥ G ∥∞ was usually studied by searching the maximum of

{σ(G(i ωk))}k=1,...,N , where {ωk}k=1,...,N is a fine grid for the frequency axis. The graph of

{(ωk, σ(G(i ωk)))}k=1,...,N is usually referred to as a singular-value (SV) plot. The main

drawbacks of this method are the following:

• determining the range and the spacing of the frequencies to be checked (especially,

when A has eigenvalues with small real part, such as for lightly damped mechanical

structures (see Example 11)),

• the computation of many singular values of matrices (one at each frequency point ωk),

• no accuracy bound was obtained,

• no certification of the result was given, etc.

At the end of the eighties, alternative numerical methods for the computation of the

L∞-norm of LTI systems were developed in [19, 84] based on Theorem 1.2 and Remark 1.5,

i.e., based on the search for imaginary eigenvalues of the Hamiltonian matrix H ′
γ defined by

(1.22). To achieve that, bisection algorithms for determining γ were developed. The original

bisection method, developed in [19], consists in finding an upper bound γu and a lower bound

γl for ∥ G ∥∞ (using, e.g., Hankel singular values), then setting γ = (γu + γl)/2, testing if

∥ G ∥∞ < γ by checking the existence of imaginary eigenvalues of Hγ or H ′
γ (using, e.g., a

direct computation or Sturm/Routh test), and setting γl = γ if such imaginary eigenvalues

exist, or γu = γ else. The algorithm stops when (γu − γl)/γl is less than a specified level ε

and returns:

∥ G ∥∞≈
γu + γl

2
.

The error | ∥ G ∥∞ −(γu + γl)/2| is then less than or equal to ε ∥ G ∥∞, i.e., the result is

guaranteed within a relative accuracy of ε. As stated in [46], numerical problems can occur

in the bisection method

1. for transfer matrices G (resp., state-space system (A,B,C,D)) with imaginary poles

(resp., imaginary eigenvalues of A) of multiple multiplicity (see, e.g., Remark 1.4),

2. due to a poor scaling or balancing state-space realization (A,B,C,D) of the transfer

matrix G,

46 CHAPTER 2

3. to an ill-conditioned eigenvalue problem for the associated Hamiltonian matrix H ′
γ,

4. for all-pass or high-pass response systems, etc.

Different important improvements of the original bisection method have been developed

in [18, 22, 46, 9]. In particular, the quadratic convergence of this method was proved in

[18]. Variants of this method were implemented in different Matlab toolboxes such as

the normhinf function of Robust Control Toolbox, the hinfnorm function of µ-Analysis

and Synthesis Toolbox, and the norminf function of the LMI Control Toolbox, in Scilab

(hinfnorm command), or in the Maple library DynamicSystems (NormHinf command).

Numerical algorithms based on Linear Matrix Inequalities (LMI) were also developed

in [57] for transfer matrices defined by left or right coprime factorizations. In particular,

no state-space representation of the transfer matrix is needed. The results obtained in [57]

were implemented in the hinfnorm command of the Matlab toolbox Polynomial Toolbox.

The computation of the L∞-norm of descriptor LTI systems, namely{
E ẋ(t) = Ax(t) +B u(t),

y(t) = C x(t) +Du(t),

where E ∈ Rn×n is a singular matrix, or equivalently to the class of transfer matrices of the

form G(s) = C (E s − A)−1B + D, has been developed in [11, 10, 48, 95]. In particular,

numerical improvements in the computation of L∞-norm of LTI systems were obtained. The

algorithms developed in [10] are implemented in the library SLICOT [5, 9] based on the BLAS

and LAPACK libraries (Fortran 77).

The L∞-norm computation of LTI systems depending affinely on a set of free parameters

was studied in [100] using an equivalent semi-infinite convex optimization reformulation that

can be numerically studied by a relaxation approach over a finite set of frequency values

and semi-definite programming methods.

To our knowledge, the first symbolic-numeric study of the computation of L∞-norm for

LTI systems was developed in [60]. The real plane algebraic curve C defined by (1.19) and

its study appear in [60]. A validated numerical computation of the L∞-norm is proposed

based on the study of C and Sturm test. Moreover, a complexity analysis of the proposed

algorithm is given. The study of C was continued in [8]. A purely numerical algorithm,

implemented in Matlab, was developed based on Bezoutian matrices. In [24], the problem

of the L∞-norm computation is explicitly stated as the problem of finding the supremum

γ > 0 such that there exists a real ω satisfying n(ω, γ) = 0, i.e., as the problem of finding

the γ-extremal point of C. Using border polynomials and triangular decomposition methods,

1.6. ROBUST CONTROL THEORY IN A NUTSHELL 47

the computation of the L∞-norm is then studied for a polynomial n which depends on free

parameters (e.g., the system parameters m, k and b in Example 11). The results of [24]

were implemented in Maple using the RegularChains library.

1.6 Robust control theory in a nutshell

Let us briefly explain why the L∞-norm computation plays a fundamental role in control

theory. A mathematical model of a linear system describing a physical phenomenon is in-

complete in the sense that it can only be a rough approximation of the original phenomenon.

Indeed, some dynamics have been (intentionally or unintentionally) neglected, some system

parameters are not well-known or not well-estimated, etc. For more details, see, e.g., [39,

102, 107, 33].

To handle this important issue in the control theory, robust control theory has been

developed in the eighties based on the ideas that a mathematical model should be close

to the real system for a certain topology, the properties of a system should be as ro-

bust as possible to small perturbations (robust margins), and the design of stabilizing

controllers should be robust to certain families of perturbations of the system (e.g., addi-

tive/multiplicative/inverse additive/inverse multiplicative perturbations). Since the robust-

ness competes with the performance, a compromise between these two opposite objectives

has to be chosen wisely while designing a stabilizing controller, namely, designing a linear

system − called controller − which stabilizes the new system obtained by adding the con-

troller to the system in a feedback loop (see the stability definitions given in Section 1.2).

A stabilizing controller is said to robustly stabilizes the system if not only it stabilizes the

system but all the systems in a neighborhood of the system for a certain topology. In

H∞-control theory − the most popular approach in robust control theory − the norm for

measuring the distance is the L∞-norm. The computation of the maximal radius of the “ball

of systems”, centered at the system, that are stabilized by the controller is an important

issue [39, 107, 33].

To be more precise, let us briefly mathematically state the different problems introduced

above. Let P ∈ R(s)q×r be a proper rational transfer matrix defining an approximation of a

real system. Then, the controller defined by a proper rational transfer matrix C ∈ R(s)r×q

is said to stabilize P if:

Π(P,C) :=

(
(Iq − P C)−1 −(Iq − P C)−1 P

C (Iq − P C)−1 −C (Iq − P C)−1 P

)
∈ RH(q+r)×(q+r)

∞ . (1.23)

48 CHAPTER 2

To understand the definition of stabilizability, we first note that P is not necessarily an

element of RHq×r
∞ , which means that the operator u 7−→ y = K ⋆ u, where K = L (P)−1,

is not necessarily L2 − L2-stable (i.e., u ∈ L2(R+)
r does not necessarily yield y ∈ L2(R+)

q)

since ∥ K ∥L(L2,L2) = ∥ P ∥∞ is not necessarily bounded (see (1.14)). We also note that P ∈
R(s)q×r and C ∈ R(s)r×q yields Π(P,C) ∈ R(s)(q+r)×(q+r). As above, if Π(P,C) is considered

as the transfer matrix of a new system defined by (u1 u2)
T 7−→ (e1 y1)

T = K̃ ⋆(u1 u2)
T ,

where K̃ = L (Π(P,C))−1, then this system is L2 − L2-stable if and only if Π(P,C) ∈
RH

(q+r)×(q+r)
∞ . In particular, ∥ Π(P,C) ∥∞ < +∞ is a necessary condition for the L2 − L2-

stability. Finally, if we consider the closed-loop system, defined in Figure 1.3, obtained by

adding the controller C in feedback to the system P , then, at the two interconnections, we

have the following equations{
e1 = u1 + y2 = u1 + P e2,

e2 = u2 + y1 = u2 + C e1,
⇔

(
u1

u2

)
=

(
Iq −P
−C Ir

) (
e1

e2

)
,

which yields (
e1

e2

)
= H(P,C)

(
u1

u2

)
,

where:

H(P,C) =

(
Iq −P
−C Ir

)−1

=

(
(Iq − P C)−1 (Iq − P C)−1 P

C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)
.

Using (1.23) and Figure 1.3, we can then easily check that:

Π(P,C)

(
u1

u2

)
=

(
e1

C e1

)
=

(
e1

y1

)
.

Hence, if C stabilizes P , then the operator which maps (u1 u2)
T to (e1 y1)

T is L2 − L2-

stable and ∥ Π(P,C) ∥∞ is its maximum energy gain. More generally, we can check that all

the transfer matrices between two signals appearing in Figure 1.3 can be formed by means

of the four block matrices defined in Π(P,C), which shows that all the operators relating

two signals appearing in Figure 1.3 are then L2−L2-stable and their maximum energy gains

are equal to the L∞-norm of their corresponding transfer matrices. These results show the

importance of the computation of L∞-norm in control theory and robust control.

As explained above, the transfer matrix P is only a mathematical model of a physical

system, and thus, it is a rough approximation. To take into account this uncertainty on the

1.6. ROBUST CONTROL THEORY IN A NUTSHELL 49

u1 +
+

e1
C

e2 u2++y2

y1

P

Figure 1.3: Closed-loop system

model, the H∞-control theory aims at determining a controller C that not only stabilizes P

but also all the systems defined by transfer matrices in a neighborhood of P . More precisely,

if we consider the system defined by the following transfer matrix

P ′ = (Iq +∆1)
−1 (P +∆2) = (P +∆3) (Ir +∆4)

−1, (1.24)

where the matrices ∆i’s are the following matrices
(∆1 −∆2) = (Iq − P)V,(

∆3

∆4

)
= W

(
P

Ir

)
,

and the matrices V and W are given by

V =

(
V11 V12

V21 V22

)
, W =

(
W11 W12

W21 W22

)
,{

V11 ∈ RHq×q
∞ , V12 ∈ RHq×r

∞ , V21 ∈ RHr×q
∞ , V22 ∈ RHr×r

∞ ,

W11 ∈ RHq×q
∞ , W12 ∈ RHq×r

∞ , W21 ∈ RHr×q
∞ , W22 ∈ RHr×r

∞ ,

then we obtain the following general model of perturbations of P

P ′ = (Iq + V11 − P V21)
−1 (P (Ir + V22)− V12) = ((Iq +W11)P +W12) (Ir +W22 +W21 P)−1,

(1.25)

where the matrices ∆i’s are considered to be arbitrary [76]. In particular, we can find again

the following standard perturbation models at once [39, 102, 107, 33]:

1. If V12 = 0, V21 = 0 and V22 = 0, then P ′ = (Iq + V11)
−1 P is an inverse additive

perturbation of P .

2. If V11 = 0, V21 = 0 and V22 = 0, then P ′ = P − V12 is an additive perturbation of P .

50 CHAPTER 2

3. If V11 = 0, V12 = 0 and V22 = 0, then P ′ = (Iq−P V21)
−1 P is an inverse multiplicative

perturbation of P .

4. If V11 = 0, V12 = 0 and V21 = 0, then P ′ = P (Ir + V22) is a multiplicative perturbation

of P .

Coprime perturbations [107, 102, 33] can also be covered by the class of perturbations defined

by (1.24) or (1.25). For more details, see [76].

The robust stabilization problem then aims at determining a controller C ∈ R(s)r×q

that stabilizes the larger class of systems P ′. Let us suppose that C stabilizes P . If we note

Π′(P,C) =

(
−P (Ir − C P)−1C P (Ir − C P)−1

(Ir − C P)−1C (Ir − C P)−1

)
∈ RH(q+r)×(q+r)

∞ ,

then we can first easily check again that Π(P,C) and Π′(P,C) are two complementary

idempotents of the non-commutative ring RH
(q+r)×(q+r)
∞ , namely:

Π(P,C)2 = Π(P,C), Π′(P,C)2 = Π′(P,C), Π(P,C) + Π′(P,C) = Iq+r.

Moreover, it can be proved that C stabilizes P ′ defined by (1.24) or, equivalently, by (1.25),

for all V ∈ RH
(q+r)×(q+r)
∞ and W ∈ RH

(q+r)×(q+r)
∞ satisfying:

∥ V ∥∞ < ∥ Π(P,C) ∥−1
∞ , ∥ W ∥∞ < ∥ Π′(P,C) ∥−1

∞ .

For more details, see [76, 102] and the references therein. Hence, the computation of the

L∞-norm of the two idempotents Π(P,C) and Π′(P,C) (it can be shown that ∥ Π(P,C) ∥∞
= ∥ Π′(P,C) ∥∞ [102]) yields the maximum radius of the “ball” of linear systems

BC(P) := {P ′ = (Iq +∆1)
−1 (P +∆2) = (P +∆3) (Ir +∆4)

−1 |

(∆1 −∆2) = (Iq − P)V, (∆T
3 ∆T

4)
T = W (P T ITr)

T

∥ V ∥∞ < ∥ Π(P,C) ∥−1
∞ , ∥ W ∥∞ < ∥ Π(P,C) ∥−1

∞
}

that are stabilized by the stabilizing controller C. If we denote by Stab(P) the set of all

the stabilizing controllers of P , then the robust stabilization problem aims at determin-

ing the stabilizing controllers which minimize the L∞-norm ∥ Π(P,C) ∥∞, i.e., it aims at

determining:

argminC∈Stab(P) ∥ Π(P,C) ∥∞ . (1.26)

These controllers thus maximize the above radius of robustness. The set Stab(P) can be

1.6. ROBUST CONTROL THEORY IN A NUTSHELL 51

explicitly parametrized by means of the so-called Youla-Kučera parametrization, which is

affine in an arbitrary matrix parameter Q ∈ RHr×q
∞ . For instance, see [39, 107]. Hence,

the nonlinear optimization problem (1.26) can be transformed into an affine optimization

problem in Q, and thus, into a convex optimization problem. But, since Q ∈ RHr×q
∞ and

RHr×q
∞ is an infinite-dimensional R-vector space, the optimization problem (1.26) is infinite-

dimensional, which makes nontrivial the search for its solution. Nevertheless, using the

so-called Nehari theorem − which characterizes the distance of f ∈ L∞(iR) from H∞(C+)

in L∞(iR), namely, dist(f,H∞) := infg∈H∞(C+) ∥ f − g ∥∞ − the maximum stability margin

bopt(P) =

(
inf

C∈Stab(P)
∥ Π(P,C) ∥∞

)−1

can be characterized as the operator norm of a certain Hankel operator, i.e., as a Hankel norm

(see, e.g., [33, 107]). For finite-dimensional LTI systems, bopt(P) can nicely be characterized

as follows: Let (A,B,C,D) be a controllable and observable realization of the transfer matrix

P (see Theorem 1.1) and let X (resp., Y) be the unique positive definite solution of the

Riccati equation X A+AT X−X BBT X+CT C = 0 (resp., Y AT+AY−Y CT C Y+BBT =

0), then we have

bopt(P) =
√

1 + λmax(Y X), (1.27)

where λmax denotes the maximal eigenvalue. The problem of explicitly characterizing the

robust controllers achieving this bound is more involved. Hence, in the robust control

theory, the following problem is usually preferred [102, 107, 33]: Given bopt(P) > b > 1, find

a stabilizing controller C of P which satisfies:

∥ Π(P,C) ∥∞≤ b. (1.28)

This problem receives a tractable solution [51, 107]. Finally, let us state the explicit

characterization of a particular solution. See [51] for the general solution. Let X and

Y be the unique definite positive solutions of the above Riccati equations, then Cb(s) =

Cb (s In − Ab)
−1Bb stabilizes P and satisfies (1.28), where:

Zb = (In + (X Y − b2 In))
−T ,

Ab = A−BBT X + b2 Zb Y CT C,

Bb = −b2 Zb Y CT ,

Cb = BT X.

(1.29)

Example 17. We consider again Example 1 and the corresponding transfer function P =

52 CHAPTER 2

c0/(s
2+ a1 s+ a0), where c0 = 1/m, a1 = b/m and a0 = k/m. Using new algebraic methods

developed in [78, 77], we can check again that

X =

(
β0 β1 − a1 a0 β0 − a0

β0 − a0 β1 − a1

)
,

where β0 and β1 satisfy the following system of polynomial equations{
β2
0 = a20 + c20,

β2
1 = 2 β0 + a21 − 2 a0,

satisfies the Riccati equation X A+AT X −X BBT X + CT C = 0, where the matrices A,

B and C are defined by:

A =

(
0 1

−a0 −a1

)
, B =

(
0

1

)
, C = (c0 0).

Using a result of [78, 77], X is the unique positive definite solution of the above Riccati

equation if and only if:

β0 =
√

a20 + c20, β1 =

√
2
√
a20 + c20 + a21 − 2 a0. (1.30)

Moreover, we can check that Y = QX Q, where Q is defined by

Q =
1

c0

(
0 1

1 −a1

)

namely,

Y =
1

c20

(
β1 − a1 β0 − a1 β1 + a21 − a0

β0 − a1 β1 + a21 − a0 β0 β1 − 2 a0 β0 + a21 β1 − a31 + a0 a1

)
,

satisfies the Riccati equation Y AT + AY − Y CT C Y + BBT = 0. For more details,

see [78, 77]. Moreover, Y is the unique positive definite solution of the above Riccati

equation if and only if (β0, β1) satisfies (1.30) [78, 77]. Then, using (1.27), we obtain

bopt(P) =
√

1 + λmax(Y X), where λmax(Y X) is the maximal real eigenvalue of Y X. To

1.6. ROBUST CONTROL THEORY IN A NUTSHELL 53

simplify the notations, if we note

Z = Y X =

(
z11 z12

z21 z22

)
,

then the characteristic polynomial of Z is defined by

pZ(λ) = λ2 − trace(Z)λ+ det(Z) = λ2 − (z11 + z22)λ+ (z11 z22 − z12 z21),

and the maximal real eigenvalue of Z is defined by:

λmax(Y X) =
1

2
(trace(Z) +

√
trace(Z)2 − 4 det(Z)).

We then obtain the following formula for bopt(P)

bopt(P) =

√
1 +

1

2
(trace(Z) +

√
trace(Z)2 − 4 det(Z)),

which, using (1.30), can be made explicit in terms of c0, a0 and a1. It can be shown that

bopt(P) depends only on the two parameters P (0) = c0/a0 = 1/k and ρ = a1/
√
a0 = b/

√
km.

Hence, bopt(P) can be plotted as a function of k and b/
√
km. For more details, see [79,

77]. Finally, for 1 < b < bopt(P), we can then use (1.29) to obtain an explicit stabilizing

controller C of P satisfying (1.28).

For more explicit examples with system parameters, see [78, 79, 80, 77].

54 CHAPTER 2

Chapter 2

Prerequisite in Computer Algebra

2.1 Notations

We introduce some notations that are used in the rest of this dissertation.

We denote by D an integral domain (namely, a commutative ring with no non-trivial

zero-divisors), typically Z[x], Z[x, y] or Z, and by FD its fraction field (namely, FD =

{d1/d2 | 0 ̸= d2, d1 ∈ D}). We also denote by k an arbitrary field, typically Q or R.

We recall that any field K1 containing k is an extension field of k. An element x of K1 is

said to be algebraic over k if there exists a polynomial P with coefficients in k such that

P (x) = 0. An extension field K1 of k is said to be algebraic if all of its elements are alge-

braic over k. A field K is said to be algebraically closed if it does not have any non-trivial

algebraic extension. K is an algebraic closure of k if K is an algebraic extension of k which

is algebraically closed. In the sequel, we denote by K the algebraic closure of k [94, 83].

Finally, let C+ := {s ∈ C | Re(s) > 0} be the open right-half plane of C.

Let P ∈ k[x, y] and v ∈ {x, y}. Then, Lcv(P) is the leading coefficient of P with

respect to the variable v and degv(P) denotes the degree of P in v. Hence, we can write

P = Lcv(P) vdegv(P)+
∑degv(P)−1

i=0 ai v
i, where Lcv(P) and the ai’s are univariate polynomials

in the variable u ∈ {x, y}\{v}. We also denote by deg(P) the total degree of P , namely,

if P =
∑

0≤i≤n1, 0≤j≤n2
aij x

i yj, where aij ∈ k and aij ̸= 0 for at least one pair (i, j) such

that i+ j = n1 + n2, then deg(P) = n1 + n2. Moreover, let πx : R2 −→ R be the projection

map from the real plane R2 onto the x-axis, i.e., πx(x, y) = x for all (x, y) ∈ R2. For

P, Q ∈ k[x, y], let ⟨P, Q⟩ be the ideal of k[x, y] generated by P and Q. Let I be an ideal

of k[x, y], the notation VK(I) refers to the affine algebraic set over k associated with I, i.e.,

VK(I) := {(x, y) ∈ K2 | ∀ R ∈ I : R(x, y) = 0}. For k = C, we simply denote VK(I) by

V (I).

55

56 CHAPTER 2

Bitsize The bitsize of an integer n is the number of bits needed to represent it, that is

⌊log2 n⌋ + 1 (the notation log2 refers to the logarithm in base 2 and ⌊m⌋ stands for the

greatest integer less than or equal to m). If p is a rational number, then its bitsize is given

as the maximum bitsize of its numerator and denominator. The bitsize of a polynomial with

integer or rational coefficients is the maximum bitsize of its coefficients. We refer to τa as

the bitsize of a polynomial, a rational or a integer a. For a polynomial P ∈ D[x], we define

the size of P , denoted by size(P), to be the pair (degx(P), τP).

Complexity We use the classical O for denoting asymptotic bounds. Recall that f(n) =

O(g(n)) for n → +∞ if there exist two positive constants N and C such that |f(n)| ≤
C |g(n)| for all n > N . When D = Z, to obtain a more relevant measure of complexity,

we consider the growth of the coefficients in the cost of the operations by considering the

bit complexity of the algorithm, that is the number of bit operations performed by the

algorithm. We denote the bit complexity by OB. Finally, we denote by Õ the complexities

where polylogarithmic factors are omitted. More precisely, f(n) = Õ(g(n)) means that

there exists k ≥ 0 such that f(n) = O(g(n) logk2(max(|g(n)|, 2))). Note that, unless specified
otherwise, the stated complexities are worst-case bit complexities.

We give an example of the bit complexities of some basic operations over polynomials,

such as adding, multiplying, and dividing two univariate polynomials f, g ∈ Z[x]. For more

details on the corresponding algorithms, along with a proof of complexity, the reader is

referred to [103].

Example 18. We consider two univariate polynomials f, g ∈ Z[x], with degrees bounded

by d and coefficients of bitsize bounded by τ . Then, the sum f + g can be computed

in ÕB(d τ) bit operations and has coefficients of bitsize at most τ + 1. The product f g

can be computed in ÕB(d τ) bit operations and has coefficients of bitsize in O(τ + log d).

Finally, for the Euclidean Division, the computation of q, r ∈ Z[x] such that f = q g + r

with deg(r) < deg(g) can be done using ÕB(d
2 τ) bit operations. The polynomials q and r

have degrees at most d and coefficients of bitsize bounded by O(d τ).

Sign variation Let D be an ordered domain, namely, an integral domain with a total

order ≤ satisfying the following two properties:

• d1 ≤ d2 yields d1 + d3 ≤ d2 + d3 all d1, d2, d3 ∈ D

• 0 ≤ d1 and 0 ≤ d2 imply 0 ≤ d1 d2 for all d1, d2 ∈ D.

2.1. NOTATIONS 57

Let R be a real closed field containing D, namely, an ordered field that has the in-

termediate value property : if a polynomial P ∈ R[x] changes sign on an interval, i.e.,

P (a) < 0 < P (b) for some a, b ∈ R, then P has a zero in the interval, i.e., P (c) = 0

for some a < c < b. More properties about real closed fields can be found in [6]. The

prototypical example of a real closed field is the field of real numbers R.

Most of the discussions and methods presented in the following sections aim at studying

the notion of variations of signs in a sequence of scalars, particularly in the sequence of

polynomial coefficients. We thus state the following definition.

Definition 2.1. We define the sign sign(d) of an element d ∈ R as follows:

sign(d) =

0 if d = 0,

1 if d ̸= 0, d ≥ 0,

−1 if d ̸= 0, −d ≥ 0.

Let d = (d0, d1, . . . , dn) be a finite sequence of non zero elements in R. The number of sign

variations in d, denoted by V(d), is defined by induction over an integer k by:
V(d1) = 0,

V(d1, . . . , dk) =

{
V(d1, . . . , dk−1) + 1 if sign(dk−1 dk) = −1,
V(d1, . . . , dk−1) else.

We can generalise Definition 2.1 to any finite sequence of real numbers, where at least

one element is not equal to 0, by eliminating the zeros occurring in the set. Let (d0, . . . , dn)

be a finite sequence of real numbers. We writeV(d0, . . . , dn) for the number of sign variations

in the set. In contrast, let P(d0, . . . , dn) be the number of sign permanences in the sequence

(d0, . . . , dn), namely, the number of consecutive signs {+,+} or {−,−}.

Example 19. If we consider a = (1,−1, 2, 0, 0, 3, 4,−5,−2, 0, 3), then we get:{
V(a) = V(1, 0, 0,−2, 3, 4, 0,−2,−3) = V(1,−2, 3, 4,−2,−3) = 3,

P(a) = P(1, 0, 0,−2, 3, 4, 0,−2,−3) = P(1,−2, 3, 4,−2,−3) = 2.

Definition 2.2. Let P =
∑n

i=0 aix
i ∈ R[x], then we set V(P) = V(a1, . . . , an).

Critical points Let C be a plane curve defined by a polynomial P (x, y), i.e., C = {(x, y) ∈
C2 | P (x, y) = 0}, and tp =

(
∂P
∂y
, −∂P

∂x

)T
denotes the tangent vector of C at p. Then, the

point p ∈ C is called:

58 CHAPTER 2

1. An x-critical point if tp (1, 0)
T = ∂P (p)

∂y
= 0.

2. A y-critical point if tp (0, 1)
T = −∂P (p)

∂x
= 0.

3. A singular point if tp = (0, 0)T , i.e., ∂P (p)
∂x

= ∂P (p)
∂y

= 0.

4. A singular point q is called isolated if there is a real neighborhood of q that does not

contain other points on the curve. Equivalently, no real tangents of the curve exists

at the singular point. If p is a singular point, then it is isolated if:

∂2P (p)

∂x2

∂2P (p)

∂y2
− ∂2P (p)

∂x ∂y
> 0.

For instance, the curve defined by y2 − x4 + 4x2 = 0 (or y3 + y2 + x2 = 0) has an

isolated singular point at (0, 0).

For more details, see, e.g., [14, 89].

A critical point possessing real coordinates is called a real critical point. Finally, we

shall simply call a real point any point on the curve possessing a real coordinate (x, y). All

four types of real critical points are shown in Figure 2.1.

Figure 2.1: Blue dots represent y-critical points, red dots represent x-critical points, the
black dot represents a singular point, and the green dot represents an isolated singular
point.

2.2 Greatest common divisor

We recall the definition of the greatest common divisor (gcd) of two univariate polynomials

and give some of its important properties that are used throughout this work. We also give

2.2. GREATEST COMMON DIVISOR 59

complexity results on the size and the computation of the gcd of two univariate polynomials

with integer coefficients.

Definition 2.3. Let P and Q be two polynomials in D[x]. A greatest common divisor of P

and Q, denoted by gcd(P,Q), is a polynomial that divides both P and Q and is a multiple

of every common divisor of P and Q.

Note that a gcd of two polynomials P and Q is unique up to an invertible element in

D.

When D[x] is an Euclidean ring, a greatest common divisor of P and Q can be computed

by applying successive Euclidean divisions. We recall that an Euclidean ring A is an integral

domain where there exists an Euclidean division, i.e., an Euclidean function over A, defined

as a map ν from A\{0} to N, exists and verifies the following properties:

1. For all a ∈ A, b ∈ A\{0}, there exist q, r ∈ A such that a = b q+ r, where either r = 0

or ν(r) < ν(b).

2. For all a, b ∈ A \ {0}, ν(b) ≤ ν(a b).

Some examples of Euclidean domains include any field k where ν can be defined by ν(x) = 1

for all x ∈ k\{0}, the ring of integers Z where ν can be defined by ν(n) = |n| for all n ∈ Z,

and the ring k[x] of polynomials in x over a field k where for each nonzero polynomial P ,

ν(P) is defined by the degree of P .

In the rest of this section, we suppose that D[x] is an Euclidean domain.

Following the notation stated above, we denote r by a rem b. With this notation, we

recall a classic algorithm, known as the Euclidean Algorithm, which computes the gcd of

two polynomials f and g ̸= 0 in D[x].

In other words, the resultant sequence {r0, . . . , rk} of remainders in the Euclidean

Algorithm − called the Euclidean remainder sequence of P and Q − is such that the last

non-vanishing element rk of the sequence is the gcd of P and Q in D[x] up to multiplication

by a non-zero element in D. The proof of exactness of this algorithm is mainly based on the

following equalities:

gcd(P,Q) = gcd(r2, Q) = gcd(r3, r2) = · · · = gcd(ri−1, ri). (2.1)

More details can be found in [31].

60 CHAPTER 2

Algorithm 1 Classical Euclidean Algorithm

Input: Two univariate polynomials P and Q in D[x]
Output: A greatest common divisor of P and Q in D[x]

1. r0 := P , r1 := Q;

2. while ri ̸= 0 do

(a) ri+1 := ri−1 rem ri;

(b) i := i+ 1;

3. return ri−1;

Example 20. Let P = r0 = x4 − 1 and Q = r1 = x6 − 1 in R[x]. Applying Euclidean

Algorithm yields:

x4 − 1 = 0 (x6 − 1) + x4 − 1,

x6 − 1 = x2 (x4 − 1) + x2 − 1,

x4 − 1 = (x2 + 1) (x2 − 1) + 0.

Following (2.1), we have

gcd(x4 − 1, x6 − 1) = gcd(x6 − 1, x4 − 1) = gcd(x2 − 1, x4 − 1) = gcd(x2 − 1, 0)

= x2 − 1,

which is the last non-vanishing remainder in the Euclidean remainder sequence:

{x4 − 1, x6 − 1, x4 − 1, x2 − 1, 0}.

Theorem 2.1 (Bézout’s identity). [7]. Let P, Q ∈ D[X], where deg(P) = p and deg(Q) =

q. Let G = gcd(P,Q). If deg(G) = g, then there exist U , V ∈ D[x] with deg(U) < q − g

and deg(V) < p− g such that UP + V Q = G.

Lemma 2.1. Let P, Q ∈ D[X], where deg(P) = p and deg(Q) = q, and G = gcd(P,Q).

Then, deg(G) ≥ 1, i.e., G /∈ D, if and only if there exist U, V ∈ D such that deg(U) < p,

deg(V) < q and UP + V Q = 0.

Having stated again the notion of the greatest common divisor, the gcd-free part of a

polynomial P with respect to Q is defined as P/ gcd(P,Q). In particular, when Q = dP
dx
, the

gcd-free part of P with respect to Q is the square-free part of P , denoted by P̄ , that is the

divisor of P of maximum degree that has no square factors, provided that the characteristic

2.3. RESULTANT OF TWO POLYNOMIALS 61

of the coefficients ring is zero or sufficiently large (e.g., larger than the degree of P).

Theorem 2.2. [7, Corollary 10.12 & Remark 10.19] Let P, Q ∈ Z[x], where

max
(
deg(P), deg(Q)

)
≤ d and max (τP , τQ) ≤ τ . Let G = gcd(P,Q) ∈ Z[x]. Then, G can

be computed in ÕB(d
2 τ) bit operations and its coefficients are of bitsize bounded by

O(d + τ). The same bounds hold for the computation of the gcd-free part of P with

respect to Q along with its bitsize.

The following corollary is a refinement of Theorem 2.2 in the case of two polynomials

with different degrees and bitsizes.

Corollary 2.1. [67, Corollary 5.2] Let P and Q be two polynomials in Z[x] with size(P) =

(p, τp) and size(Q) = (q, τq). Then, a gcd of P and Q of bitsize O
(
min(p + τP , q + τQ)

)
can be computed in ÕB

(
max(p, q)(p τQ + q τP)

)
bit operations. A gcd-free part of P with

respect to Q, of bitsize O(p+ τP), can be computed in the same bit complexity.

2.3 Resultant of two polynomials

Let p, q be two positive integers and P = ap x
p + · · · + a0, Q = bq x

q + · · · + b0 be two

polynomials of D[x] of degrees p and q respectively. Suppose for instance that 0 < p < q,

then the following matrix is called the Sylvester matrix of P and Q with respect to x.

L =

ap ap−1 · · · a0

ap ap−1 · · · a0
.

.

ap ap−1 · · · a0

bq bq−1 · · · · · · · · · b0

bq bq−1 · · · · · · · · · b0

bq bq−1 · · · · · · · · · b0

q

 p

Note that L is a (p + q) × (p + q)-matrix. Its determinant is called the (Sylvester)

resultant of P and Q with respect to x, denoted by Res(P,Q, x). The resultant Res(P,Q, x)

of P and Q is an integer polynomial in the coefficients of P and Q. See, e.g., [32, Chapter

3].

Let D[x]<i be the ring of polynomials in D[x] of degrees strictly less than i. The above

62 CHAPTER 2

matrix L is the transpose of the matrix associated to the linear map

D[x]<q × D[x]<p −→ D[x]<p+q

(U, V) 7−→ UP + V Q,

with respect to the standard basis {xi}i=0,...,q−1 (resp., {xj}j=0,...,p−1, {xk}i=0,...,p+q−1) of

D[x]<q (resp., of D[x]<p, D[x]<p+q).

Theorem 2.3 (Common factor property). [32, Chapter 3] If P, Q ∈ D[x], then P and

Q have a non-trivial common factor in D[x] if and only if Res(P,Q, x) = 0.

Proof. According to Lemma 2.1, P and Q have a non-trivial common factor in D[x] if and

only if there exist two polynomials U, V ∈ D[x], with deg(U) < q and deg(V) < p, such

that UP + V Q = 0. Thus, the proof follows from the definition of the resultant as the

determinant of the Sylvester matrix L.

Theorem 2.4 (Elimination property). [32, Chapter 3] If P, Q ∈ D[x], then there exist

polynomials A, B ∈ D[x] such that AP +BQ = Res(P,Q, x). The coefficients of A and B

are integer polynomials in the coefficients of P and Q.

Example 21. We consider the polynomials P = x4 − 1 and Q = x6 − 1 of Example 20.

Then, we have:

Res
(
x4 − 1, x6 − 1, x

)
= det

1 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 −1 0 0 0 0

0 0 1 0 0 0 −1 0 0 0

0 0 0 1 0 0 0 −1 0 0

0 0 0 0 1 0 0 0 −1 0

0 0 0 0 0 1 0 0 0 −1
1 0 0 0 0 0 −1 0 0 0

0 1 0 0 0 0 0 −1 0 0

0 0 1 0 0 0 0 0 −1 0

0 0 0 1 0 0 0 0 0 −1

= 0.

According to Theorem 2.3, P and Q have a non-trivial common factor in R[x].

2.3. RESULTANT OF TWO POLYNOMIALS 63

Example 22. Let P = x3 + x− 1, and Q = 2x2 + 3x+ 7. Then, we have:

Res
(
x3 + x− 1, 2x2 + 3x+ 7, x

)
= det

1 0 1 −1 0

0 1 0 1 −1
2 3 7 0 0

0 2 3 7 0

0 0 2 3 7

 = 159.

By Theorem 2.3, P, Q ∈ R[x] have no non-trivial common factor in R[x].

In particular, let us consider P and Q to be two bivariate polynomials with integer

coefficients, i.e., P, Q ∈ Z[x, y]. In this case, for instance, one can see these polynomials

as univariate polynomials in x with coefficients in Z[y]. Set degx(P) = p and degx(Q) = q.

Thus, we have L ∈ Z[y](p+q)×(p+q) and Res(P,Q, x) = det(L) ∈ Z[y]. In this case, we say

that Res(P,Q, x) is the resultant polynomial of P and Q with respect to the variable x.

The following proposition shows that the resultant polynomial of P and Q with respect to

a variable, to say x, denoted by Res(P,Q, x), can embody the y-coordinates of the solutions

of the bivariate polynomial system {P = 0, Q = 0}.

Proposition 2.1. Let P and Q be two polynomials in Z[x, y] and Res(P,Q, v) be their

resultant with respect to the variable v ∈ {x, y}. Let Lcv(P) = ap and Lcv(Q) = bq, where

ap, bq,∈ Z[u], u ∈ {x, y} \ {v}. Moreover, let α ∈ C. Then, the following two statements are

equivalent:

1. Res(P,Q, v)(α) = 0.

2. ap(α) = bq(α) = 0 or there exists β ∈ C such that (α, β) ∈ V
(
⟨P, Q⟩

)
.

Example 23. We consider the polynomials P = x y − 1 and Q = x2 + y2 − 4. In this

situation, the polynomials depend on two variables, but if we regard P and Q as univariate

polynomials in x whose coefficients are polynomials in y, then we can compute the resultant

with respect to x to obtain:

Res
(
x y − 1, x2 + y2 − 4, x

)
= det

y −1 0

0 y −1
1 0 y2 − 4

 = y4 − 4 y2 + 1.

By Theorem 2.4, there are polynomials A, B ∈ R[x, y] satisfying:

AP +BQ = y4 − 4 y2 + 1.

64 CHAPTER 2

This means that the polynomial y4−4 y2+1 vanishes at any common solution of {P = 0, Q =

0}. Furthermore, while considering the y-projection of the solutions of {P = 0, Q = 0}, we
see that Lcx(P) = y and Lcx(Q) = 1 do not both vanish at any real root of y4 − 4 y2 + 1.

Hence, Proposition 2.1 implies that the solutions of the polynomial y4 − 4 y2 + 1 = 0

correspond to the y-projection of the solutions of the bivariate polynomial system {P =

0, Q = 0}.

Example 24. If we consider P = x y − 1 and Q = x2 y − 2, then we have:

Res
(
x y − 1, x2 y − 2, x

)
= det

y −1 0

0 y −1
y 0 −2

 = −y (2 y − 1).

In this case, Res(P,Q, x) vanishes for y = 0 and y = 1/2. However, y = 0 cannot be a

y-projection of a solution of {P = 0, Q = 0} since P (x, 0) = −1 and Q(x, 0) = −2. But we
can see that y = 0 is a common zero of Lcx(P) = y and Lcx(Q) = y. Whilst y = 1/2 is a

y-coordinate of a solution of the polynomial system {P = 0, Q = 0} = {(2, 1/2)}.

Finally, let us introduce the concept of discriminant of a polynomial.

Definition 2.4. [6] Let P = ap x
p+ · · ·+ a0 ∈ D[x]. Then, the discriminant of P is defined

by:

discrim(P) = (−1)
p (p−1)

2 Lcx(P)−1 Res(P, P ′, x).

Hence, up to a sign and the leading coefficient of P , the discriminant of P is equal

to Res(P, P ′, x). Using Theorem 2.3, we get that P and P ′ has a common factor if and

only if discrim(P) = 0. Hence, P has a multiple factor, namely, P is divisible by Q2 where

degx(Q) > 0, if and only if discrim(P) = 0.

In the next section, we shall generalise the concept of resultant to the so-called subre-

sultant sequence.

2.4 Subresultant sequence

In this section, we introduce the concept of the subresultant sequence of two univariate

polynomials P and Q in the variable x with coefficients in D. Up to a factor in D, each sub-

resultant is a polynomial in D[x] equal to a remainder of a variant of the classical Euclidean

algorithm associated with P and Q. Such factors are mainly determinants of structured

2.4. SUBRESULTANT SEQUENCE 65

sub-matrices of the Sylvester matrix of P and Q. The least non-vanishing subresultant of

P and Q is their resultant which is, by structure, closely related to gcd(P, Q).

Again, let P = ap x
p+ · · ·+a0, Q = bq x

q+ · · ·+b0 be two polynomials of D[x] of degrees

p and q respectively and let λ = min(p, q). For any 0 ≤ i < λ, let Li be the sub-matrix of

L formed by removing the bottom i rows that include the coefficients of P and the bottom

i rows that include the coefficients of Q. Note that Li is a (p+ q− 2 i)× (p+ q) matrix. For

j = 0, . . . , i, let Li,j be the submatrix of Li consisting of the first p + q − 2 i − 1 columns

and the (p + q − 2 i + j)th columns. The following polynomial is called the ith subresultant

of P and Q:

Sresi(P,Q, x) =
i∑

j=0

det(Li,j)x
i−j.

Example 25. Let P = x3 + 2x2 + 1 and Q = x4 + x + 1. Hence, p = deg(P) = 3 and

q = deg(Q) = 4, and thus, λ = min(3, 4) = 3. The Sylvester matrix of P and Q with respect

to x is then defined by:

L =

1 2 0 1 0 0 0

0 1 2 0 1 0 0

0 0 1 2 0 1 0

0 0 0 1 2 0 1

1 0 0 1 1 0 0

0 1 0 0 1 1 0

0 0 1 0 0 1 1

.

Moreover, we have

L1 =

1 2 0 1 0 0 0

0 1 2 0 1 0 0

0 0 1 2 0 1 0

1 0 0 1 1 0 0

0 1 0 0 1 1 0

 ,

and thus:

detL1,1 = det

1 2 0 1 0

0 1 2 0 0

0 0 1 2 1

1 0 0 1 0

0 1 0 0 1

 = −8, detL1,0 = det

1 2 0 1 0

0 1 2 0 1

0 0 1 2 0

1 0 0 1 1

0 1 0 0 1

 = −12.

66 CHAPTER 2

We also have

L2 =

1 2 0 1 0 0 0

0 1 2 0 1 0 0

1 0 0 1 1 0 0

 ,

which yields

detL2,2 = det

1 2 0

0 1 1

1 0 1

 = 3, detL2,1 = det

1 2 1

0 1 0

1 0 1

 = 0,

and:

detL2,0 = det

1 2 0

0 1 2

1 0 0

 = 4.

Hence, we have:

• Sres0(P,Q, x) = Res(P,Q, x) = det(L) = 43,

• Sres1(P,Q, x) = detL1,0 x+ detL1,1 = −12x− 8,

• Sres2(P,Q, x) = detL2,0 x
2 + detL2,1x+ detL2,2 = 4x2 + 3.

Let the principal subresultant coefficient of Sresi be defined by:

sresi(P,Q, x) = Lcx
(
Sresi(P,Q, x)

)
.

Note that for i = 0, Li coincides with L and thus Sres0 = sres0 = Res(P,Q, x).

We extend the definition of subresultants and principal subresultant coefficients as

follows.

• If p ≥ q, then we set:
Sresλ+1(P,Q, x) = P,

Sresλ(P,Q, x) = Q,

sresλ+1(P,Q, x) = ap,

sresλ(P,Q, x) = bq.

2.4. SUBRESULTANT SEQUENCE 67

• If p < q, then we set:
Sresλ+1(P,Q, x) = Q,

Sresλ(P,Q, x) = P,

sresλ+1(P,Q, x) = bq,

sresλ(P,Q, x) = ap.

The following theorem explains the specialization property of subresultants sequence.

This property is very useful for our proposed methods for the computation of the L∞-norm.

Let ϕ : D −→ D′ be a ring homomorphism (namely, ϕ(1) = 1, ϕ(d1 + d2) = ϕ(d1) + ϕ(d2)

and ϕ(d1 d2) = ϕ(d1)ϕ(d2) for all d1, d2 ∈ D) that induces a ring homomorphism from D[x]

to D′[x] defined by mapping d ∈ D to ϕ(d) and x to x, also simply denoted by ϕ.

Theorem 2.5. Let P and Q be two polynomials of D[x]. If ϕ(Lcx(P)) ̸= 0 and ϕ(Lcx(Q)) ̸=
0, then we have:

ϕ
(
Sresj(P,Q, x)

)
= Sresj

(
ϕ(P), ϕ(Q), x

)
.

Proof. The proof immediately follows from the following identity

ϕ
(
det
(
Sresk(P,Q, x)

))
= det

(
Sresk

(
ϕ(P), ϕ(Q), x

))
which comes from Leibniz formula for determinants (i.e., the standard formula

det
(
(ai,j)1≤i, j≤n

)
=
∑

σ∈Sn
ϵ(σ)

∏n
i=1 ai,σ(i), where ϵ(σ) denotes the signature of the

permutation σ which belongs to the symmetric group Sn) and the definition of ring

homomorphisms. The conditions ϕ
(
Lcx(P)

)
̸= 0 and ϕ

(
Lcx(Q)

)
̸= 0 are used to ensure

that the matrix dimensions do not change.

Example 26. We consider the following bivariate polynomials

P (x, y) = x4 − (y + 2)x3 + (2 y + 1)x2 − (y + 2)x+ 2 y ∈ Z[x, y]

and Q(x, y) =
∂P (x, y)

∂x
and the ring homomorphism ϕ : Z[x, y] −→ Z[x, y] defined by

ϕ(P (x, y)) = P (x, α), where α ∈ Q. Then, we have:

• Sres0(ϕ(P), ϕ(Q), x) = Sres0(P,Q, x)(x, α) = −100 (α− 2)2 (α2 + 1)2,

• Sres1(ϕ(P), ϕ(Q), x) = Sres1(P,Q, x)(x, α)

= (−2α4 + 40α3 − 74α2 + 40α + 128)x− 4 (α + 2) (4α3 − 13α2 + 24α− 3),

• Sres2(ϕ(P), ϕ(Q), x) = Sres2(P,Q, x)(x, α)

= (−3α2 + 4α− 4)x2 + 2 (α + 2) (2α− 5)x− α2 + 28α− 4,

68 CHAPTER 2

• Sres3(ϕ(P), ϕ(Q), x) = Sres3(P,Q, x)(x, α) = Q(x, α)

= 4x3 − (3α + 6)x2 + (4α + 2)x− α− 2,

• Sres4(ϕ(P), ϕ(Q), x) = Sres4(P,Q, x)(x, α) = P (x, α)

= x4 − (α + 2)x3 + (2α + 1)x2 − (α + 2)x+ 2α.

Hereafter, when there is no ambiguity, we simply denote Sresj(P,Q, x) and sresj(P,Q, x)

by Sresj and sresj respectively. Moreover, we set

sresi,j = Lcxj(Sresi)

in the sense that sresi,j is the coefficient of the Sresi for the power xj.

Corollary 2.2. [7] Let P and Q be two polynomials of D[x]. If rj−1 and rj are two

consecutive polynomials in the Euclidean remainder sequence of P and Q of degree dj−1

and degree dj respectively, then Sresdj−1−1(P,Q, x) and Sresdj(P,Q, x) are proportional to

rj.

In particular, one can determine the degree of gcd(P,Q) by recognizing the vanishing

principle subresultants.

Proposition 2.2. [7, 41] Let P and Q be two polynomials of D[x] where D is an integral

domain, then

• if the polynomials P and Q have a common divisor of degree k, then sresi(P,Q, x) = 0

for i = 0, . . . , k − 1,

• if sresi(P,Q, x) = 0 for i = 0, . . . , k− 1 and sresk ̸= 0, then gcd(P,Q) = Sresk(P,Q, x)

over FD.

Example 27. We consider again Example 20. By doing the computation of the subresultant

sequence of P and Q with respect to x, we obtain:

• Sres0(P,Q, x) = 0,

• Sres1(P,Q, x) = 0,

• Sres2(P,Q, x) = x2 − 1,

• Sres3(P,Q, x) = −x2 + 1.

By Proposition 2.2 we see again that gcd(P,Q) = Sres2(P,Q, x) = x2 − 1.

2.4. SUBRESULTANT SEQUENCE 69

To sum up, up to multiplicative factors in D, the subresultants of P and Q are either

null or equal to polynomials figuring in the Euclidean remainder sequence of P and Q.

We finally state a useful property of subresultants that is a consequence of the special-

ization property. We consider two positive integers p ≥ q and two bivariate polynomials

with integer coefficients P, Q ∈ Z[x, y] with degy(P) = p and degy(Q) = q. As discussed

in Proposition 2.1, the resultant polynomial sres0(P,Q, y) = Res(P,Q, y) embodies the x-

coordinates of the solutions of the polynomial system {P, Q} or points where their leading
coefficients vanish.

Following the definition of the subresultants sequence and taking advantage of the

specialization property, we can compute the gcd polynomial of P and Q over these x-

coordinates for which the leading coefficients of P and Q do not both vanish.

Theorem 2.6. [41] Let P, Q ∈ Z[x, y] and let us note ap = Lcy(P) and bq = Lcy(Q),

where ap, bq ∈ Z[x]. For any xi ∈ R such that ap(xi) ̸= 0 and bq(xi) ̸= 0, we can consider

the polynomials Pi = P (xi, y) and Qi = Q(xi, y) in R[y]. Then, the least non-vanishing

Sresk(Pi, Qi, y) for k increasing is equal to gcd(Pi, Qi), up to a non-zero element in the

fraction field Z(xi) of Z[xi].

For more details about the subresultant sequence, see [41].

Based on the above results, it is possible to efficiently compute the subresultant polyno-

mials using a variant of the classical Euclidean algorithm [7, Algorithm 8.21]. This algorithm

performs successive divisions and returns the sequence of the intermediate remainders. The

next proposition gives bit complexity results concerning the size and the computation of the

subresultant polynomials − with respect to one precise variable − of two polynomials with

polynomial coefficients over Z.

Proposition 2.3. [7, Proposition 8.46]. Let P, Q ∈ Z[x1, . . . , xn][y] be two polynomials

with a maximum coefficient bitsize τ , their degrees in y bounded by dy and their degrees in

the other variables xi, i ∈ {1, . . . , n}, bounded by d. Then, we have:

• The coefficients of Sresi(P,Q, y) have coefficients bitsize Õ(dy τ).

• The degree in xj of Sresi(P,Q, y) is at most 2 d (dy − i).

• Any subresultant Sresi(P,Q, y) can be computed in Õ(dn dn+1
y) arithmetic operations

and in ÕB(d
n dn+2

y τ) bit operations.

In the next section, we define the Sturm-Habicht sequence which is equal to the subre-

sultant sequence up to a sign. This sequence sometimes called signed subresultant sequence.

70 CHAPTER 2

This sequence plays in important role in Chapter 3.1.3 as a powerful tool for the real root

counting due to its stability under specializations and its controlled coefficients growth.

Finally, it is worth mentioning that the relation between the Sturm-Habicht sequence and

the subresultant sequence is similar to the relation between the Sturm sequence and the

Euclidean remainder sequence.

2.5 Sturm-Habicht Sequence

Let D be an ordered domain and R a real closed field containing D. We first introduce the

real root counting problem:

Given P ∈ D[x], compute the number of roots of P in R.

In [53], the authors studied an algorithm for the following problem:

Given P, Q ∈ D[x], compute:

card
(
{α ∈ R | P (α) = 0, Q(α) > 0}

)
− card

(
{α ∈ R | P (α) = 0, Q(α) < 0}

)
. (2.2)

Thus, when Q = 1, a solution of (2.2) gives a solution to the real root counting problem.

The first known algorithm solving the real root counting problem is due to C. Sturm

[97], where he obtained the number of real roots in terms of the Sturm sequence, which is

the Euclidean remainder sequence for P and its derivative up to sign changes. Then, in

[98], Sylvester generalized Sturm’s method to problem (2.2). Finally, in [58], C. Hermite

developed a general theory giving the number of real roots as the signature of a Hankel

matrix. However, many drawbacks are present in using Sturm sequence for computing (2.2).

First of all, the computation of the Sturm sequence has bad numerical behaviours. Indeed,

using exact arithmetic for a polynomial with integer coefficients, the polynomials in the

Sturm sequence have rational coefficients whose size grows exponentially in the degree of the

polynomials. Moreover, when the polynomial depends on parameters, the computation has

no good specialization properties. Contrary to the polynomials in the Euclidean remainder

sequence, the subresultants are stable under specialization and the size of their coefficients

is well-controlled. Thus, by taking care of the signs, subresultants were found to be an

advantageous tool for real root counting problem.

The technique defined below, used in Chapter 3.1.3, was developed in [53]. It is based

on the Sturm-Habicht sequence introduced by W. Habicht in [55].

Definition 2.5. [53] Let P, Q ∈ D[x], p = deg(P), q = deg(Q), v = p + q − 1 and

δk = (−1)
k(k+1)

2 for all k ∈ N. Then, the Sturm-Habicht sequence associated to P and Q is

2.5. STURM-HABICHT SEQUENCE 71

defined by the list of polynomials
{
StHaj(P,Q)

}
j=0,...,v+1

, where:
StHav+1(P,Q) = P,

StHav(P,Q) =
dP

dx
Q,

StHaj(P,Q) = δv−j Sresj

(
P,

dP

dx
Q, x

)
, j ∈ {0, . . . , v − 1}.

The principal jth Sturm-Habicht coefficient is then defined by:

sthaj(P,Q) = Lcx
(
StHaj(P,Q)

)
, j ∈ {0, . . . , v − 1}.

Example 28. We consider the univariate polynomial

P = x6 − 3x5 + 7x4 − 15x3 + 14x2 − 12x+ 8 ∈ Z[x]

and Q = 1. Then, v = 6 − 1 = 5 and the Sturm-Habicht sequence
{
StHaj(P,Q)

}
j=0,...,6

associated to P and Q is defined by:

1. StHa6(P, 1) = P = x6 − 3x5 + 7x4 − 15x3 + 14x2 − 12x+ 8,

• stha6(P, 1) = 1,

2. StHa5(P, 1) =
dP
dx

= 6x5 − 15x4 + 28x3 − 45x2 + 28x− 12,

• stha5(P, 1) = 6,

3. StHa4(P, 1) = δ1 Sres4
(
P, dP

dx
, x
)
= (−1)

(
39x4 − 186x3 + 201x2 − 276x

+ 252
)
,

• stha4(P, 1) = −39,

4. StHa3(P, 1) = δ2 Sres3
(
P, dP

dx
, x
)
= (−1)

(
2620x3 − 3072x2 + 3616x− 4224

)
,

• stha3(P, 1) = −2620,

5. StHa2(P, 1) = δ3 Sres2
(
P, dP

dx
, x
)
= (+1)

(
− 78064x2 − 88128x+ 116672

)
,

• stha2(P, 1) = −78064,

6. StHa1(P, 1) = δ4 Sres1
(
P, dP

dx
, x
)
= (+1)

(
12729600x− 11750400

)
,

• stha1(P, 1) = 12729600,

72 CHAPTER 2

7. StHa0(P, 1) = stha0(P, 1) = δ5 sres0
(
P, dP

dx
, x
)
= 829440000.

Example 29. We consider the bivariate polynomial

P (x, y) = x4 − (y + 2)x3 + (2 y + 1)x2 − (y + 2)x+ 2 y ∈ Z[x, y]

studied in Example 26 and the constant polynomial Q = 1. Then, v = 4 − 1 = 3 and the

Sturm-Habicht sequence
{
StHaj(P,Q)

}
j=0,...,4

associated to P and Q is defined by:

1. StHa4(P, 1) = P = x4 − (y + 2)x3 + (2 y + 1)x2 − (y + 2)x+ 2 y,

• stha4(P, 1) = 1,

2. StHa3(P, 1) =
dP
dx

= 4x3 − (3 y + 6)x2 + (4 y + 2)x− y − 2,

• stha3(P, 1) = 4,

3. StHa2(P, 1) = δ1 Sres2(P,
∂P
∂x
, x) = (−1)

(
(−3 y2 + 4 y − 4)x2 + 2 (y + 2) (2 y − 5)x −

y2 + 28 y − 4
)
,

• stha2(P, 1) = 3 y2 − 4 y + 4,

4. StHa1(P, 1) = δ2 Sres1(P,
∂P
∂x
, x) = (−1)

(
(−2 y4 +40 y3− 74 y2 +40 y+128)x− 4 (y+

2) (4 y3 − 13 y2 + 24 y − 3)
)
,

• stha1(P, 1) = 2 y4 − 40 y3 + 74 y2 − 40 y − 128,

5. StHa0(P, 1) = stha0(P, 1) = δ3 sres0(P,
∂P
∂x
, x) = −100 (y − 2)2 (y2 + 1)2.

2.5.1 Sturm-Habicht sequence and real roots of polynomials

Let D be an ordered domain and R its real closure. To establish the relation between the

number of real zeros (zeros in R) of a polynomial P ∈ D[x] and the polynomials in the

Sturm-Habicht sequence of P and Q, where Q ∈ D[x], for every ϵ ∈ {−1, 0,+1}, we first

introduce the following integer:

cϵ(P,Q) = card
({

α ∈ R | P (α) = 0, sign
(
Q(α)

)
= ϵ
})

.

We now study how to compute the integer c+(P, Q) − c−(P, Q) knowing only the

principal Sturm-Habicht coefficients associated to P and Q. For doing so, we define a sign

variation function, called SignVar, applied on a finite sequence of elements in R. Such

2.5. STURM-HABICHT SEQUENCE 73

function computes the difference between the sign permanences and sign variations of that

sequence, while taking into consideration the zeros occurring in that sequence.

Definition 2.6. [53] Let a0, a1, . . . , an be elements in R, where a0 ̸= 0, with the following

distribution of zeros

{a0, a1, . . . , an} = {a0, . . . , ai1 ,
k1︷ ︸︸ ︷

0, 0, . . . , 0, ai1+k1+1, . . . , ai2 ,

k2︷ ︸︸ ︷
0, 0, . . . , 0,

ai2+k2+1, . . . , ai3 ,

k3︷ ︸︸ ︷
0, 0, . . . , 0, ait−1+kt−1+1, . . . , ait ,

kt︷ ︸︸ ︷
0, 0, . . . , 0},

where all the ai’s that have been written are not 0. Let i0 and k0 be such that i0+k0+1 = 0

and note

S =
t∑

s=1

(
P
(
ais−1+ks−1+1, . . . , ais

)
−V

(
ais−1+ks−1+1, . . . , ais

))
,

where P and V are defined in Section 2.1. Then, we can define SignVar by

SignVar
(
a0, a1, . . . , an

)
= S+

t−1∑
s=1

ϵis ,

where:

ϵis =

0 if ks is odd,

(−1) ks
2 sign

(
ais + ks + 1

ais

)
if ks is even.

Theorem 2.7. [53] If P and Q are polynomials in D[x] with p = deg(P), then:

SignVar
(
sthap(P,Q), . . . , stha0(P,Q)

)
= c+(P,Q)− c−(P,Q).

In particular, SignVar
(
sthap(P, 1), . . . , stha0(P, 1)

)
= c+(P, 1) gives the number of real

zeros of P .

Remark 2.1. In sign variation functions such as P,V or SignVar, the number occurring in

the given sequence can be simply represented by its sign. For instance, V(130, −199, 0, 6) =
V(1, −1, 0, 1) = 2 and thus, instead of writing V(130, −199, 0, 6), we can simply write

V(1, −1, 0, 1).

Remark 2.2. When 0 does not belong to a finite sequence a, then SignVar(a) is simply

equal to P(a)−V(a) as it will be illustrated in Example 30.

74 CHAPTER 2

Example 30. We consider again the univariate polynomial

P = x6 − 3x5 + 7x4 − 15x3 + 14x2 − 12x+ 8 ∈ Z[x]

studied in Example 28. We aim at computing the number of its real roots by applying

Theorem 2.7 to P and Q = 1. In this case, the number of real roots of P is given by

SignVar
(
stha6(P, 1), . . . , stha0(P, 1)

)
which is, by the Definition 2.5 and based on the com-

putation done in Example 28, equal to:

SignVar
(
sres6(P, P

′, x), . . . , δ5 sres0(P, P
′, x)

)
= SignVar

(
1, 6, −39, −2620, −78064, 12729600, 829440000

)
= P

(
1, 1, −1, −1, −1, 1, 1

)
−V

(
1, 1, −1, −1, −1, 1, 1

)
= 4− 2 = 2.

Hence, P admits only 2 real roots.

Example 31. We consider the following bivariate polynomial

P = x4 − (y + 2)x3 + (2 y + 1)x2 − (y + 2)x+ 2 y ∈ Z[x, y]

studied in Example 29. We can use the specialization property of the subresultant sequence

regarding to the ring homomorphism ϕ : Z[x, y] −→ Z[x, y] defined by ϕ(P (x, y)) = P (x, α),

where α ∈ Q, and compute the number of real solutions of {P (x, y) = 0, y− α = 0} for any
α ∈ Q by computing Sres(P, ∂P

∂x
, x). By Definition 2.5 and using the computations done in

Examples 26 and 29, we have:(
stha4(P (x, α), 1), . . . , stha0(P (x, α), 1)

)
=

(
sres4(P (x, α), P ′(x, α), x), . . . , δ3 sres0(P (x, α), P ′(x, α), x)

)
=

(
sres4(P,

∂P
∂x
, x)(x, α), . . . , δ3 sres0(P,

∂P
∂x
, x)(x, α)

)
=

(
1, 4, 3α2 − 4α + 4, 2α4 − 40α3 + 74α2 − 40α− 128,

−100 (α− 2)2 (α2 + 1)2
)
.

For instance, if α = 2, then we get

(
stha4(P (x, 2), 1), . . . , stha0(P (x, 2), 1)

)
= (1, 4, 8,−200, 0)

2.5. STURM-HABICHT SEQUENCE 75

Figure 2.2: Real curve of P (x, y) = x4 − (y + 2)x3 + (2 y + 1)x2 − (y + 2)x+ 2 y

and thus, the number of real roots of P (x, 2) is equal to:

SignVar(1, 4, 8,−200, 0) = 1.

We can see that Res
(
P, ∂P

∂x
, x
)
admits only one real root y = 2. By noticing that

Lcx(P) = Lcx(
∂P
∂x
) = 1, we can say that P (x, 2) and ∂P

∂x
(x, 2) has a non-trivial gcd in Q[x],

which means that 2 is a real y-coordinate of a y-critical point of the curve defined by P (x, y).

Now, if we consider α = 3, then we get

(
stha4(P (x, 3), 1), . . . , stha0(P (x, 3), 1)

)
= (1, 4, 19,−500,−1000)

and thus, the number of real roots of P (x, 3) is equal to:

SignVar(1, 4, 19,−500,−1000) = 2.

This means that a real point with a y-coordinate equal to 3 (> 2) belongs to the curve defined

by P (x, y). Thus, in this particular case, since y = 2 is the maximal real y-projection of the

y-critical points of the curve, we can simply conclude that the curve P (x, y) = 0 cannot be

bounded in the y-direction. We can see the curve of P (x, y) = 0 in Figure 2.2.

76 CHAPTER 2

2.6 Univariate polynomials and Root isolation

Given a square-free polynomial P ∈ Q[x] (see Section 2.2) and an interval containing only

one of the real roots of P , the polynomial have opposite signs when evaluated over the

interval end-points.

Remark 2.3. If P is not square-free, then the above remark is not true. For instance,

if we consider P = x2 and the interval [−1, 1] which contains the only real root 0 of P ,

then P (−1) = 1 and P (1) = 1 have a constant sign. But the square-free part P̄ of P , i.e.,

P̄ = P/ gcd(P, P ′) = x, satisfies that P̄ (−1) = −1 and P̄ (1) = 1 have opposite signs.

One of the oldest algorithms for root-finding, due to L. Kronecker, is mainly based on

the following basic method:

1. Define an interval [a, b] which contains all the real roots of P ∈ Q[x].

2. Compute the minimal distance between two real roots of P , say µ, and split the

interval [a, b] into two intervals of length less than µ.

3. Compute the sign of P at each end-point of the obtained intervals (we consider P to

be square-free) to detect the existence of one real root.

Such a procedure is called a binary search. It is a root-finding algorithm that yield a

simple and robust method for producing real roots. However, in general, it cannot certify

having found all real roots and, theoretically, its complexity is exponential with respect to

the polynomial degree.

Assuming that the real roots of the polynomial can be bounded, the root isolation algo-

rithm can start with a well-defined interval containing all real roots of the given polynomial.

Then, by providing a procedure for counting the real roots of a polynomial in an interval,

without having to compute them, the root-finding algorithm can be extended into efficient

algorithms for isolating all real roots of a polynomial.

We recall bounds on univariate polynomial roots and their separation that can both be

computed directly by means of the polynomial coefficients.

Proposition 2.4. Let P =
∑n

i=0 ai x
i ∈ Q[x] be a monic, namely, an = 1, and let suppose

that a0 ̸= 0. If α is a complex root of P , then we have:

|α| < 1 + max
i=0,...,n

|ai|.

2.6. UNIVARIATE POLYNOMIALS AND ROOT ISOLATION 77

Proof. Set A = max
i=0,...,n

|ai|. Then, for all x ∈ R verifying |x| ≥ A+ 1, we get:

|P (x)| ≥ |x|n − A (|x|n−1 + . . .+ 1) = |x|n − A
(|x|n − 1)

|x| − 1
.

Since |x| ≥ A + 1, then we get 1 ≥ A/(|x| − 1), and thus, |x|n ≥ A |x|n/(|x| − 1), which

implies |P (x)| ≥ A/(|x| − 1) > 0.

It is worthwhile mentioning that there exist many other bounds for the complex/real

roots of a polynomial. For more details, see, e.g., [70].

The other important bound is the root separation of a polynomial.

Definition 2.7. The root separation of a polynomial P ∈ Z[x], denoted by sep(P), is the

minimal distance between two distinct roots, i.e., it is the minimum of the absolute values

of the difference of two distinct roots of P .

It constitutes an inevitable measure for the real root-finding algorithms. It is also an

important measure for guaranteeing the convergence of root isolation algorithms. In fact,

it allows bounding the number of interval divisions that are needed for isolating all the real

roots.

Proposition 2.5. [69, 86] Let P =
∑n

i=0 ai x
i ∈ Q[x] be a square-free polynomial such that

an = 1 and a0 ̸= 0. We denote its roots by α1, . . . , αn, where αi ̸= 0 for all 0 ≤ i ≤ n. Let

sep(P) be the root separation of P . Then, we have

sep(P) ≥
√

3

nn + 2
× 1

M(P)n−1
,

where M(P) = |an|
∏n

k=1 max(1, |ak|) is called the Mahler measure of P .

Nevertheless, the bound for the root separation given in Proposition 2.5 is not simply

computed in general. We can however compute a lower bound provided in the following

corollary.

Corollary 2.3. [69, 86] Let P =
∑n

i=0 ai x
i ∈ Q[x] be a square-free polynomial such that

an = 1 and a0 ̸= 0. We denote its roots by α1, . . . , αn, where αi ̸= 0 for all 0 ≤ i ≤ n. Let

sep(P) be the root separation of P . Then, we have

sep(P) ≥
√

3

nn + 2
× 1

∥ P ∥n−1
2

,

where ∥ P ∥2=
√∑n

i=0 a
2
i .

78 CHAPTER 2

2.6.1 Subdivision-based algorithms for root isolation

An important procedure in computer algebra is the root isolation of univariate polynomials.

Such an algorithm takes as an input a univariate polynomial

P =
n∑

i=0

ai x
i ∈ R[x], an ̸= 0, n ≥ 2,

and returns as an output a sequence of pairwise disjoint intervals (I1, . . . , Ir) such that r

is the number of distinct real roots of P and each interval Ii, 1 ≤ i ≤ r, contains exactly

one real root of P . This procedure is called real root isolation and the intervals I1, . . . , Ir

are called isolating intervals for the real roots of P . The most well-known and frequently

used algorithms are the subdivision algorithms, either based on Sturm sequences or on

Descartes’ rule of signs, differing by their ways of counting real roots in a given interval.

These algorithms can fix the exponential complexity problem occurring in the original binary

search algorithm. In fact, considering a univariate polynomial P in x that is square-free

(if it’s not the case,then we replace P by P̄ = P/ gcd(P, P ′), where P ′ = dP
dx
), subdivision-

based algorithms start with computing a bound on the absolute value of the real roots of

the polynomial, say A, then execute the bisection process after performing the change of

variable x 7−→ Ax in P . This approach allows one to start with the interval [0, 1] containing

all the real roots, and reduces the exponential theoretical complexity with respect to the

polynomial degree into a polynomial complexity.

Real root counting with Sturm sequence

The Sturm sequence of a univariate polynomial P ∈ R[x] is defined as the sequence of

polynomials {f0, . . . , fs} defined by

f0 = P, f1 =
dP

dx
, fi+1 = −rem(fi−1, fi), i ≥ 1,

where rem(Pi−1, Pi) denotes the remainder of the Euclidean division of Pi−1 by Pi. The

length of the Sturm sequence is at most deg(P) [6]. Sturm sequences have been generalised

as follows.

Definition 2.8 (Sturm Sequence). [6, 86] Let P ∈ Q[x] and [a, b] be an interval of R. A

Sturm Sequence of P over [a, b] is defined as a set of univariate polynomials over Q, denoted

by {f0, . . . , fs}, such that:

• f0 = P .

2.6. UNIVARIATE POLYNOMIALS AND ROOT ISOLATION 79

• fs has no real roots in [a, b].

• For 0 < i < s, if for α ∈ [a, b], fi(α) = 0, then fi−1(α) fi+1(α) < 0.

• If for α ∈ [a, b], we have f0(α) = 0, then (f0 f1)(α− ϵ) < 0,

(f0 f1)(α + ϵ) > 0,

for all ϵ sufficiently small real number.

Proposition 2.6. [97] Let P ∈ Q[x] and {f0, . . . , fs} be its Sturm sequence over an interval

[a, b]. Then, the number of real roots of P in]a, b] is equal to:

V
(
f0(a), . . . , fs(a)

)
− V

(
f0(b), . . . , fs(b)

)
.

The above result can be extended to unbounded intervals by defining the sign at +∞
(resp., −∞) of a polynomial as the sign of its leading coefficient (resp., as the sign of its

leading coefficient when the polynomial is of even degree and the opposite sign of its leading

coefficient when it is of odd degree).

Corollary 2.4. [6] Let P ∈ Q[x] and {f0, . . . , fs} be its Sturm sequence over R. Then, the

number of real roots of P in R is equal to:

V
(
f0(−∞), . . . , fs(−∞)

)
− V

(
f0(+∞), . . . , fs(+∞)

)
.

Example 32. We consider the univariate polynomial

P = x6 − 3x5 + 7x4 − 15x3 + 14x2 − 12x+ 8 ∈ Z[x]

studied in Examples 28 and 30 and we compute again the number of real roots of P using

Sturm sequence. In this case, f0 = P , f1 =
dP
dx

and

• f2 = −rem(f0, f1) = −
13

12
x4 +

31

6
x3 − 67

12
x2 +

23

3
x− 7,

• f3 = −rem(f1, f2) = −
10480

169
x3 +

12288

169
x2 − 14464

169
x+

16896

169
,

• f4 = −rem(f2, f3) = −
824551

1716100
x2 − 232713

429025
x+

308087

429025
,

80 CHAPTER 2

• f5 = −rem(f3, f4) =
6177960000

18203549
x− 74135520000

236646137
,

• f6 = −rem(f4, f5) =
82369

429025
.

Hence, we have:

V
(
f0(−∞), . . . , f6(−∞)

)
− V

(
f0(+∞), . . . , f6(+∞)

)
= V

(
+,−,−,+,−,−,+

)
− V

(
+,+,−,−,−,+,+

)
= 4− 2 = 2.

Thus, we find again that P admits only 2 real roots.

Real root counting with Descartes’ rule of signs

Theorem 2.8 (Descartes’ rule of signs). [6, 34] Let P =
∑n

i=0 ai x
i ∈ R[x] with exactly

p positive real roots counted with their multiplicities. Let v = V(P). Then, we have:

v ≥ p, v ≡ p (mod 2).

If all roots of P are real, then we have v = p.

In particular, if V(P) = 0 then P has no positive real root, and if V(P) = 1, then P

has exactly one positive real root.

Example 33. Considering again P = x6 − 3x5 + 7x4 − 15x3 + 14x2 − 12x + 8 studied

in Example 28, we see that V(P) = V(+,−,+,−,+,−,+) = 6, which means that P has

at most 6 positive real roots and that the number of positive real roots is even. To find

the number of negative roots, we change the signs of the coefficients of the terms with

odd exponents, i.e., apply Descartes’ rule of signs to the polynomial P (−x), to obtain the

following polynomial:

P (−x) = x6 + 3x5 + 7x4 + 15x3 + 14x2 + 12x+ 8.

In this case, V(P (−x)) = V(+,+,+,+,+,+,+) = 0. This means that P (−x) has no

positive real roots, and thus, P has no negative real roots.

Note that the proof of Descartes’ rule of signs uses Rolle’s Theorem in an inductive

process [104].

Descartes’ rule of signs, as stated above, is concerned with the number of roots in

the open interval [0, +∞]. The discussion can be generalized to arbitrary open intervals.

2.7. SOLVING BIVARIATE ALGEBRAIC SYSTEMS 81

This generalization is mainly employed to bound the number of real roots of a univariate

polynomial P in a given open interval [6].

On the complexity of root isolation

Theorem 2.9. [7, 105] Let P ∈ R[x], with size(P) = (d, τ), and α be a root of P . Then,

we have that max(1, |α|) is in the order 2O(τ), and
∏

α∈V (P) max(1, |α|) is in the order 2O(τ).

For a complex root z of a polynomial P ∈ Z[x], we can define the separation of z with

respect to P , denoted sep(z, P), to be the minimal distance between z and any distinct root

z′ of P . The separation of P (see Definition 2.7) can thus be defined as:

sep(P) = min
{z∈C |P (z)=0}

sep(z, P).

Lemma 2.2. [91] Let P ∈ Z[x] be a square-free polynomial with size(P) = (d, τ). Then,

the size of ∏
{z∈C |P (z)=0}

min
(
1, sep(z, P)

)
is in the order of 2−Õ(d τ).

Theorem 2.10 (real roots isolation). [73] Let P ∈ Z[x] be such that size(P) = (d, τ).

Then, we can compute isolating intervals of all the real roots of P and refine them up to a

width less than 2−L with a worst case bit complexity in:

ÕB(d
3 + d2 τ + dL).

2.7 Solving bivariate algebraic systems

In some contexts, solving a system refers to obtaining a formal representation of its solutions

that allows to concluding some useful information on these solutions. Such a representation

can be, for instance, a Gröbner basis, a univariate parameterization [87, 81, 50, 1] or a

triangular representation [4, 62, 52, 66, 26, 66, 64].

Let I be an ideal of K[x1, . . . , xn] with a monomial order ≺ (namely, ≺ is a total order

on the set of monomials {xα := xα1
1 . . . xαn

n | α = (α1, . . . , αn) ∈ Nn}, simply identified

with Nn, i.e., all the elements of Nn are comparable to each other, ≺ is compatible with

multiplication of K[x1, . . . , xn], i.e, if α ≺ β, then α + γ ≺ β + γ for all α, β, γ ∈ Nn, and

≺ is a well-ordering, i.e, any nonempty subset of Nn has a smaller element for ≺) [54]. We

82 CHAPTER 2

recall that a Göbner basis of I is a finite set of polynomials G = {Q1, ..., Qt} generating I

with the property that for every nonzero P ∈ I, Lt(P) is divisible by Lt(Qi) for some i,

where Lt(P) denotes the leading monomial of P with respect to ≺ [40].

If K is an algebraically closed field of characteristic 0, then information on the affine

algebraic set VK(I) = {x ∈ Kn | ∀ P ∈ I : P (x) = 0} can be read on a Gröbner basis of I

for certain monomial orders (e.g., the dimension of VK(I)).

In some other contexts, the main focus is about the computation of numerical approx-

imations of the solutions. These numerical approximations are usually given as a set of

isolating axis-parallel boxes such that every real solution of the system lies in a unique box.

Isolating boxes for the solutions can be computed directly from the input system using nu-

merical approximation methods, such as Newton’s method, or they can be obtained from a

formal representation of the solutions. However, considering the theoretical complexity, it

is not shown that computing a Gröbner basis or a triangular system of a system can always

simplify the numerical isolation of its solutions. This observation also explains why it is

not an easy task to precisely define what a formal solution of a system is. However, we can

compute or represent the real solutions of a bivariate polynomial system in Z[x, y] through

various methods. These methods are split into two categories: numerical and symbolic

methods, where we note that most of the symbolic methods are able to solve only generic

systems.

Numerical methods consider the polynomials as real-valued functions. They are usu-

ally based on local computation such as the famous Newton (-Raphson) method [82]. The

undoubted advantage of numerical methods lies in their practical efficiency due essentially

to the use of approximate computation. However, the major drawback of such methods

manifests in the absence of convenient assumptions on the input system or additional al-

gebraic computations, where these methods fail to guarantee correctness and convergence.

For instance, Newton techniques cannot be applied in the case of systems with singular so-

lutions (solutions with multiplicities). One important representative of this set of methods

is the subdivision-based methods [74, 47, 93] that follow the same techniques as Section 2.6,

up to an adaptation to isolating boxes instead of intervals. In fact, they usually start with

a precise box, then split it recursively into width-smaller boxes, eliminating the ones that

do not contain a zero of the system, and ending up with a union of boxes that contains

all solutions of the system and surely contained in the given precise box. In the numerical

methods, the verification for the existence and the uniqueness of a solution in a given box is

done using numerical predicates based on interval computation techniques such as interval

evaluation, Newton interval method, Krawzcyk operator [90], etc.

2.7. SOLVING BIVARIATE ALGEBRAIC SYSTEMS 83

Symbolic approaches include the classical elimination-based methods such as

resultant computation and isolation, triangular decomposition, or rational univariate

representation-based methods. Contrary to numerical methods, these methods are

complete and exact. However, a major drawback for symbolic methods lies in their high

cost. In fact, as soon as the degree and/or the number of variables of a polynomial system

increases, these methods become slow and impractical. Nevertheless, they still constitute a

suitable choice for solving bivariate polynomial systems since many studies were driven in

order to reduce as much as possible the impact of such drawback, providing improvements

in the theoretical and practical complexities [17, 16, 64]. Symbolic methods, which can be

viewed as generalizations of the classical Gauss elimination method, usually consist in the

following two steps:

1. A symbolic step, called a projection step, computes a formal representation of the

system solutions using algebraic properties and polynomial combinations.

2. A numerical step, called the lifting step, computes numerical approximations of the

system solutions based on the knowledge of its formal representation.

Finally, many types of algebraic methods for solving bivariate polynomial systems dif-

fer by their symbolic step. The formal representation can be given as, e.g., a resultant

representation [92, 25, 35, 13] or as a univariate representation.

In brief, the methods based on the resultant representation first project the solutions

along several directions by only computing different resultant polynomials. This allows

one to obtain a set of candidate solutions. Then, they identify the winning candidates to

be the system solutions. The best known complexity for such methods is proved to be

ÕB(d
8 + d7τ) bit operations, where d and τ respectively denote the bound on the degrees

and the coefficient bitsizes of the input polynomials. This complexity refers to the algorithm

proposed by Berberich et al. [13] provided in [42].

Another way to obtain a symbolic representation of the system solutions is a triangular

representation [52, 17]. In the case of bivariate polynomial system with integer coefficients,

a triangular representation of the system is of the form
{(

Ui(x), Vi(x, y)
)}

i∈I , where the

Ui’s and Vi’s are polynomial systems with integrer coefficients, and the sets of solutions

the
(
Ui(x), Vi(x, y)

)
’s are disjoint and are exactly those of the polynomial system. Many

complexity bounds were obtained in the case of bivariate polynomial systems with integer

coefficients. The best-known complexity ÕB(d
6 + d5τ) was recently obtained in [17], where

d and τ are respectively a bound for the degrees and for coefficient bitsize of the input

polynomials.

84 CHAPTER 2

As for the univariate representation of the solutions, it is a one-to-one correspondence

between the system solutions and the roots of a univariate polynomial. The computation

of any univariate representation consists of two major steps. The first one consists in

computing a separating polynomial for the solutions, namely, a polynomial taking different

values when evaluated at the distinct (complex) solutions of the system. A second step

consists in computing the polynomials defining the univariate representation of the system.

There exist many of algorithms for computing univariate representations but the one that

has the best-known worst-case bit complexity, namely, as ÕB(d
6 + d5τ) bit operations, is

represented in [17].

The main advantage of the univariate representation of the solutions is that it can easily

turn many queries on the system into queries on univariate polynomials. Solving a system

through this representation mainly consists in isolating the resulting univariate polynomial

and then evaluating the image of the obtained isolating intervals through the maps of the

rational representation. In the next section, we give more details about this approach, and

apply it to one of our proposed methods for the L∞-norm computation in Section 3.1.1.

2.7.1 Rational Univariate Representation – RUR

As explained in the above section, one important approach for solving a system of polynomi-

als with a finite number of complex solutions is to compute a rational parametrization of its

solutions [87, 88, 16, 17]. One particular type of rational parameterization called Rational

Univariate Representation, RUR for short, was first studied in [87] and then improved in

[17] for bivariate polynomial systems. Its constituting parts are mainly the computation

of a separating linear form, a triangular decomposition, rational univariate representations

and finally of isolating boxes of the solutions.

It has been recently proved in [17] that all of the constituting steps for solving a bivariate

polynomial system {P,Q} ⊂ Z[x, y] are computed in a worst-case bit complexity ÕB(d
6 +

d5τ), where P and Q are of degrees bounded by d and have coefficients of bitsize bounded

by τ .

We briefly give details about each step.

Separating linear form

A separating linear form of bivariate polynomial systems in Z[x, y] is a linear combination of

the variables x and y that takes different values when evaluated at distinct complex solutions

of the system. In other words, a separating linear form defines a shear of the coordinate

2.7. SOLVING BIVARIATE ALGEBRAIC SYSTEMS 85

system {x, y} that puts the algebraic system in a generic position, where no two distinct

solutions are vertically aligned.

We mention that the computation of such linear forms is at the core of most algorithms

that solve algebraic systems by computing rational parameterizations of the solutions.

Let P and Q be two coprime polynomials in Z[x, y] of degree bounded by d and of

bitsize bounded by τ . The best known worst-case bit complexity for computing a separating

linear form x+ ay for the bivariate system {P, Q} is ÕB(d
6 + d5τ), achieved in [17], where

a ∈ {0, . . . , 2 d4}. This separating linear form is based on the one presented in [15] but by

improving its worst-case bit complexity by a factor d. This improvement is achieved by

taking advantage of the fact that computing a separating linear form for a system {P, Q}
is essentially equivalent (in terms of asymptotic bit complexity) to computing a separating

linear form for the critical points of a curve.

Triangular decomposition

For computing a triangular decomposition of a bivariate polynomial system {P, Q} ∈ Z[x, y],

a classical algorithm, using subresultant sequences, was first given by L. Gonzalez-Vega

and M. El Kahoui in the context of the computation of the topology of curves [52]. This

result is a direct consequence of the specialization property of subresultants and of the

so-called gap structure theorem. Hence, with the same hypotheses of Theorem 2.6, the gap

structure theorem induces a decomposition of the system {P, Q} into triangular subsystems

{Ui(x), Sresi(P,Q, y)(x, y)}i∈I , where the product of the Ui’s is the (square-free part of the)

resultant of P and Q with respect to y.

For a bivariate polynomial system of total polynomial degrees bounded by d and of

coefficients of bitsize bounded by τ , the worst-case bit complexity for the computation of

a triangular decomposition has been improved from ÕB(d
16 + d14 τ 2) [52] to ÕB(d

6 + d5 τ)

obtained recently in [17]. This improvement is due to the amortized bounds on the degrees

and of the bitsizes of the resultant polynomial factors and is the best-known worst-case bit

complexity for the computation of a triangular decomposition.

Rational Univariate Representation

Definition 2.9. [32] Let Q̄ denote the algebraic closure of Q and I an ideal of Q[x, y]. To

each zero (α, β) ∈ VQ̄(I), we can define the local ring
(
Q̄[x, y]/I

)
(α, β)

obtained by localizing

the ring Q̄[x, y]/I at the maximal ideal ⟨x− α, y − β⟩ of Q̄[x, y]/I, namely:

(
Q̄[x, y]/I

)
(α, β)

=
{n
d
| d, n ∈ Q̄[x, y]/I, d(α, β) ̸= 0

}
.

86 CHAPTER 2

When this local ring is finite dimensional as Q-vector space, then we say that (α, β) is an

isolated zero of I and its dimension is called the multiplicity of (α, β) as a zero of I.

Definition 2.10. [87, Definition 3.3] Let I ⊂ Q[x, y] be a zero-dimensional ideal, namely,

Q[x, y]/I is a finite-dimensional Q-vector space,

VC(I) = {σ ∈ C2 | ∀P ∈ I : P (σ) = 0}

its associated affine algebraic set, and (x, y) 7−→ x + s y a linear form where s in Q. The

RUR-candidate of I associated to x+ s y (or simply, to s), denoted RURI,s, is the following

set of four univariate polynomials in C[t]

fI,s(t) =
∏

σ∈VC(I)

(t− x(σ)− a y(σ))µI(σ)

fI,s,v(t) =
∑

σ∈VC(I)

µI(σ) v(σ)
∏

{λ∈VC(I) |λ ̸=σ}
(t− x(λ)− s y(λ)), v ∈ {1, x, y}

where µI(σ) denotes the multiplicity of σ in I for all σ in VC(I), namely, the dimension of

the local ring
(
Q[x, y]/I

)
σ
. If (x, y) 7−→ x + s y is injective on VC(I), then we say that the

linear form x + s y separates VC(I) (or is separating for I) and RURI,s is called a rational

univariate representation (RUR) (of I associated to s).

The following proposition states the fundamental properties of RURs, which are all

straightforward from the definition except for the fact that the RUR polynomials have

rational coefficients [87, Theorem 3.1].

Proposition 2.7. [87, Theorem 3.1]. If I ⊂ Q[x, y] is a zero-dimensional ideal and s in Q, the

four polynomials of the RUR-candidate RURI,s have rational coeficients. Furthermore, if x+

s y separates VC(I), the following mapping between VC(I) and VC(fI,s) = {γ ∈ C | fI,s(γ) =
0}

VC(I) −→ VC(fI,s)

(α, β) 7−→ α + s β,(
fI,s,x
fI,s,1

(γ),
fI,s,y
fI,s,1

(γ)

)
←− [γ

is a bijection which preserves the real roots and the multiplicities.

In the sequel, we shall simply note fd for fI,s,1, fx for fI,s,x, fy for fI,s,y, and ft for fI,s.

We now give the definition of a RUR decomposition of an ideal [17].

2.7. SOLVING BIVARIATE ALGEBRAIC SYSTEMS 87

Definition 2.11. Let I ⊂ Q[x, y] be a zero-dimensional ideal, its associated affine algebraic

set VC(I) = {σ ∈ C2 | ∀ P ∈ I : P (σ) = 0} and (x, y) 7−→ x + s y a linear form where s

in Q. A RUR-candidate decomposition of I is a sequence of RUR-candidates, associated to

x+s y, of ideals Ii ⊇ I such that VC(I) is the disjoint union of the varieties VC(Ii). If x+s y

separates VC(Ii) for all i, then the RUR-candidate decomposition is a R decomposition of

the ideal I.

In [17, Algorithm 6], the authors compute a RUR decomposition of a zero-dimensional

bivariate system {P, Q} by first computing a separating linear form x+ s y. They use this

separating form to shear the system in generic position and then compute the radical of

a triangular decomposition of this system. Finally, using a multimodular approach, they

compute a RUR of each of the resulting radical systems and return these RURs after a

shear back. This computation is proved to be done with ÕB(d
6 + d5τ) bit operations in the

worst-case, where the degrees of P and Q are bounded by d and their coefficients are of

bitsize bounded by τ [17, Proposition 42].

Isolating boxes

A RUR is naturally designed to compute isolating boxes of polynomial system solutions

using univariate isolation and interval evaluation. For defining such boxes, let L be an

arbitrary positive integer. Then, x̃ ∈ Q + iQ is defined to be an L-bit approximation of

x if x̃ is of the form x̃ = (a + i b) 2−L−2, where a, b ∈ Z, and |x − x̃| < 2−L. An L-bit

approximation x̃ = (a+ i b) 2−L−2 of some point x ∈ C naturally defines the following box

B(x̃) =
[a− 4, a+ 4]

2L+2
+ i

[b− 4, b+ 4]

2L+2
⊂ C

that contains x of width 2−L+1.

In [16, §5.1 & Proposition 35], an algorithm of worst-case bit complexity ÕB(d
8 + d7τ)

isolates the real solutions of a system {P, Q} of two bivariate polynomials of degrees bounded

by d and of bitsize bounded by τ . In [17, §7.2], the authors presented a modified algorithm

that isolates all the complex solutions. Using several amortized bounds for the roots of

polynomials, they developed an algorithm that, applied to a RUR decomposition of a system

{P, Q}, isolates all the complex solutions in ÕB(d
6 + d5τ) [17, Theorem 59].

Example 34. We consider again P = x4− (y+2)x3 + (2 y+1)x2− (y+2)x+2 y studied

in Examples 29 and 31 and the system Σ =
{
P = 0, ∂P

∂x
= 0
}
defining the y-critical points

of the curve defined by P (x, y) = 0 (see Section 2.1). The rational univariate representation

88 CHAPTER 2

of Σ is then given by:
x = t,

y =
2 (t2 − t+ 3)

(3 t− 1) (t− 1)
,

ft = (t− 2)2 (t2 + 1)2.

Hence, the real solutions (x, y) of Σ are obtained by evaluating the rational univariate

functions x and y at the real roots of the univariate polynomial ft. We can easily notice

that t = 2 is the only real root of ft. Thus, the only real solution of Σ is defined by

(x, y) = (2, 2), and thus, the curve defined by P (x, y) = 0 admits only one real y-critical

point of coordinates (2, 2).

Example 35. Let P = x2 y2 − 2, Q = x + y + 2 and Σ = {P = 0, Q = 0}. The rational

univariate representation of Σ is then given by:
x = −t3 + 4 t2 + 4 t+ 2

t (t2 + 3 t+ 2)
,

y = − t3 + 2 t2 − 2

t (t2 + 3 t+ 2)
,

ft = t4 + 4 t3 + 4 t2 − 2.

Hence, the real solutions (x, y) of Σ are obtained by evaluating the rational univariate

functions x and y at the real roots of the univariate polynomial ft. In this case, ft admits

2 real roots t1 and t2 given by isolating intervals:
t1 =

[
−6029928309892131977397

2361183241434822606848
,−12059856619784263954767

4722366482869645213696

]
,

t2 =

[
311747032886141

562949953421312
,
1246988131544591

2251799813685248

]
.

The isolating boxes of the real solutions (x1, y1) and (x2, y2) of the system Σ are then given

by [
x1 = [a1, a2], y1 = [b1, b2]

]
,

[
x2 = [c1, c2], y2 = [d1, d2]

]
,

2.8. SYSTEMS DEPENDING ON PARAMETERS 89

where:

a1 =
311747032886133

562949953421312
, a2 =

155873516443073

281474976710656
,

b1 = −
359411734932195

140737488355328
, b2 = −

89852933733047

35184372088832
,

c1 = −
179705867466097

70368744177664
, c2 = −

179705867466095

70368744177664
,

d1 =
311747032886143

562949953421312
, d2 =

155873516443073

281474976710656
.

2.8 Systems depending on parameters

Many problems in natural sciences and engineering sciences can be reduced to solving a

parametric polynomial system of the form

p1(u1, . . . , ud, x1, . . . , xn) = 0,
...

pn(u1, . . . , ud, x1, . . . , xn) = 0,

f1(u1, . . . , ud, x1, . . . , xn) > 0,
...

fn(u1, . . . , ud, x1, . . . , xn) > 0,

(2.3)

where pi, fi ∈ Q[u1, . . . , ud, x1, . . . , xn] for i = 1, . . . , n, U = {u1, . . . , ud} is a set of parame-

ters, and X = {x1, . . . , xn} is a set of indeterminates.

In this section and hereafter, we shall only consider systems that are so-called well-

behaved systems. They are systems which contain as many equations as indeterminates, are

generically zero-dimensional, i.e., for almost all complex parameter values at most finitely

many complex solutions exist, and generically radical, i.e., for almost all complex parameter

values, there are no solutions of multiplicity greater than 1 (in particular, the input equations

are square-free).

In applications, questions that often arise concern the structure of the solution space

in terms of the parameters, such as, e.g., determining the parameter values for which real

solutions exist or, more generally, determining the parameter values for which the system

have a given number of real solutions.

For naturally answering such questions, an idea would be to randomly pick real val-

ues for the parameters and then solve the corresponding non-parametric system. Such a

procedure is simple and can be repeated as often as wished for. Yet, there is no guarantee

that parameter values with the desired properties can be found (even if they exist). There-

90 CHAPTER 2

fore, to solve the well-behaved system (2.3), it is significant to choose a finite number of

representative “good” parameter values that cover all possible cases.

A remarkable idea was proposed by D. Lazard and F. Rouillier [63] and is based on

the concept of discriminant variety. This method can be outlined as follows. First, the

set of solutions of the system, considered as equations in both the parameters and the

indeterminates, is projected onto the parameter space. Then, the topological closure S̄

of the resulting projection, which will usually be equal to the whole parameter space Rd,

is divided into two parts: the discriminant variety W and its complement S̄\W . The

discriminant variety W of the system can be understood as the set of “bad” parameter

values leading to non-generic solutions of the system, for instance, infinitely many solutions,

solutions at infinity, or solutions of multiplicity greater than 1. It is a generalization of the

well-known discriminant of a univariate polynomial. The complement of W , S̄\W , can be

expressed as a finite disjoint union of connected open sets, usually called cells, such that

the number of the system real solutions does not change when the parameters vary within

the same cell. For a well-behaved system, the discriminant variety is of dimension less that

d, and it characterizes the boundaries between these cells. Hence, the number of solutions

of the system only changes on the boundary or when crossing a boundary. For each open

cell in the parameter space, we can choose a sample point, evaluate the original system

at the sample point, and then solve the resulting non-parametric system. In this way, we

can, for instance, determine the number of real solutions of the system that is constant for

parameter values chosen from the same open cell.

Since the geometry of the connected open cells in the complement of the discriminant

variety may be quite complicated, it is required to further subdivide them by the so-called

Cylindrical Algebraic Decomposition or CAD for short.

2.8.1 Discriminant variety

Let us consider the basic semi-algebraic set defined by

S = {x ∈ Rn | p1(x) = 0, . . . , ps(x) = 0, f1(x) > 0, . . . , fs(x) > 0}

and the basic constructible set defined by

C = {x ∈ Cn | p1(x) = 0, . . . , ps(x) = 0, f1(x) ̸= 0, . . . , fs(x) ̸= 0},

2.8. SYSTEMS DEPENDING ON PARAMETERS 91

where pi, fj are polynomials with rational coefficients for i = 1, . . . , s. Moreover,

let [U,X] := [u1, . . . , ud, xd+1, . . . , xn] be the set of unknowns or variables, while

U = [u1, . . . , ud] is the set of parameters and X = [xd+1, . . . , xn] the set of the

indeterminate. We denote by ΠU : Cn −→ Cd the canonical projection onto the parameter

space (u1, . . . , ud, xd+1, . . . , xn) 7−→ (u1, . . . , ud). Finally, for any set V ⊂ Cn, we shall

denote by V the C-Zariski closure of V , namely, the smallest affine algebraic set containing

V .

Definition 2.12 (Covering space, covering map). [63] Given a connected open set U ⊂ Cs,

a covering space of U is a topological space C together with a continuous surjective map

Π : C −→ U such that there exist open sets Ci ⊂ C, i ∈ {1, . . . ,m}, satisfying:

• Π−1(U) = C1 ∪ . . . ∪ Cm,

• Π|Ci
: Ci −→ U is a homeomorphism,

• Ci ∩ Cj = ∅ for all i, j ∈ {1, . . . ,m}.

Then, Π is called the covering map and (C,Π) is an analytic covering of U .

Definition 2.13. [63] Let E be a subset of the parameters space. A parametric system S
defining a constructible set C is said to be geometrically regular over E if for all open sets

U ⊂ E, (Π−1
U (U) ∩ C, ΠU) is an analytic covering of U .

We can now introduce the concept of discriminant variety.

Definition 2.14. [63] A discriminant variety of the parametric system C with respect to

ΠU is a variety W in the parameters space such that C is geometrically regular over Cs\W .

Definition 2.15. [63] The minimal discriminant variety of C with respect to ΠU is the

intersection of all the discriminant varieties of C with respect to ΠU .

Example 36. Consider the semi-algebraic system

C =
{
a x2 + b− 1 = 0, b z + y = 0, c z + y = 0, c > 0

}
,

where {a, b, c} is the set of parameters and {x, y, z} is the set of indeterminates. Then,

the discriminant variety is defined by:

D =
{
(a, b , c) | a = 0 or b = 1 or b = c or c = 0

}
.

92 CHAPTER 2

In fact, the case a = 0 corresponds to a vanishing leading coefficient of the first equation

which can be interpreted as “solution at ∞”. If b = 1, then the first equation has a real

root x = 0 of multiplicity 2. If b = c, the second and third equations coincide and therefore

the system C becomes underdetermined and has infinitely many solutions. Finally, the case

c = 0 corresponds to a boundary case for the inequality c > 0. Thus, for every choice of

the parameter values outside the discriminant variety D, the system C has finitely many

solutions, all of multiplicity 1.

A Maple package for solving parametric polynomial systems was introduced in [49]

under the name Parametric, and is mainly based on techniques such as Gröbner bases,

polynomial real root finding, and cylindrical algebraic decomposition. In particular, the

command DiscriminantVariety of this package computes the discriminant variety of a

polynomial system depending on parameters and verifying the required conditions.

2.8.2 Cylindrical Algebraic Decomposition

In this paragraph, we briefly explain the concept of an open Cylindrical Algebraic Decom-

position or a generic CAD [37]. It is a well-known concept in computational real algebraic

geometry, first proposed by G. E. Collins [27]. It has been followed by many substantial

improvements including adjacency and clustering techniques [3], improved projection meth-

ods [59, 72, 23, 21], partially built CADs [29], improved stack construction [30], efficient

projection orders [36], etc.

A CAD of Rd is a representation of Rd as a finite union of disjoint cells in a “cylindrical

fashion” such that the canonical projection onto the first d − 1 coordinates is a CAD of

Rd−1. A CAD of R = R1 is just a representation of R as a finite disjoint union of points and

open intervals.

Finally, for a finite set F of polynomials in d variables, a CAD of Rd is said to be

F -invariant if each of the polynomials in F has a constant sign on each cell of the decom-

position.

Let W be the discriminant variety of the parametric system C with respect to ΠU . A

CAD allows us to obtain a practical description of the connected components of

ΠU(S) \ (W ∩ Rd). This CAD is mainly a cylindrical decomposition of Rd associated to a

family of polynomials P of R[xd+1, . . . , xn]. This cylindrical decomposition decomposes Rd

into cells over which all of the polynomials of P are of a constant sign. These cells can be

defined by a sample point and a semi-algebraic function, namely, a function f : T1 → T2,

where T1 ⊂ Rk and T1 ⊂ Rℓ are two semi-algebraic sets (see Section 2.8.1), such that its

2.8. SYSTEMS DEPENDING ON PARAMETERS 93

Figure 2.3: Plot of the 4 regions of the parameter space for which the univariate equation
P = x2+ a x+ b has exactly two solutions in the pink (regions 2 and 4) and cyan (region 1)
cells below the parabola, and no solution in the yellow cell (region 3) above the parabola.

graph Graph(f) is a semi-algebraic subset of Rk+ℓ [6].

Example 37. We consider the univariate polynomial P = x2 + a x + b whose coefficients

depend on the parameters set {a, b}. The discriminant variety is thus the curve a2−4 b = 0.

Using CAD, the parameter space can then be decomposed into 4 cells (see Figure 2.3) in

which P has a constant number of solutions that can be computed using a sample point

from each cell.

Example 38. In this example, we present a cylindrical algebraic decomposition of R3

adapted to the unit sphere, illustrated in Figure 2.4. Note that the projection of the sphere

on the (x, y) plane is the unit disk. The intersection of the sphere and the cylinder above the

open unit disk consists of two hemispheres. The intersection of the sphere and the cylinder

above the unit circle consists of a circle. The intersection of the sphere and the cylinder

above the complement of the unit disk is empty. Note also that the projection of the unit

circle on the line is the interval [−1, 1].

The decomposition of R consists of five cells, called cells of level 1, corresponding to

94 CHAPTER 2

the points −1 and 1 and the three intervals they define, namely:

S1 =]−∞, −1[,
S2 = {−1},
S3 =]− 1, 1[,

S4 = {1},
S5 =]1, +∞[.

Above Si for i = 1, 5, there are no semi-algebraic functions and only one cell Si,1 =

Si × R.

Above Si, for i = 2, 4, there is only one semi-algebraic function associating to −1 and

1, the constant value 0, and there are three cells:
Si,1 = Si ×]−∞, 0[,

Si,2 = Si × {0},
Si,3 = Si ×]0, +∞[.

Above S3, there are two semi-algebraic functions f3,1 and f3,2 associating to x ∈ S3 defined

by f3,1(x) = −
√
1− x2 and f3,2(x) =

√
1− x2. There are 5 cells above S3, the graphs of f3,1

and f3,2 and the bands they define, namely:

S1 =
{
(x, y) | − 1 < x < 1, y < f3,1(x)

}
,

S2 =
{
(x, y) | − 1 < x < 1, y = f3,1(x)

}
,

S3 =
{
(x, y) | − 1 < x < 1, f3,1(x) < y < f3,2(x)

}
,

S4 =
{
(x, y) | − 1 < x < 1, y = f3,2(x)

}
,

S5 =
{
(x, y) | − 1 < x < 1, f3,2(x) < y

}
.

Above Si,j for (i, j) ∈
{
(1, 1), (2, 1), (2, 3), (3, 1), (3, 5), (4, 1), (4, 3), (5, 1)

}
, there are no

semi-algebraic functions, and only one cell:

Si,j,1 = Si,j × R.

Above Si,j for (i, j) ∈
{
(2, 2), (3, 2), (3, 4), (4, 2)

}
, there is only one semi-algebraic func-

tion, the constant function 0, and three cells:
Si,j,1 = Si,j ×]−∞, 0[,

Si,j,2 = Si,j × {0},
Si,j,3 = Si,j ×]0, +∞[.

2.8. SYSTEMS DEPENDING ON PARAMETERS 95

Figure 2.4: A cylindrical decomposition adapted to the sphere in R3

Above S3,3, there are two semi-algebraic functions f3,3,1 and f3,3,2 associating to (x, y) ∈ S3,3

defined by

f3,3,1(x, y) = −
√

1− x2 − y2,

f3,3,2(x, y) =
√

1− x2 − y2,

and five cells defined by:

S3,3,1 =
{
(x, y, z) | (x, y) ∈ S3,3, z < f3,3,1(x, y)

}
S3,3,2 =

{
(x, y, z) | (x, y) ∈ S3,3, z = f3,3,1(x, y)

}
,

S3,3,3 =
{
(x, y, z) | (x, y) ∈ S3,3, f3,3,1(x, y) < z < f3,3,2(x, y)

}
,

S3,3,4 =
{
(x, y, z) | (x, y) ∈ S3,3, z = f3,3,2(x, y)

}
,

S3,3,5 =
{
(x, y, z) | (x, y) ∈ S3,3, f3,3,2(x, y) < z

}
.

If we want to characterize the cells of ΠU(S) \ (W ∩Rd) obtained with a CAD, a naive

method is proposed in [86, § 5.6.7].

In the case of well-behaved systems, we have ΠU(C) = Cd. In this case, the useful cells

of a CAD are those of a higher dimension. In Collins’ algorithm [27] or any of its variants,

the construction of cells of lower dimension, such as those represented by a sample point

and a semi-algebraic function, requires the resolution of univariate polynomial equations

with algebraic coefficients. This is not the case for the cells of higher dimension where all

the polynomials we are dealing with are of rational coefficients (mainly, the polynomials

96 CHAPTER 2

figuring in the projection and lifting phases explained below).

The algorithm of a CAD is then decomposed into two steps: A projection phase followed

by a recovery phase. In the kth step of the projection, we suppose that we have a set

Pk ⊂ Q[uk, . . . , ud]. The (k+1)th step of projection consists in constructing Pk+1 = Proj(Pk)

which is the smallest subset of Q[uk+1, . . . , ud] such that:

• For p ∈ Pk, deguk
(p) = d ≥ 2, Proj(Pk) contains discrim(p) (p seen as univariate in

uk),

• For p, q ∈ Pk, Proj(Pk) contains Res(p, q, uk),

• For p ∈ Pk such that deguk
(p) ≥ 1 and Lcuk

(p) is non constant, then Proj(Pk) contains

Lcuk
(p),

• For p ∈ Pk such that deguk
(p) = 0 and p is non constant, then Proj(Pk) contains p.

The recovery step in the CAD is also recursive starting with Pk = Pd:

• Isolate and sort all the real roots of the polynomials in Pk, consisting in univariate

polynomials in uk with rational coefficients.

• Choose a point in every interval between two real roots of polynomials in the set Pk,

• Substitute uk with the chosen point in the previous step in the set Pk−1, . . . ,P1 and

then recover Pk−1 with the same lifting steps.

For more details about the Cylindrical Algebraic Decomposition, see [6] and the refer-

ences therein.

Chapter 3

L∞-norm Computation

Based on the standard computer algebra concepts and methods − stated again in Chapter 2

− in this chapter, we shall explain our proposed methods for the computation of the L∞-

norm of LTI systems (see Chapter 1) based on the problem modeling given in Section 1.4.

We shall consider two different cases. The first case (the non-parametric case) is when

the LTI system does not depend on parameters, i.e., when all the entries of a state-space

representation (A, B, C, D) of the control system or, equivalently, when all the coefficients

of the rational function entries of its transfer matrix G, are fixed to numerical values,

supposed thereafter to be rational. As explained in Section 1.4, the problem of L∞-norm

computation is then reduced to the computation of the maximal x-projection of the real

solutions (x, y) of a bivariate polynomial equations system Σ =
{
P = 0, ∂P

∂x
= 0

}
for a

certain polynomial P ∈ Z[x, y]. The second case (the parametric case) is when the control

system depends on a set of parameters α = (α1, . . . , αd) ∈ Rd (e.g., an unfixed mass,

spring constant or damping coefficient), in which case we have to study the polynomial

system Σ =
{
P = 0, ∂P

∂x
= 0

}
for a certain polynomial P ∈ Z[α][x, y]. In this case, for

computing the L∞-norm of the corresponding transfer matrix G, the parameters space has

to be partitioned into cells in such a way that, above each, we can represent the maximal

x-projections of the real solutions (x, y) of Σ as a real function of the parameters α.

3.1 Non-parametric case problem

Let F ∈ RLp×m
∞ and Φγ(i ω) = γ2 Im − F T (−i ω)F (i ω) for ω ∈ R. Let n(ω, γ) and d(ω) be

two coprime polynomials over R[ω, γ], i.e., gcd(n, d) = 1, satisfying:

det(Φγ(i ω)) =
n(ω, γ)

d(ω)
. (3.1)

97

98 CHAPTER 4

Let us also note n̄ the square-free part of n. Then, according to the results developed in

Chapter 1 (see Proposition 1.1 and the results after), the problem of computing ∥ F ∥∞
can be reduced to the computation of the maximal γ-projection of the real solutions of the

system of bivariate polynomial equations:

Σ =

{
n̄(ω, γ) = 0,

∂n̄(ω, γ)

∂ω
= 0

}
. (3.2)

Without loss of generality, we shall suppose that n is square-free in Z[ω, γ] and, in the

sequel, we simply denote n̄ by n.

In the next sections, using standard computer algebra methods (see Chapter 2), three

different symbolic-numeric algorithms for the computation of the maximal γ-projection of

the real solutions of Σ will be proposed. We alternatively study a method based on rational

univariate representation, a method based on root separation, and finally, a method based

on real root counting. The latter is based on the sign variation of the leading coefficients

of the signed subresultant sequence. These three algorithms identify an isolating interval

of the maximal γ-projection of the real solutions of Σ. These three different methods then

give us three different methods to compute the L∞-norm of F ∈ RLp×m
∞ . The worst case

bit complexity of each algorithm is analyzed and their theoretical complexities are finally

compared to their practical complexities.

3.1.1 RUR method

In this section, we state a straightforward algorithm which computes the maximal γ-

projection of the real solutions of (3.2) based on a Rational Univariate Representation

method defined in Subsection 2.7.1. This algorithm consists in first computing a ratio-

nal parametrization (RUR) of the solutions of (3.2), then isolating the roots of a univariate

polynomial p defining the associated field extension, and finally using the intervals obtained

to compute isolating boxes for the solutions of (3.2). After performing interval refinements,

we can then select the solution of (3.2) with the maximal γ-projection.

We recall that if P, Q ∈ Q[x, y] are two coprime polynomials, i.e., gcd(P,Q) = 1, then

the computation of the RUR of VK(⟨P, Q⟩), where K = R, C, consists in finding s ∈ N such

that t := x+ s y separates the K-zeros of {P, Q} and four polynomials fd, fx, fy, ft ∈ Q[T]

3.1. NON-PARAMETRIC CASE PROBLEM 99

which define the following 1-1 correspondence between VK(⟨P, Q⟩) and VK(⟨ft⟩):

VK(⟨P, Q⟩) −→ VK(⟨ft⟩)

(x, y) 7−→ t = x+ s y,

.

(
fx(t)

fd(t)
,
fy(t)

fd(t)

)
←− [t

Using the RUR of VK(⟨P, Q⟩), we can transform the study of problems on VK(⟨P, Q⟩)
into corresponding problems on VK(⟨ft⟩). See Subsection 2.7.1.

Given two coprime polynomials P, Q ∈ Z[x, y] of degree bounded by d and coefficient

bitsize bounded by τ , we recall that an algorithm for computing a linear separating form, a

RUR decomposition and isolating boxes of the system solutions can be obtained in the worst

case bit complexity ÕB(d
6 + d5 τ) (see Subsection 2.7.1). The solutions of the polynomial

system {P = 0, Q = 0} are then represented by isolating boxes.

For the L∞-norm computation, the polynomials in Z[ω, γ] defining (3.2) are coprime.

Hence, to compute ∥ F ∥∞, we first use the RUR method to obtain isolating boxes for the

real solutions (ω, γ) of Σ, choose the maximal γ-projection γ1, then compute an isolating

interval γ2 for the maximal real root of the univariate polynomial Lcω(n), and finally get

∥ F ∥∞= max {γ1, γ2}. We sum up the different steps of the corresponding algorithm in

Algorithm 2.

Algorithm 2 RUR method

Input: A zero-dimensional polynomial system {n, ∂n
∂ω
} ⊂ Z[ω, γ].

Output: An isolating interval of max
{
πγ

(
VR

(〈
n, ∂n

∂ω

〉))
∪ VR (Lcω(n))

}
.

1. Apply the RUR function (Isolate) for solving Σ ={n = 0, ∂n
∂ω

= 0} and denote
[ai, bi]× [ci, di] the isolating boxes of the obtained real solutions.

2. For ω ∈ [ai, bi] > 0, if ∃ i, j such that [ci, di] ∩ [cj, dj] ̸= ∅,

• compute the root separation of Rγ := Res
(
n, ∂n

∂ω
, ω
)
(using for instance Corol-

lary 2.3), and denote it L,

• isolate the RUR polynomials and compute the isolating boxes of the solutions of
Σ up to the precision L,

3. let γ1 be the maximal γ-projection of the real solutions of Σ and γ2 be the maximal
real root of Lcω(n).

4. return the isolating interval of max {γ1, γ2}.

100 CHAPTER 4

In Step 1 of Algorithm 2, we obtain isolating boxes [ai, bi]× [ci, di] of the real solutions

(ωi, γi) of Σ. To compare the real values γ ∈ [ci , di], we need to make sure that when

two intervals [ci, di] and [cj, dj] intersect, they both contain only 1, and the same, real γ-

projection of the system’s real solutions. For doing so, in Step 2, we apply a straightforward

strategy consisting in computing isolating boxes in a way that each interval [ci, di] is included

in, or intersects at most, one isolating interval of the roots of Rγ, since Rγ is a polynomial

embodying the γ-projection of the system’s solutions. We mention that we can simply look

only at the solutions of positive ω-projection since Σ is symmetric with respect to the γ-axis.

In the next paragraph, we further discuss this important step of Algorithm 2.

For a zero-dimensional polynomial system {P = 0, Q = 0}, in [17, Section 7], Bouzidi

et al. provide a fine algorithm for computing disjoint isolating boxes for the solutions

σ ∈ C2. In this algorithm for the RUR decomposition of {P,Q}, a RUR decomposition

RURi of an ideal T̃i − coming from the triangular decomposition {Ti}i∈I of the ideal ⟨P,Q⟩
− verifying certain conditions, is used. Then, for a given L, they first compute L-bit

approximations σ̃i,j = (x̃i,j, ỹi,j) of the solutions σi,j = (xi,j, yi,j), 1 ≤ j ≤ di = deg(fi,t), of

each factor RURi = (fi,t, fi,d, fi,x, fi,y) in the RUR decomposition (RURi)i∈I of {P, Q}. The
computation of isolating boxes of the system {P = 0, Q = 0} solutions is achieved by first

computing sufficiently small isolating disks for the roots αi,j of the univariate polynomial

fi,t in RURi and then evaluating the fractions
fi,x
fi,d

and
fi,y
fi,d

at the roots αi,j to an absolute

error less than 2−L. From the corresponding L-bit approximations x̃i,j and ỹi,j, they derive

boxes (as defined in Paragraph 2.7.1) Bi,j = B(σ̃i,j) = B(x̃i,j) × B(ỹi,j) ⊂ C2 of width

2−L+1 containing all the solutions of RURi. If for all i and j, the boxes Bi,j do not overlap,

then they are already isolating for the solutions of {P = 0, Q = 0}. Otherwise, L must be

increased until the boxes do not overlap.

We recall that Rx = Res(P,Q, y) (resp., Ry = Res(P,Q, x)) embodies the x-projection

(resp., y-projection) of the system {P = 0, Q = 0} solutions. Thus, having non-overlapping

isolating boxes of the system solutions means that for all σ̃k = (x̃k, ỹk), corresponding to

L-bit approximations of the system solutions σk = (xk, yk), either B(x̃k1) and B(x̃k2) or

B(ỹk1) and B(ỹk2) do not overlap.

Thus, to further guarantee that each B(x̃k) contains only one x-projection of the system

{P = 0, Q = 0} solutions, we consider L = sep(Rx) where sep(Rx) denotes the separation

bound of Rx.

Lemma 3.1. [17, Lemma 57] Let g =
g1
g2
, with g1, g2 ∈ Z[x] polynomials of degree at most

dg = O(d) with coefficients of bitsize at most τg. Suppose that g2 does not vanish at any of

the roots α1, . . . , αd of f where size(f) = (d , τ). Then, for any given positive integer L, we

3.1. NON-PARAMETRIC CASE PROBLEM 101

can compute L-bit approximations of all values yi = g(αi) using a number of bit operations

bounded by

ÕB(d
3 + d2 (τ + τg) + dL).

For the complexity analysis of the computation of the L∞-norm of the matrix F ∈
RLp×m

∞ , we first need to obtain bounds on the degrees the polynomial n, defining Σ (see

(3.2)), as well as its coefficient bitsize in terms of F .

Lemma 3.2. Let F ∈ RLp×m
∞ , where Fi,j :=

Pi,j

Qi,j

, Pi,j, Qi,j ∈ Z[i ω] are coprime polynomials

for 1 ≤ i ≤ m and 1 ≤ j ≤ p, and let τF be the maximal coefficient bitsize of Pi,j and

Qi,j. Moreover, let n ∈ Z[ω, γ] be the numerator of det(Φγ(ω)) where Φγ(ω) = γ2 Im −
F T (−i ω)F (i ω) and dγ := degγ(n) = 2m, dω := degω(n), and τn the coefficients bitsize of

n. If we note

α := max
{
p, m

}
, N := max

{
degω(Qi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ p

}
,

then we have:

dγ = O(α), dω = O(α2N), τn = Õ(α2 τF).

Proof. We have:

F (i ω) =

(
Pi,j(i ω)

Qi,j(i ω)

)
i,j

= (ai,j)i,j, F T (−i ω) =
(
Pj,i(− i ω)

Qj,i(− i ω)

)
i,j

= (bi,j)i,j.

Then, we get:

F T (−i ω)F (i ω) =

(
p∑

k=1

bi,k ak,j

)
i,j

=

(
p∑

k=1

Pk,i(−i ω)Pk,j(i ω)

Qk,i(−i ω)Qk,j(i ω)

)
i,j

= (ci,j)i,j.

Since F is a proper matrix, then max
(
degω(Pi,j)

)
≤ N = max

(
degω(Qi,j)

)
. Thus,

degω
(
Pk,i(−i ω)Pk,j(i ω)

)
≤ degω

(
Qk,i(−i ω)Qk,j(i ω)

)
≤ 2N . Now, we denote the ma-

trix Φγ(ω) := γ2 Im − F T (−i ω)F (i ω) by (Ai,j)i,j, where:

Ai,i = γ2 −
p∑

k=1

Pk,i(−i ω)Pk,i(i ω)

Qk,i(−i ω)Qk,i(i ω)
, Ai,j = −

p∑
k=1

Pk,i(−i ω)Pk,j(i ω)

Qk,i(−i ω)Qk,j(i ω)
.

Thus, by the Leibniz formula for the determinant, we can write

det
(
Φγ(ω)

)
=

m∏
i=1

Ai,i +
∑

σ∈Sv\Id

ϵ(σ)
m∏
i=1

Ai,σ(i),

102 CHAPTER 4

where Sv denotes the set of permutations σ of the set {1, 2, . . . ,m} and ϵ is the signature

of a permutation. Then, it is clear that degree of the numerator n(γ, ω) of det
(
Φγ(ω)

)
is

in the order of O(2m) = O(α) with respect to the variable γ.

To compute the degree of n(γ, ω) with respect to ω, we first compute the denominator

of
m∏
i=1

Ai,σ(i) =
m∏
i=1

p∑
k=1

Pk,i(−i ω)Pk,σ(i)(i ω)

Qk,i(−i ω)Qk,σ(i)(i ω)
,

for σ ∈ Sv. In fact, by multiplying all denominators, we obtain the

denominator
∏m

i=1

∏p
k=1Qk,i(−i ω)Qk,σ(i)(i ω) that can be simply written as∏p

k=1

∏m
m=1 Qk,m(−i ω)Qk,m(i ω) by changing of index, since σ is a permutation over the

index i. Hence, n(γ, ω) can be written as

n(γ, ω) =
m∏
k=1

p∏
m=1

Qk,m(−i ω)Qk,m(i ω) γ
2m +

m−1∑
i=0

C2 i γ
2 i,

such that C2 i ∈ Z[ω2], and degω(C2 i) < 2mpN for i ∈ {0, . . . ,m − 1}. Hence, we can

conclude that the degree of n(γ, ω) in ω is 2mpN = O(α2N) and its bitsize is τn =

Õ(mp τF) = Õ(α2 τF).

Theorem 3.1. With the notations of Lemma 3.2, the complexity of Algorithm 2 for the

computation of ∥ F ∥∞, where F ∈ RLp×m
∞ , is given by:

ÕB

(
dγ d

3
ω (d

2
γ + dγ dω + dω τn)

)
= ÕB

(
α9N4 (α + τn)

)
.

Proof. According to [17] and as explained in Subsection 2.7.1, the complexity of the res-

olution of a zero-dimensional bivariate polynomial system using the RUR method comes

from:

1. The computation of the triangular decomposition of the system obtained after shearing

the original system using a separating linear form t = γ + s ω.

2. The root isolation of the univariate polynomial in t defining the associated field ex-

tension.

3. The computation of isolating boxes for the solutions of the system.

In the present case, the degrees in ω and γ are not of the same order (see Lemma 3.2).

Hence, the results of [17] must be adapted.

3.1. NON-PARAMETRIC CASE PROBLEM 103

First, we determine the size and the degree of the sheared system up to the method

used in [17] with respect to the separating linear form t = γ + s ω: with the notations of

Lemma 3.2, the degree with respect to the variable ω of the sheared system is Õ(dγ + dω)

and dγ with respect to the variable t = γ + s ω. Moreover, the size of the sheared system is

Õ(τn + dγ).

Then, from [64], the complexity of the computation of a triangular decomposition of a

polynomial system {P = 0, Q = 0} over Z[x, y], where

dx := max
(
degx(P), degx(Q)

)
, dy := max

(
degy(P), degy(Q)

)
,

and the polynomials are of coefficient bitsize bounded by τ̃ , costs:

ÕB

(
d3x d

3
y + (d3x d

2
y + d4x dy) τ̃

)
.

The triangular decomposition of the sheared system can be computed by considering P =

n(ω, t) and Q = ∂n
∂ω
(ω, t). Thus, the complexity of the computation of the triangular de-

composition of the sheared system in Z[t, ω] is given by:

ÕB

(
(dγ + dω)

3 d3γ + ((dγ + dω)
3 d2γ + (dγ + dω)

4 dγ) (τn + dγ)
)

= ÕB

(
(dγ + dω)

3 dγ
(
d2γ + dγ dω + dω τn + dγ τn)

))
.

Now, using Lemma 3.2, we have dγ = O(α), dω = O(α2N), which shows that we can assume

that dω is larger than dγ. Hence, we obtain ÕB

(
(dγ + dω)

3
)
= ÕB

(
d3ω
)
and ÕB

(
dω τn +

dγ τn
)
= ÕB

(
dω τn), which shows that:

ÕB

(
(dγ + dω)

3 dγ
(
d2γ + dγ dω + dω τn + dγ τn)

)
= ÕB

(
d3ω dγ (d

2
γ + dγ dω + dω τn)

)
.

Moreover, using again dγ = O(α) and dω = O(α2N) by Lemma 3.2, we obtain:

ÕB

(
d3ω dγ (d

2
γ + dγ dω + dω τn)

)
= ÕB

(
α7N3

(
α2 + α3N + α2N τn

))
= ÕB

(
α9N4 (α + τn)

)
.

Now, using [17], the RUR decomposition corresponding to this triangular decomposition

yields the RUR polynomials (ft, fd, fx, fy) of degrees

O
(
(dγ + dω) dγ

)
= O(α3N),

104 CHAPTER 4

with coefficients of bitsize Õ
(
(dγ+dω) (dγ+τn)

)
= Õ

(
α2N (α+τn)

)
. Then the computation

of isolating intervals of the roots of ft can be done in

ÕB

(
(α3N)3 + (α3N)2 (α2N (α + τn))

)
= ÕB

(
α8N3 (α + τn)

)
bit operations, using Theorem 2.10.

Now, let Rγ = Res
(
n, ∂n

∂ω
, ω
)
where size(Rγ) = (dγ dω , dω τn) using Lemma 2.3. Thus,

sep(Rγ) = Õ(dγ d2ω τn) using Lemma 2.2 and denote L = sep(Rγ). Hence, according to

Lemma 3.1 and Lemma 3.2, we can compute L-bit approximations of
fx
fd

and
fy
fd

at the real

roots of ft with a worst case bit complexity

ÕB

(
(α3N)3 + (α3N)2 (α2N (α + τn)) + (α3N) (α5N2) τn

)
= ÕB

(
α8N3 (α + τn)

)
.

Then, based on the discussion of the previous paragraph and up to a permutation of the

roles of x and y, we obtain isolating boxes of the form [ai, bi]× [ci, di] of length in the order

O(L) and thus each interval [ci, di] contains only 1 real γ-projection of the real solutions

of the system since Rγ encodes the γ-projection of the system’s solution. Thus, we can

compare the real values γi ∈ [ci, di].

Finally, the overall worst case bit complexity of Algorithm 2 is then:

ÕB

(
dγ d

3
ω (d

2
γ + dγ dω + dω τn)

)
= ÕB

(
α9N4 (α + τn)

)
.

We illustrate Algorithm 2 with two examples using the Maple commands for the com-

putation of the RUR decomposition and root isolation. It is worthwhile to mention that the

RUR decomposition used in these examples is not the same as the RUR decomposition used

for the complexity analysis which is not implemented in Maple yet but is under construction.

The one existing already in Maple is implemented in C for general zero dimensional systems

and is mainly based on Gröbner basis computation.

Example 39. We consider the following transfer matrix:

G =

1

s+ 1

1

s+ 1

0
1

s+ 1

 ∈ RH2×2
∞ .

3.1. NON-PARAMETRIC CASE PROBLEM 105

Figure 3.1: Plot of n(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis.

Let Φγ(s) = γ2 I2 − GT (−s)G(s) and det(Φγ(i ω)) = n(ω, γ)
d(ω)

. We have to study the real

solutions of Σ =
{
n = 0, ∂n

∂ω
= 0
}
, where the polynomial n is defined by

n(ω, γ) = γ4 ω4 + γ2 (2 γ2 − 3)ω2 + (γ2 + γ − 1)(γ2 − γ − 1)

and the corresponding curve C is shown in Figure 3.1.

We first have that VR(Lcω(n)) = {0}. Then, applying the RUR method to Σ ={
n(ω, γ) = 0, ∂n(ω,γ)

∂ω
= 0
}
, we obtain the following RUR of Σ:

p = (t2 + t− 1)(t2 − t− 1),

γ =
3 t2 − 2

t (2 t2 − 3)
,

ω = 0.

The real solutions (ω, γ) of Σ are then defined by:(
0, −
√
5− 1

2

)
,

(
0, −
√
5 + 1

2

)
,

(
0,

√
5− 1

2

)
,

(
0,

√
5 + 1

2

)
.

106 CHAPTER 4

Figure 3.2: Plot of n(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis.

We can then pick their maximal γ-projection to obtain
√
5+1
2

, which yields:

∥ G ∥∞ = max

{
0,

√
5 + 1

2

}
=

√
5 + 1

2
.

Example 40. We consider the transfer function defined in Example 46 with the particular

numerical values ω0 = 2, ω1 = 1, and ξ = 3/4, i.e.:

G =
s2 + 3 s+ 4

2
(
2 s2 + 3 s+ 2

) .
We first have G(i∞) = 1/4. Doing the computations, we then obtain

n(ω, γ) = (4 γ − 1)(4 γ + 1)ω4 + (2 γ − 1)(2 γ + 1)ω2 + 16 (γ − 1)(γ + 1),

where the curve of C is shown in Figure 3.2.

We can check again that G(i∞) = 1/4 is the maximal real root of Lcω(n). By applying

3.1. NON-PARAMETRIC CASE PROBLEM 107

the RUR method to Σ =
{
n(ω, γ) = 0, ∂n(ω,γ)

∂ω
= 0
}
, we obtain the following RUR of Σ

p = (t− 1)(t+ 1) pt,

γ =
39424 t8 + 2874688 t6 + 54625488 t4 − 118479684 t2 + 69632373

t (62720 t8 + 3856384 t6 + 51759648 t4 − 106855392 t2 + 59868929)
,

ω =
−64 (t− 1) (t+ 1) (15680 t6 + 599760 t4 − 1051140 t2 + 839423)

t (62720 t8 + 3856384 t6 + 51759648 t4 − 106855392 t2 + 59868929)
.

where pt = 12544 t8 + 976640 t6 + 18229856 t4 − 35197840 t2 + 24671089.

The real roots of p are then {t = −1, t = 1}. Thus, the real solutions (ω, γ) of Σ are

defined by: (
0, −1

)
,

(
0, 1

)
.

Picking the maximal γ-projection and comparing it with |G(i∞)|, we finally get:

∥ G ∥∞ = max

{
1

4
, 1

}
= 1.

3.1.2 Root separation method

In this section, we localize the maximal γ-projection of the real solutions of the system Σ ={
n(ω, γ) = 0, ∂n(ω,γ)

∂ω
= 0
}

by only shearing the system Σ using a special linear separating

used in [25]. Using this special linear separating form t = γ + s ω, for two solutions (ω1, γ1)

and (ω2, γ2) of Σ, we then have:

t1 = γ1 + s ω1 < t2 = γ2 + s ω2 =⇒ γ1 ≤ γ2. (3.3)

The problem of computing the maximal γ-projection of the real solutions of Σ is then

reduced to the computation of the maximal real solution of a univariate polynomial in t.

Let P, Q ∈ Z[x, y] be two coprime polynomials, i.e., gcd(P,Q) = 1, and

Ry = Res(P,Q, x) ∈ Z[y] their resultant with respect to x. Let y1 ≤ . . . ≤ ym be the real

roots of Ry with their isolating intervals [c1, d1], . . . , [cm, dm]. Moreover, let us define the

real numbers δ, M and s as follows:
δ < 1

2
mini=1,...,m−1(yi+1 − yi),

M > max {x | (x, y) ∈ VR(⟨P, Q⟩)},

0 < s <
δ

M
.

(3.4)

108 CHAPTER 4

Remark 3.1. Using Proposition 2.4, M can be taken as M = 1 + max |ai|, where the ai’s

are the coefficients of the univariate polynomial Rx = Res(P,Q, y) since Rx embodies the

x-projection of the solutions of {P = 0, Q = 0}. 2 δ can be chosen as the root separation

bound of Ry (defined in Proposition 2.5 and Corollary 2.3).

We can use general root bounds for zero-dimensional systems to estimate δ and M .

See, e.g., [105].

Note that δ can simply be considered to be equal to:

1

2
min

i=1,...,m−1
{ci+1 − di} .

For M , note that the computation of the resultant Rx can be avoided by using the

concept of sleeve functions studied in [26] and [25, Lemma 3.3].

With the notations (3.4), let us consider an invertible linear map (a shear) defined by:

Ψs : R2 −→ R2

(x, y) 7−→ (x, t) = (x, y + s x).

Let us also note

Ψs(P) = P (x, t− s x), Ψs(Q) = Q(x, t− s x), Rt = Res(Ψs(P),Ψs(Q), x),

and let t1 ≤ . . . ≤ tm′ = tmax be the real roots of Rt.

If (x⋆, y⋆) is a solution of {P (x, y) = 0, Q(x, y) = 0}, then (x⋆, y⋆ + s x⋆) is a solution

of {Ψs(P)(x, t) = 0, Ψs(Q)(x, t) = 0}. See Figure 3.3.

To get a one-to-one correspondence between the zeros of {P, Q} and the roots of Rt,

Lcx(Ψs(P)) and Lcx(Ψs(Q)) must not both vanish (since the values where both Lcx(Ψs(P))

and Lcx(Ψs(Q)) vanish represent the common horizontal asymptotes of the curves defined

by Ψs(P) and Ψs(Q)). It is always possible to choose s such that this condition is satisfied

as shown in [25]. In what follows, we shall consider that s always satisfies this condition.

Proposition 3.1. With the above notations, let ym be a real root of Ry with an isolating

interval [cm, dm] and tmax the maximal real root of Rt. If tmax ∈ [cm − δ, dm + δ], then the

maximal y-projection of VR(⟨P, Q⟩) is equal to ym.

Proof. For each real root yi of Ry with an isolating interval [ci, di], let us denote by Pi,j =

(xi,j, yi) the real solutions of {P = 0, Q = 0}. Then, we have

Ψs(Pi,j) = (xi,j, yi + s xi,j),

3.1. NON-PARAMETRIC CASE PROBLEM 109

x

y/t

y1

y2

y3

M

δ

Figure 3.3: The blue dots represent the real solutions of Σ = {P = 0, Q = 0} and the
blue crosses are the complex ones; the red dots are the solutions of the system Ψs(Σ) :=
{Ψs(P) = 0, Ψs(Q) = 0}; the orange dots on the vertical axis are the roots of the univariate
polynomial Rt.

110 CHAPTER 4

where yi+s xi,j is the second coordinate of a real solution of the polynomial system {Ψs(P) =

0,Ψs(Q) = 0}. Note that yi + s xi,j = yi + s xi,k yields xi,j = xi,k. Hence, for a fixed i, the

t-projection of the Ψs(Pij)’s are different. Furthermore, we have |yi + s xi,j − yi| = |s xi,j| <
δ

M
M = δ, which yields:

Ψs(Pi,j) ∈ Ii := [−M, M]× [yi − δ, yi + δ].

Hence, for a fixed i, the t-projection of the Ψs(Pij)’s belong to the same interval Ii. In

addition, since δ < 1
2
(yi+1 − yi), the Ii’s are disjoint for different i. Thus, the linear form

(x, y) 7→ (x, y+ s x) is separating and verifies Property (3.3). Hence, the system {Ψs(P) =

0, Ψs(Q) = 0} is in a generic position in the sense that no two solutions are horizontally

aligned.

Moreover, a real solution (x, y) of {P = 0, Q = 0} is mapped by Ψs to (x, η), where

η ∈ [y− δ, y+ δ]. Finally, since yi ∈ [ci, di], the real roots of Rt associated with yi are in the

interval [ci− δ, di+ δ] and since the above separating form is a one-to-one mapping between

the real solutions of Σ and the real roots of Rt, if tmax ∈ [cm− δ, dm + δ], then the maximal

y-projection of the real roots of Σ has then the isolating interval [cm, dm].

Algorithm 3 Root separation method

Input: A zero-dimensional polynomial system {P, Q} ⊂ Z[x, y], where Q = ∂P
∂x
.

Output: An isolating interval of max
{
πy

(
VR

(
⟨P,Q⟩

))
∪ VR

(
⟨Lcx(P)⟩

)}
1. Isolate Ry = Res(P,Q, x) and let

{
[c1, d1], . . . , [cm, dm]

}
be the isolating intervals of

the real roots
{
y1, . . . , ym

}
of Ry.

2. Compute M , δ = 1
4
mini=1,...,m−1 |ci+1 − di| and s up to the required conditions.

3. Expand
{
Ψs(P),Ψs(Q)

}
and compute Rt = Res (Ψs(P),Ψs(Q), x).

4. Isolate Rt up to an accuracy less than δ and set [pt, qt] to be the isolating interval of
its maximal real root tmax.

5. For j from 1 to m do:

• if [pt, qt] ⊂ [cj − δ, dj + δ], then Y1 = yj.

6. Let Y2 be the maximal real root of Lcx(P).

7. Return the isolating interval of max
{
Y1, Y2

}
.

3.1. NON-PARAMETRIC CASE PROBLEM 111

Lemma 3.3. Let P ∈ Z[x, y], dx = degx(P), dy = degy(P) and τ be the maximal coefficient

bitsize of P . The sheared polynomial P (x, t− s x) then satisfies

degx
(
P (x, t− s x)

)
= dx + dy, degt

(
P (x, t− s x)

)
= dy,

and it can be expanded in ÕB

(
dy d

2
x (τ + dy (1+ τs)

)
bit operations. The maximal bitsize of

the coefficients of P (x, t− s x) is equal to Õ
(
τ + dy (1 + τs)

)
, where τs denotes the bitsize

of s.

Proof. The proof is a direct consequence of [16, Lemma 7] by taking into account the

bitsize τs of s. Let us write P =
∑dx

i=0 ai x
i where ai =

∑dy
j=0 bij y

j. The expansion of the

substitution of y by t− s x in P needs the computation of the successive powers (t− s x)j

for j ∈ {1, . . . , dy}. The binomial formula

(t− s x)dy =

dy∑
j=0

(
dy
j

)
(s x)dy−j tj

first yields:

degx
(
P (x, t− s x)

)
= dx + dy, degt

(
P (x, t− s x)

)
= dy.

It also shows that each polynomial (t− s x)j is the sum of j+1 monomials with coefficients

of bitsize in O(j log j+ dy τs). Using the recursion formula (t− s x)j = (t− s x)j−1 (t− s x),

given the polynomial (t−s x)j−1, the computation of (t−s x)j requires 2 j multiplications of

coefficients having coefficient bitsize in O(j log j+dy τs), which can be done in ÕB(j
2 log j+

j dy τs) bit operations. The worst case bit complexity for the computation of all the powers

(t− s x)j’s is then in:

ÕB

(
d3y (log dy + τs)

)
.

The second step is to multiply xi by (t − s x)ji for i ∈ {1, . . . , dx}. Each polynomial

multiplication can be done with O(dx dy) multiplications of integers of bitsize in O(τ) or

O(j log j + dy τs). Thus, this operation can be done in ÕB

(
dx dy

(
τ + dy (1 + τs)

))
bit

operations and yields polynomials of coefficients bitsize Õ
(
τ + dy(1 + τs)

)
. After operating

dx multiplications, the overall worst case bit complexity is then in:

ÕB(d
2
x dy (τ + dy (1 + τs))).

112 CHAPTER 4

Theorem 3.2. Let us consider a zero-dimensional system {P, Q} ⊂ Z[x, y], where dx =

max(degx(P), degx(Q)), dy = max(degy(P), degy(Q)) and τ the maximal coefficient bit-

size of P and Q. Then, using Algorithm 3, we can compute an isolating interval for the

maximal y-projection of the real solutions of the polynomial system {P = 0, Q = 0} in

ÕB

(
d3x d

4
y τ
(
d2x + dx dy + d2y

))
bit operations.

Proof. Based on Proposition 3.1, Algorithm 3 outputs an isolating interval for the maximal

y-projection of the real solutions of {P, Q}.

As for the complexity computation, note d = deg(Ry) = dy dx. Using Proposition 2.3,

let τ̃ = Õ(dx τ) be the coefficients bitsize of Ry. Then, according to Theorem 2.10, Step 1

of Algorithm 3 is of worst case bit complexity:

ÕB(d
3 + d2 τ̃) = ÕB(d

2
y d

3
x (dy + τ)).

In Step 2, using Lemma 2.2, we get δ = 2−Õ(dy d2x τ). Moreover, using Theorem 2.9 for

Rx = Res(P,Q, y) of size(Ry) = (dx dy, dy τ) (by Proposition 2.3), using Remark 3.1, we then

obtain that M = 2O(dy τ). Hence, the bitsize of s is then equal to Õ(dy d2x τ). Consequently,
as shown in Lemma 3.3, degx(Ψs(P)) = dx+dy, degt(Ψs(Q)) = dy and the maximal bitsize

of the sheared system is Õ(d2y d2x τ) and the worst case bit complexity of Step 3 is then

ÕB(dy (dy + dx)
3 d2y d

2
x τ) = ÕB(d

3
y d

2
x (dy + dx)

3 τ) by Proposition 2.3.

In step 4, we isolate the resultant Rt of the sheared system. Considering the size and

the degree of the sheared polynomials given above, the size and degree of the resultant

of the sheared system are Õ(d2y d3x τ) and Õ(dy (dx + dy)) respectively. Then, knowing the

complexity of the isolation from Theorem 2.10, we can say that the worst case bit complexity

of Step 4 is equal to:

ÕB

((
dy (dx + dy)

)3
+
(
dy (dx + dy)

)2 (
d2y d

3
x τ
))

= ÕB

(
d3x d

4
y τ
(
d2x + dx dy + d2y

))
.

Finally, in Step 5, we simply compare two rational numbers. The maximal coefficient

bitsize of these rationals is in Õ(d3y d3x (dx + dy) τ) and the computation in this step is done

in ÕB(d
3
x d

3
y (dx + dy) τ) bit operations. Hence, the overall bit complexity of Algorithm 3 is

given by ÕB

(
d3x d

4
y τ
(
d2x + dx dy + d2y

))
.

Corollary 3.1. With the notations of Lemma 3.2 and considering dx = dω and dy = dγ, the

worst case bit complexity for the computation of ∥ F ∥∞ with the root separation method

3.1. NON-PARAMETRIC CASE PROBLEM 113

(Algorithm 3) applied on Σ =
{
n(ω, γ) = 0, ∂n(ω,γ)

∂ω
= 0
}
is given by:

ÕB

(
d5ω d

4
γ τn
)
= ÕB

(
α14N5 τn

)
.

Example 41. We again consider the transfer matrix defined in Example 39 and we follow

the root separation method that consists in directly focusing on the maximal γ-projection

of the real solutions of the system. In this case, we first compute Res
(
n, ∂n

∂ω
, ω
)
and denote

by R = γ (γ2 + γ − 1) (γ2 − γ − 1) ∈ Z[γ] its square-free part. Then, the maximal real root

of R has the following isolating interval:

[a, b] =

[
56929509912547

35184372088832
,
113859019825121

70368744177664

]
.

Following the root separation method, we obtain:
s =

12060328540887

281474976710656
,

δ =
43490275647441

140737488355328
.

We have Rt = Res
(
Ψs(n),Ψs(

∂n
∂ω

)
, ω) = α (t2 + t − 1)(t2 − t − 1), where α is a rational of

size around 3000 bits. We denote by tmax the maximal real root of Rt. An isolating interval

of tmax is then given by:

[c, d] =

[
113859019825095

70368744177664
,
56929509912561

35184372088832

]
.

In this case, [c, d] ⊂ [a − δ, b + δ], which, after comparing [a, b] with the isolating interval

of the maximal real root of Lcω(n), shows that ∥ G ∥∞ is equal to the maximal real root of

R has the isolating interval [a, b].

Example 42. We consider again the transfer matrix defined in Example 40. Similarly to

the previous example, we start by computing Res(n, ∂n
∂ω
, ω) and then its square-free part:

R = (γ − 1) (4 γ + 1) (4 γ − 1) (γ + 1) (112 γ4 − 120 γ2 + 7) ∈ Z[γ].

R has 8 distinct real roots. But, since n ∈ Z[ω2, γ2], Σ = {n = 0, ∂n
∂ω

= 0} is symmetric

with respect to the γ-axis and the ω-axis. Hence, to compute an isolating interval for the

maximal γ-projection of the real solutions of Σ, it suffices to look at the set of the isolating

intervals of the 4 largest (positive) real roots of R. This latter set, denoted by LR, is ordered

114 CHAPTER 4

as follows

LR = { [a1, b1], [a2, b2], [a3, b3], [a4, b4] } ,

where [a4, b4] refers to the isolating interval of the maximal real root of R.

The maximal real root of R has the following isolating interval:

[a4, b4] =

[
593098324447812476929

590295810358705651712
,
1186196648895625602425

1180591620717411303424

]
.

Moreover, by following the root separation method, we obtain
s =

1635646176562937524072128919417175

4980610507814138795424615819973140283520749775070691328
,

δ =
85121814626263

144115188075855872
,

and

Rt = Res

(
Ψs(n),Ψs

(
∂n

∂ω

)
, ω

)
= (t− 1)(t+ 1)(α1 t

8 + α2 t
6 + α3 t

4 + α4 t
2 + α5),

where αi are integers of size bounded by 1500 bits. We denote by tmax the maximal real

root of Rt. An isolating interval of tmax is then given by:

[c, d] = [1, 1] .

In this case, [c, d] ̸⊂ [a4 − δ, b4 + δ], which shows that ∥ G ∥∞ is not equal to the maximal

real root of R of isolating interval [a4, b4]. Hence, we pass to [a3, b3] = [1, 1]. For this

isolating interval, it is clear that [c, d] ⊂ [a3 − δ, b3 + δ], which, after comparing γ = 1 with

γ = 1/4, shows that ∥ G ∥∞ is equal to the real root of R with the isolating interval [a3, b3],

that is γ = 1 = ∥ G ∥∞.

From the results obtained in this section, we can conclude that trying to only concen-

trate on the solution with the maximal γ-projection, after putting the system in a generic

position, costs much more than simply computing isolating boxes for all the real solutions

(see Section 3.1.1), due to the large size of the separating bound that must be used. Hence,

in the next section, using a different strategy than shearing the system, we shall try to find

the maximal γ-projection of the solutions of Σ without computing isolating boxes for all of

its real solutions.

3.1. NON-PARAMETRIC CASE PROBLEM 115

3.1.3 Sturm-Habicht method

In this section, as in Section 3.1.2, we shall concentrate only on the maximal γ-projection

γ̄ of the real solutions of the following polynomial system:

Σ =

{
n(ω, γ) = 0,

∂n(ω, γ)

∂ω
= 0

}
.

But instead of shearing the system Σ, we shall verify the existence of a real root of Σ over

γ̄, i.e., for γ = γ̄, by studying the sign variation of the leading coefficients of subresulant

polynomials over γ̄ (see Sections 2.4 and 2.5).

As stated in Chapter 1, we aim at computing

γ̄ = max

{
πγ

(
VR

(〈
n,

∂n

∂ω

〉))
∪ VR (⟨Lcω(n)⟩)

}
,

where n is the square-free part of the numerator of det
(
γ2 Im − F T (−i ω)F (i ω)

)
. Hence,

γ̄ is either the maximal real root of Lcω(n) or an algebraic value over which the polynomial

gcd
(
n(ω, γ̄), ∂n

∂ω
(ω, γ̄)

)
in ω has at least one real root. We recall that gcd

(
n(ω, γ̄), ∂n

∂ω
(ω, γ̄)

)
is

proportional to the first subresultant polynomial Sresi
(
n, ∂n

∂ω
, ω
)
(for i increasing) that does

not identically vanish for γ = γ̄ (see Theorem 2.6). If γ̄ is not a real root of Lcω(n), then

we can compute the Sturm-Habicht sequence of the univariate polynomial n(ω, γ̄) ∈ R[ω] to

check the existence of a real root for gcd
(
n(ω, γ̄), ∂n

∂ω
(ω, γ̄)

)
.

In what follows, we shall need the next results.

The first lemma provides a bound on the complexity for the evaluation of a univariate

polynomial at a given rational point.

Lemma 3.4 (Lemma 6 of [16]). Let a be a rational of bitsize τa. The evaluation at a of

a univariate polynomial P of degree d and rational coefficients of bitsize τ can be done in

ÕB

(
d (τ + τa)

)
bit operations and P (a) has bitsize in O(τ + d τa).

Lemma 3.5. Let P ∈ Z[x, y] and ȳ be a real root of Res
(
P, ∂P

∂x
, x
)
. Moreover, let us

note G = gcd
(
P (x, ȳ), ∂P

∂x
(x, ȳ)

)
∈ R[x]. If the y-projection of the points of the real plane

algebraic curve {(x, y) ∈ R2 | P (x, y) = 0} is bounded by ȳ, then we have VR(⟨P (x, ȳ)⟩) =
VR(⟨g(x, ȳ)⟩).

Proof. VR(⟨G(x)⟩) is clearly a subset of VR(⟨P (x, ȳ)⟩). Now, if we have VR(⟨G(x)⟩) ⊊
VR(⟨P (x, ȳ)⟩), then there exists x0 ∈ R such that P (x0, ȳ) = 0 and G(x0) ̸= 0. This is

equivalent to saying that P (x0, ȳ) = 0 and ∂P
∂x
(x0, ȳ) ̸= 0. Hence, based on the implicit

function theorem, there exists a real function φ of class Cp (p > 0), defined on an open

116 CHAPTER 4

interval V ⊂ R, containing ȳ, and an open neighborhood Ω of (x0, ȳ) in R2 such that

{(x, y) ∈ Ω | P (x, y) = 0} is equivalent to {y ∈ V | x = φ(y)}. This cannot be true since

the y-projection of the points of the curve {(x, y) ∈ R2 | P (x, y) = 0} is bounded by ȳ,

and thus, an open interval containing ȳ, such as V , does not exist. Consequently, we obtain

VR(⟨P (x, ȳ)⟩) = VR(⟨G(x)⟩).

Algorithm 4 Sturm-Habicht method

Input: A bivariate polynomial P ∈ Z[x, y] − seen as univariate in x − such that the
{(x, y) ∈ R2 | P (x, y) = 0} is bounded in the y-direction.
Output: Isolating interval of max

{
πy

(
VR

(〈
P, ∂P

∂x

〉))
∪ VR (⟨Lcx(P)⟩)

}
.

1. Compute {Sresj(P, ∂P∂x , x)}j=0,...,degx(P).

2. Compute y1 < . . . < ym the real roots of sres0.

3. For i from 1 to m do:

• if y1−i+m ∈ VR(⟨Lcx(P)⟩) then return the isolating interval of y1−i+m;

• elif SignVar({sign(sthadx(y1−i+m)), . . . , sign(stha1(y1−i+m))}) > 0, then return
the isolating interval of y1−i+m.

Lemma 3.6. Let P ∈ Z[x, y], dx = degx(P), dy = degy(P) and τ be the maximal coefficients

bitsize of P . Let {StHaj
(
P (x, y), 1

)
}j=0,...,dx be the Sturm-Habicht sequence and yj a real

root of sres0
(
P, ∂P

∂x
, x
)
. Then,

{
sign

(
sthak(yj)

)}
k=dx,...,1

can be computed in ÕB

(
d2y d

4
x (dy +

τ)
)
bit operations.

Proof. We denote by sres0 (resp., sresi) sres0
(
P, ∂P

∂x
, x
)
(resp., sresi

(
P, ∂P

∂x
, x
)
), where sresi ∈

Z[y]. We first recall that sthai(yj) = δdx−1−i sresi(yj). See Definition 2.5. Based on Propo-

sition 2.3, sresi is of degree dx dy and of coefficient bitsize dx τ . Thus, the square-free part

of sres0 is of coefficient bitsize O
(
dx (dy + τ)

)
and, based on Theorem 2.2, can be computed

in ÕB(d
2
y d

3
x τ). Hereafter in the proof, we consider sres0 to be square-free and we denote

its degree by D and its coefficient bitsize by T . Similarly, the degree of sresi is denoted

by D′ and its coefficient bitsize by T ′. Let hi = gcd(sres0, sresi). We can compute hi in

ÕB(D
2 T) bit operations, where hi is of degree O(D) and of coefficient bitsize Õ(D′ + T ′)

based on Theorem 2.2. The roots of the polynomial Si = sres0 sresi are the roots of sres0

and sresi. Thus, its separation bound provides a bound on how close are the (non-common)

3.1. NON-PARAMETRIC CASE PROBLEM 117

roots of sres0 and the roots of sresi. The isolating intervals of the real roots of Si are iso-

lating intervals for the real roots of sres0, for the real roots of sresi and for the real roots

hi. Such interval has endpoints of bitsize si. Moreover, by the aggregate version of the sep-

aration bound [96, Corollary 3], we have
∑

i si = Õ(D T). If we refine an isolating interval

Ij = [aj, bj] of a real root yj of the polynomial sres0, up to the accuracy Õ(D T), then we

are sure that no other real root of sres0 or sresi or hi exists in the obtained refined interval.

In other words, we are certain that yj is the only root of sres0 and sresi that is contained in

the obtained refined interval. Based on Theorem 2.10, this can be done in ÕB(D
3 +D2 T).

Next, we evaluate hi at the endpoint of the refined interval. By Lemma 3.4, each evalua-

tion costs ÕB

(
D (D′ + T ′ +D T)

)
bit operations. Then, we get two cases for the value of

sresi at yj: If yj is a root of hi, and thus a common root of sres0 and sresi, then the two

evaluations will have different signs and sresi(yj) = 0. If yj is not a root of hi, and thus

not a root of sresi, then the two evaluations have the same sign. Since there is no root

of sresi in the refined interval [aj, bj], sresi has a constant sign at this interval. Hence, it

suffices to evaluate sresi at one of the endpoints to obtain the sign
(
sresi(yj)

)
. Finally, to

obtain the list
{
sign

(
sthadx(yj)

)
, . . . , sign

(
stha1(yj)

)}
, we proceed the evaluation of sresi

over an endpoint of the refined interval of yj for i ∈ {1, . . . , dx}. Each evaluation costs

ÕB

(
D′ (T ′ +DT)

)
, where D T is the bit size of the isolating interval endpoints. Therefore,

the dx evaluations over all the principle subresultants cost ÕB

(
dx D

′ (T ′ + DT)
)
. Thus,

the overall cost for obtaining the list
{
sign

(
sthadx(yj)

)
, . . . , sign

(
stha1(yj)

)}
is in the order

ÕB

(
d2y d

4
x (dy + τ)

)
.

Theorem 3.3. Let P ∈ Z[x, y] be such that dx = degx(P), dy = degy(P) and of maximal

coefficient bitsize τ . Then, we can compute an isolating interval of the maximal y-projection

of the real solutions of {P = 0, ∂P
∂x

= 0} (Algorithm 4) in ÕB

(
d2y d

4
x (dy + τ)

)
bit operations

in the worst case.

Proof. The maximal y-projection of the real solutions of
{
P = 0, ∂P

∂x
= 0

}
is the maximal

real root of sres0
(
P, ∂P

∂x
, x
)
, say ym, such that gcd

(
P (x, ym),

∂P
∂y
(x, ym)

)
has at least one

real root. If the y-projection of the points of P is bounded by ym, then, by Lemma 3.5,

the real roots of gcd
(
P (x, ym),

∂P
∂x
(x, ym)

)
are the real roots of P (x, ym). Consequently, we

can compute an isolating interval of ym using Algorithm 4. According to Proposition 2.3,

we can compute the set of principal subresultants in ÕB(dy d
3
x τ) bit operations and each

subresultant polynomial is of degreeO(dx dy) and of coefficient bit size Õ(dx τ). Thus, Step 2

of Algorithm 4, which performs real root isolation of sres0, is of complexity Õ
(
(dx dy)

3 +

(dx dy)
2 dx τ

)
by Theorem 2.10. Using Lemma 3.6, Step 3 of Algorithm 4 can be done in

ÕB

(
d2y d

4
x (dy + τ)

)
operations since its first step is of complexity ÕB(d

3
y + d2y τ). Hence, the

118 CHAPTER 4

overall complexity of this algorithm is:

ÕB

(
d2y d

4
x (dy + τ)

)
.

Considering the notations of Lemma 3.2, the following result is an immediate conse-

quence of the fact that the curve {(ω, γ) ∈ R2 | n(ω, γ) = 0} is bounded in the direction of

γ (see Section 1.4) and Theorem 3.3.

Corollary 3.2. Based on Theorem 3.3, with the notations of Lemma 3.2, and by considering

dx = dω, dy = dγ, the worst case bit complexity for the computation of ∥ F ∥∞ with the

Sturm-Habicht method (Algorithm 4) applied to the polynomial n(ω, γ) defined by (3.1) is

given by:

ÕB

(
d4ω d

2
γ (dγ + τn)

)
= ÕB

(
α10N4 (α + τn)

)
.

In Algorithm 5, we suppose that there are no real isolated singular points, and thus,

we replace the computation of signs of polynomials at real algebraic numbers by signs of

polynomials at rational numbers. Syntactically, these are small modifications but the effect

on the computations is consequent in practice, as well as in theory, since the evaluation of

signs of polynomials at real algebraic numbers carries the theoretical worst case complexity

of Algorithm 4.

Algorithm 5 Sturm-Habicht method − equidimensional

Input: A bivariate polynomial P ∈ Z[x, y] − seen as univariate in x − such that the
algebraic plane curve {(x, y) ∈ R2 | P (x, y) = 0} is bounded in the y-direction and has not
real isolated singular points.
Output: An isolating interval of max

{
πy

(
VR

(〈
P, ∂P

∂x

〉))
∪ VR (⟨Lcx(P)⟩)

}
1. Compute {StHaj(P, 1)}j=0,...,degx(P).

2. Let y1 < . . . < ym be the real roots of sres0.

3. for i from 1 to m do:

• if y1−i+m ∈ VR(Lcx), then return the isolating interval of y1−i+m;

• else let Y ′ ∈ Q such that ym−i < Y ′ < y1−i+m;

– if SignVar
({

sign(sthadx(Y
′)), . . . , sign(stha1(Y

′))
})

> 0, then return the
isolating interval of y1−i+m;

3.1. NON-PARAMETRIC CASE PROBLEM 119

Theorem 3.4. Let P ∈ Z[x, y] be a bivariate polynomial of maximal coefficient bitsize τ

and let dx = degx(P) and dy = degy(P). Moreover, let us suppose that VR(⟨P ⟩) has no

isolated singular points. Using Algorithm 5, an isolating interval of the maximal y-projection

of the real solutions of {P = 0, ∂P
∂x

= 0} can be computed in the worst case bit complexity

ÕB(d
2
y d

4
x τ).

Proof. As mentioned in the proof of Theorem 3.3, we can compute the set of principal

subresultants in ÕB(dy d
3
x τ) bit operations and, by Proposition 2.3, each subresultant poly-

nomial is of degree O(dx dy) and of coefficient bitsize Õ(dx τ). Thus, Step 2 of Algorithm 5,

which performs the real root isolation of sres0, is of complexity Õ
(
(dx dy)

3 + (dx dy)
2 dx τ

)
by Theorem 2.10. Steps 3 and 4 are of same bit complexity: in these steps, we perform

O(dx) evaluations of the principal subresultant polynomials over a rational number which is

between two real roots of sres0. This rational number is of worst possible coefficient bitsize

ÕB(d
2
x dy τ), which is equal to the separating bound of sres0. According to Lemma 3.4, the

dx evaluations are done in ÕB

(
dx
(
dx dy (dx τ + dy d

2
x τ)
))

= ÕB(d
2
y d

4
x τ). Hence, the overall

cost is given by ÕB(d
2
y d

4
x τ).

Corollary 3.3. Based on Theorem 3.4, ∥ F ∥∞ can be computed by the Sturm-Habicht

method (Algorithm 5) in the worst case bit complexity ÕB(α
10N4 τn).

From the above complexity analysis, we can conclude that RUR method and the Sturm-

Habicht method have comparable theoretical complexities since, we usually have α≪ N .

The next proposition proves that the curve C = {(ω, γ) ∈ R2 | n(ω, γ) = 0}, associated
with the L∞-norm computation of an element F ∈ RL∞ (e.g., stable SISO systems), has

no (isolated) singularities. Hence, Corollary 3.3 holds for F ∈ RL∞ and ∥ F ∥∞ can be

computed by Algorithm 5.

Proposition 3.2. The curve C = {(ω, γ) ∈ R2 | n(ω, γ) = 0}, associated with the L∞-norm

computation of an element F ∈ RL∞ has no (isolated) singularities.

Proof. Let F ∈ RL∞, i.e., F = a/b, where a, b ∈ R[s], gcd(a, b) = 1, q = degs(a) ≤ r =

degs(b), and b does not vanish on iR. See Section 1.3. In this case, F (i∞) = 0 if q < r, (i.e.,

if F is strictly proper) or F (i∞) = ar/br if q = r (i.e., if F is proper), where ar = Lcs(a)

and br = Lcs(b). Moreover, we have:

Φγ(i ω) = γ2 − F (−i ω)F (i ω) = γ2 − |F (i ω)|2.

Writing |F (i ω)|2 = |a(i ω)|2/|b(i ω)|2 = N(ω)/D(ω), where N and D are coprime polyno-

120 CHAPTER 4

mials of R[ω2], we then have:

Φγ(s) = γ2 − N(ω)

D(ω)
=

D(ω) γ2 −N(ω)

D(ω)
.

Hence, we get n(ω, γ) = D(ω) γ2−N(ω). Let us define the polynomial system defining the

set of singular points of the curve C = {(ω, γ) ∈ R2 | n(ω, γ) = 0}:

Σ′ =

{
n(ω, γ) = 0,

∂n

∂ω
(ω, γ) = 0,

∂n

∂γ
(ω, γ) = 0

}
.

More precisely, we have:

Σ′ =

n(ω, γ) = D(ω) γ2 −N(ω) = 0,

∂n

∂ω
(ω, γ) = D′(ω) γ2 −N ′(ω) = 0,

∂n

∂γ
(ω, γ) = 2D(ω) γ = 0,

Hence, D(ω) ̸= 0 for all ω ∈ R implies that (ω, γ) ∈ Σ′ if and only if γ = 0 and N
′
(ω) =

N(ω) = 0. Consequently, for all F ∈ RL∞ such that F ̸= 0, n(ω, γ) has no real (isolated)

singular points, and the proof holds.

Example 43. Let us consider the transfer function defined in Example 46 for the particular

numerical values ω0 = 2, ω1 = 1 and ξ = 1/2, i.e.:

G =
s2 + 2 s+ 4

4 (s2 + s+ 1)
.

Then, we obtain the polynomial

n(ω, γ) = (4 γ − 1) (4 γ + 1)ω4 − 4 (2 γ − 1) (2 γ + 1)ω2 + 16 (γ − 1) (γ + 1),

which defines the real plane algebraic curve plotted in Figure 3.4.

We can check that G(i∞) = 1/4. This value can be again found as the maximal real

root of Lcω(n), and thus, as a real root of Rγ = Res
(
n, ∂n

∂ω
, ω
)
.

Let us consider Σ = {n = 0, ∂n
∂ω

= 0}. To obtain the γ-projection of the real solutions

of Σ, we compute the square-free part R of Rγ:

R = (γ − 1) (γ + 1) (4 γ + 1) (4 γ − 1) (16 γ4 − 20 γ2 + 1) ∈ Z[γ].

3.1. NON-PARAMETRIC CASE PROBLEM 121

Figure 3.4: Plot of n(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis.

Then, the maximal real root of R has the following isolating interval:

[a, b] =

[
330777375898726576606529

302231454903657293676544
,
82694343974681644152665

75557863725914323419136

]
.

Following Algorithm 5, it suffices to verify the existence of a real root for the univariate

polynomial n(ω, a) ∈ Q[ω]. This can be easily verified through many ways, but using

Algorithm 5, we compute L = [sthai(n, 1)]i=1,...,degω(n)=4:

L = [−24 (2 γ + 1) (2γ − 1) (16 γ4 − 20 γ2 + 1) (4 γ − 1)2 (4 γ + 1)2, 2 (2 γ + 1)

(2 γ − 1) (4 γ − 1)2 (4 γ + 1)2, 4 (4 γ − 1) (4 γ + 1), (4 γ − 1)(4 γ + 1)].

After substituting γ = a in L, we obtain the list of signs Ls = [0,+,+,+]. Then, we have

SignVar(Ls) = 2 and we conclude that n(ω, [a, b]) admits two real roots. Comparing a

with the maximal real root of Lcω(n), we can then say that ∥ G ∥∞ is equal to the maximal

real root of R having an isolating interval [a, b].

Example 44. We consider again the transfer matrix defined in Example 39. As done in

122 CHAPTER 4

Example 41, we compute Rγ = Res(n, ∂n
∂ω
, ω) and its square-free part:

R = γ (γ2 + γ − 1) (γ2 − γ − 1) ∈ Z[γ].

Then, the maximal real root of R has the following isolating interval:

[a, b] =

[
56929509912547

35184372088832
,
113859019825121

70368744177664

]
.

We now have to check the existence of a real root for the univariate polynomial n(ω, [a, b]).

To do that, we first compute

L = [sthai(n, 1)]i=1,...,degω(n)=4 = [−5 γ14 (2 γ2 − 3),−2 γ10 (2 γ2 − 3), 4 γ4, γ4].

Then, we compute the list of signs of the elements of L over [a, b]. We obtain the list

Ls = [−,−,+,+]. Hence, SignVar(Ls) = 1 and we can conclude that n(ω, [a, b]) admits

one real root. Hence, after comparing [a, b] with the isolating interval of the maximal real

root of Lcω(n), we can say that ∥ G ∥∞ is equal to the maximal real root of R having an

isolating interval [a, b].

Example 45. We consider again the transfer matrix of Example 40. We start by com-

puting the square-free part R of Rγ = Res(n, ∂n
∂ω
, ω) and then isolating intervals for its real

roots. Since G ∈ RL∞, n(ω, γ) has no real (isolated) singular points and thus, we can use

Algorithm 5 to compute ∥ G ∥∞. Let us consider L = [sthai(n, 1)]i=1,...,degω(n)=4, where:

L =[9 (2 γ + 1) (2γ − 1) (112 γ4 − 120 γ2 + 7) (4 γ − 1)2 (4 γ + 1)2,−2 (2 γ + 1)

(2 γ − 1) (4 γ − 1)2 (4 γ + 1)2, 4 (4 γ − 1) (4 γ + 1), (4 γ − 1) (4 γ + 1)].

With the notations used in Example 42, we substitute γ = a4 in L for verifying the existence

of a real root for the univariate polynomial n(ω, a4) ∈ Q[ω] and we obtain Ls = [0,−,+,+].

Hence, we have SignVar(Ls) = 0 and we can conclude that n(ω, [a4, b4]) admits no real

roots. Next, we substitute γ = a3 in L and we obtain the list of signs Ls = [−,−,+,+]

and SignVar(Ls) = 2. Hence, we can say that n(ω, [a3, b3]) admits two real roots. After

comparing γ = 1 with the isolating interval [a3, b3] with the maximal real root γ = 1/4 of

Lcω(n), we conclude that ∥ G ∥∞ is equal to γ = 1.

In the next section, we shall generalise the methods developed in Section 3.1 for the

computation of L∞-norm of F ∈ RLp×m
∞ to the case where F also depends on parameters

α. The searched value γ will then be represented as a real function of α. For a precise

3.2. PARAMETRIC CASE 123

parameter value α⋆, we know that the system Σ has a constant number of real solutions.

Thus, to solve our problem in presence of parameters, we shall choose a finite number of

representative parameter values that cover the conditions we are searching for. This can be

done by using the well-known concept in computer algebra so-called Cylindrical Algebraic

Decomposition (CAD) (see Section 2.8.2).

3.2 Parametric case

In this section, we consider the case of a matrix which coefficients depend on a set of

parameters α = (α1, . . . , αd). Adapting the previous definitions, we obtain the following

proposition.

Corollary 3.4. Let α = (α1, . . . , αd) be a set of unknown parameters. Let F ∈ RLp×m
∞ and

n ∈ Z[α][ω, γ] be defined by (3.1). We consider:{
Σ =

{
(ω, γ, α) ∈ R2+d | n(ω, γ, α) = 0, ∂n

∂ω
(ω, γ, α) = 0

}
,

Σ∞ =
{
(γ, α) ∈ R1+d | Lcω(n) = 0

}
.

Thus, we have:

∀ α ∈ Rd, ∥ F ∥∞= max

(
πγ(Σ) ∪ Σ∞

)
.

In other words, the norm that we aim at computing is in this case is a function of the

parameters. By substituting the parameters with random rational values, we can simply

compute the L∞-norm of a transfer matrix by applying one of the proposed methods in

Section 3.1. Yet, there is no guarantee that parameter values with the desired properties

can be found even if they exist. Therefore, to compute the L∞-norm based on the stated

definitions, it is essential to choose a finite number of representative “good” parameter

values that cover all possible cases. This set of “good” parameter values can be expressed

as a finite disjoint union of connected open sets. Within the same set, the number of the

system real solutions does not change when the parameters vary, and moreover, the position

of the curves representing the γ-projection of the system’s solutions does not change. This

last detail is crucial since we are mainly interested in the maximality of γ.

124 CHAPTER 4

Example 46. We compute the L∞-norm of the following transfer function

G =

(
s

ω0

)2

+ 2 ξ

(
s

ω0

)
+ 1(

s

ω1

)2

+ 2 ξ

(
s

ω1

)
+ 1

,

depending on three parameters ξ, ω0, ω1 ∈ R>0, ω0 ̸= ω1, where 0 < ξ ≤ 1. Hence,

∥ G ∥∞ is a function on these parameters. This norm is explicitly computed in the following

Proposition 3.3.

Proposition 3.3. Let ω0, ω1 ∈ R>0, ω0 ̸= ω1, 0 < ξ ≤ 1 and:

G =

(
s

ω0

)2

+ 2 ξ

(
s

ω0

)
+ 1(

s

ω1

)2

+ 2 ξ

(
s

ω1

)
+ 1

.

Set r = ω1/ω0, µ = 4 ξ2 (ξ − 1) (ξ + 1) and let δ be the maximal real root of:

M = µ γ4 +
(
(r2 − 1)2 − 2µ r2

)
γ2 + µ r4 ∈ R[γ].

Then, the L∞-norm of G is given by:

∥ G ∥∞ =

 max{1, r2} if ξ ≥ 1√
2
,

δ if ξ < 1√
2
.

(3.5)

Before proving Proposition 3.3, we first give two useful lemmas.

Lemma 3.7. Let us consider ξ, ω0, ω1 ∈ R>0, ω0 ̸= ω1, 0 < ξ < 1, r = ω1/ω0, and

µ = 4 ξ2 (ξ − 1) (ξ + 1). Then, the following polynomial

M1 = µX2 +
(
(r2 − 1)2 − 2µ r2

)
X + µ r4 ∈ R[X]

has two positive real roots X1 and X2 verifying 0 < X1 < 1 < X2 and X2 > r4.

Proof. The discriminant of M1 is ∆ = (r+1)2 (r− 1)2
(
(r2− 1)2− 4µ r2

)
. Since 0 < ξ ≤ 1,

we get −µ ≤ 0, and thus, ∆ > 0, which shows that M1 has two distinct real solutions,

3.2. PARAMETRIC CASE 125

denoted by X1 and X2 with the assumption that X1 < X2. Moreover, we have

X1X2 = r4 > 0, X1 +X2 =
(r2 − 1)2 − 2µ r2

−µ
> 0,

which yields X1> 0 and X2 = r4/X1 > 0. Now, if we let x := X − 1, then we get

M1(X) = M1(x+ 1) = m(x), where:

m(x) = µx2 +
(
(r2 − 1)2 − 8 ξ2 (1− ξ2) (r2 + 1)

)
x+ (2 ξ2 − 1)2 (r − 1)2 (r + 1)2.

Clearly, the two roots of m are X1 − 1 and X2 − 1, and we have

(X1 − 1) (X2 − 1) =
(2 ξ2 − 1)2 (r − 1)2 (r + 1)2

µ
< 0,

which shows that X1 < 1 and X2 > 1 since X1 < X2. Finally, X1 < 1 yields X2 = r4/X1 >

r4, which proves the result.

Lemma 3.8. Let ω0, ω1 ∈ R>0, ω0 ̸= ω1, 0 < ξ < 1, ξ ̸= 1/
√
2, r = ω1/ω0 and β = 2 ξ2− 1.

Then, the following polynomial

L = β Y 2 + ω2
0 (r

2 + 1)Y + β r2 ω4
0 ∈ R[Y]

has two positive real roots if and only if 0 < ξ < 1/
√
2.

Proof. The discriminant of L is δ = w4
0 (r

2 + 2 β r + 1) (r2 − 2 β r + 1). We have β2 − 1 =

4 ξ (ξ − 1) < 0, and thus, the discriminant 4 (β2 − 1) of the two polynomials r2 + 2 β r + 1

and r2 − 2 β r + 1 is negative, which yields δ > 0 and thus, L has two distinct real roots.

The product of these roots is r2 ω4
0 > 0 and their sum is ω2

0 (r
2 + 1)/(−β). Since β < 0 if

and only if 0 < ξ < 1/
√
2, we obtain that the sum is positive if and only if 0 < ξ < 1/

√
2,

which then implies that L has two positive real roots only when 0 < ξ < 1/
√
2.

We can tate the proof of Proposition 3.3 based on Lemmas 3.7 and 3.8.

Proof. Let N and D be two polynomials such that:

G(−i ω)G(i ω) =
N(ω)

D(ω)
.

126 CHAPTER 4

Let n(γ, ω) = D(ω) γ2 −N(ω), α = [r, ω0, ξ] ∈ R3 and consider{
Σ =

{
(ω, γ) ∈ R2, n(ω, γ) = 0, ∂n

∂ω
(ω, γ) = 0

}
,

Σ∞ =
{
γ ∈ R, Lcω(n) = 0

}
.

Doing the computation, we obtain

n = (γ2 − r4)ω4 + 2 r2 ω2
0 β (γ2 − r2)ω2 + r4 ω4

0 (γ
2 − 1),

where β = 2 ξ2 − 1. The resultant R of n(ω, γ) and ∂n
∂ω
(ω, γ) with respect to ω is then:

R = 256w12
0 r12 (γ2 − 1) (γ2 − r4)2M2,

where M = µ γ4 + ((r2 − 1)2 − 2µ r2) γ2 + µ r4, i.e., M(γ) = M1(γ
2) with M1 defined in

Lemma 3.7. By assumptions on the parameters, M1(X) has two positive real solutions, X1

and X2, and thus, M has the four real roots ±
√
X1, ±

√
X2. Thus, based on the properties

of the resultant polynomial, we have:

∥ G ∥∞= max

{{
1, r2,

√
X1,

√
X2

}
∩
(
πγ(Σ) ∪ Σ∞

)}
.

1. For γ = r2: Lcω(n) = (γ2 − r4) = 0, i.e, r2 ∈ Σ∞.

2. For γ = 1, we get:{
n(ω, 1) = (r2 − 1)ω2 f1,

q(ω, 1) = 4 (r2 − 1)ω f2,
,

{
f1 := (r2 + 1)ω2 + 2 r2 ω2

0 (2 ξ
2 − 1),

f2 := (r2 + 1)ω2 + r2 ω2
0 (2 ξ

2 − 1).

Hence, Res(f1, f2, ω) =
(
ω0 r

2 (ξ2+1) (r2+1)
)2

does not vanish. Thus, gcd(f1, f2) = 1,

which yields gcd
(
n(ω, 1), q(ω, 1)

)
= (r2 − 1)ω and proves:

(ω, γ) = (0, 1) ∈ Σ.

3. For γ real root of M : The point is to verify that γ ∈ πγ(Σ). For doing so, we start

by computing F = Res(n(ω, γ), ∂n
∂ω
(ω, γ), γ). We recall that based on the properties

of resultants, πω(Σ) ⊂ V (F), where F ∈ R[ω]:

3.2. PARAMETRIC CASE 127

F = c ω2 F 2
1 ,

{
F1 = β ω4 + ω2

0 (r
2 + 1)ω2 + r2ω4

0 β,

c = 16 ω20
0 r8 (r2 − 1)2.

We notice that the roots of F1 ∈ R[ω], are the ω-coordinates of

(ωi,j, γi) ∈ VR×C(⟨n, ∂n
∂ω
⟩), where γi ∈ VR(M): In fact, we have seen that

πω

(
V
(
⟨n(ω, ±1), ∂n

∂ω
(ω, ±1) ⟩

))
= 0. By taking into consideration the power and

degree of the factor ω in F and the power and degree of the factor γ2 − 1 in R, and

by following the properties of the resultant concerning root multiplicity (see, e.g.,

[32, Chapter 4]), we can say that

(ω, γ) ∈ Σ, γ = ±1 ⇐⇒ ω = 0.

With this being said, let L ∈ R[Y] be the polynomial obtained after substituting ω2

by Y in F1. Based on Lemma 3.8, L has two positive real roots if and only if ξ <
√
2
2
.

Thus we can conclude two cases:

• For ξ <
√
2
2
, F1 ∈ R[ω] has four real roots. Thus,

∀γi ∈ VR(M), ∃ ωi,j ∈ VR(F1), such that (ωi,j, γi) ∈ Σ.

Consequently, based on Lemma 3.7 where we proved that

X1 < 1 < X2, X2 > r4,

we can say that δ =
√
X2 > r2, and we conclude that ∥ G ∥∞= δ.

• For ξ >
√
2
2
, F1 has no real roots in ω. In this case, none of the real roots of M

is a good candidate, and we conclude that:

∥ G ∥∞ = max {1, r2}.

4. For ξ =
√
2
2
, M = c (γ2 − 1) (γ2 − r4), where c ∈ R. In this case, we have:

∥ G ∥∞ = max {1, r2}.

128 CHAPTER 4

5. Similarly, for ξ = 1, M = c γ (γ2 − 1) (γ2 − r4) where c ∈ R. Then, we have:

∥ G ∥∞ = max {1, r2}.

A way for obtaining such decomposition is by computing a Cylindrical Algebraic De-

composition (CAD) of Rd+2 adapted to {n(ω, γ) = 0, ∂n
∂ω
(ω, γ) = 0} and a semi-algebraic

set Sp containing the inequalities verified by the parameters. But it may give us a result

very huge and difficult to analyse in practice, and with lots of cells we are not interested in.

In fact, we are just interested in the cells where the curves representing the γ-projection of

the system solutions, when they exist, are continuous and do not intersect.

In the first step in order to obtain a decomposition easier to manipulate, we shall

compute the discriminant variety R of
{
n(ω, γ) = 0

}
with respect to Πα,γ, where n(ω, γ)

is seen as a univariate polynomial in ω. We recall that this discriminant variety is the set

of parameter values leading to non-generic solutions of the system, for example, infinitely

many solutions, solutions at infinity, or solutions of multiplicity greater than 1. It is simply

the resultant polynomial of the polynomial n(ω, γ) and its derivative with respect to the

main variable ω, i.e., R = Res
(
n(ω, γ), ∂n

∂ω
(ω, γ), ω

)
∈ Q[α][γ]. In this case, R = 0 is a

sub-variety of Rd+1 and the complement of R = 0, Rd+1\{R = 0}, can be expressed as a

finite disjoint union of cells, which are connected open sets, such that the number of the

system real solutions ω does not change when the parameters vary within the same cell.

In the second step, we shall consider the variable γ as the main variable in the poly-

nomial R ∈ Q[α, γ] for it is the polynomial embodying the γ-projection of the system{
n(ω, γ) = 0, ∂n

∂ω
(ω, γ) = 0

}
. In this case, the γ-projection of the system solutions is

considered as a real function of α such that the position of the curves representing γ(α) = 0

changes after each intersection of at least two curves in Rd. We shall thus decompose Rd into

cells where no changes in the position of the curves of γ(α) occur in order to be able to locate

the maximal value γ over a given cell. For doing so, we can naturally propose to eliminate

from the parameter space the set of “bad” parameter values leading to non-generic solutions

of R = 0, i.e., the discriminant variety of {(α, γ) ∈ Rd+1 | R = 0} ∪ Sp with respect to Πα,

that we denote R2. We recall that in this case, R2 is simply the curve of the discriminant

of R with respect to the variable γ, multiplied by the leading coefficient of R with respect

to γ, i.e., Res
(
R, ∂R

∂γ
, γ
)
∈ Z[α], up to some curves related to the inequalities of Sp.

Then, using a CAD, we can decompose C = Rd\R2 into connected cells, above each

cell, the variable γ is represented as real valued functions depending continuously on the

3.2. PARAMETRIC CASE 129

parameters, whose graphs are disjoint.

We represent the algorithm describing our proposed method.

The proposed algorithm Let
{
C1, . . . , Cl

}
be the partition of C, and let samplei be a

sample point in Ci. We consider indexi to be the index of

γmax = max
{
πγ

(
VR

(〈
n,

∂n

∂ω

〉))
∪ VR (⟨Lcω(n)⟩)

}
in the sorted set of the real roots of R. Thus, we can represent the searched value over a

cell Ci by the couple [Ci, indexi].

We denote non parametric one of the proposed methods for computing γmax in the

non-parametric case. Thus, we state Algorithm 6 that, given as input a bivariate polynomial

system Σ = {n, ∂n
∂ω
} of unknowns [ω, γ] and depending on the parameters set α = [α1, . . . , αd]

that verifies certain conditions, outputs a list of couples [Ci, indexi], for i ∈ {1, . . . , l},
defined in the previous paragraph.

Algorithm 6 Parametric case

Input: A zero-dimensional polynomial system Σ =
{
n(ω, γ), ∂n

∂ω
(ω, γ)

}
⊂ Z[α][ω, γ] and a

semi-algebraic set Sp.
Output: A list of couples

{
[Ci, index i], i = 1, . . . , l

}
1. Compute R = Res(n, ∂n

∂ω
, ω),

2. Compute R2, the discriminant variety of {R = 0, Sp} with respect to Πα,

3. Using a CAD, compute the partition {C1, . . . , Cl} of C = Rd\R2, along with sample
points samplei ∈ Ci,

4. Apply non parametric on subs(samplei, Σ) and get index i,

5. return
{
[Ci, index i], i = 1, . . . , l

}
.

Example 47. We consider the transfer function studied in Example 46

G =

(
s

ω0

)2

+ 2 ξ

(
s

ω0

)
+ 1(

s

ω1

)2

+ 2 ξ

(
s

ω1

)
+ 1

,

for Sp = {ω0 > 0, ω1 > 0, ω0 ̸= ω1, 0 < ξ ≤ 1}. We apply Algorithm 6 to the corresponding

130 CHAPTER 4

polynomial equation system Σ =
{
n(ω, γ) = 0, ∂n

∂ω
(ω, γ) = 0

}
and Sp in order to represent

the L∞-norm of G.

Let R = Res(n, ∂n
∂ω
, ω) ∈ Z[α, γ], where n(ω, γ) and R are already computed

in Example 46. In this case, by doing the computation using Maple functions

such as DiscriminantVariety and CellDecomposition of the package

RootFinding[Parametric], the discriminant variety R2 is given by the union of the

curves defined by the following polynomials:{
r, ω0, ξ, r − 1, r + 1, ξ − 1, ξ + 1, 2ξ2 − 1, −4rξ2 + r2 + 2r + 1, 4rξ2 + r2 − 2r + 1

}
.

By computing a CAD of C = Rd\R2, we get the partition {C1, . . . , C4} where

C1 =

{
0 < ξ <

√
2/2

}
∩
{
0 < r < 1

}
∩
{
ω0 > 0

}
,

C2 =

{
0 < ξ <

√
2/2

}
∩
{
r > 1

}
∩
{
ω0 > 0

}
,

C3 =

{√
2/2 < ξ < 1

}
∩
{
0 < r < 1

}
∩
{
ω0 > 0

}
,

C4 =

{√
2/2 < ξ < 1

}
∩
{
r > 1

}
∩
{
ω0 > 0

}
,

and the sample points

sample1 = [ξ =
25476206690102465

72057594037927936
, r = 1/2, ω0 = 1],

sample2 = [ξ =
25476206690102465

72057594037927936
, r = 2, ω0 = 1],

sample3 = [ξ =
30752501854533959

36028797018963968
, r = 1/2, ω0 = 1],

sample4 = [ξ =
30752501854533959

36028797018963968
, r = 2, ω0 = 1].

After substituting α by sample1 in n(ω, γ), we obtain

n(ω, γ) = (γ − 1

4
)(γ +

1

4
)ω4 + (aγ2 + b)ω2 +

1

16
(γ − 1)(γ + 1),

where
a = −1947111321950592219128255965533823

5192296858534827628530496329220096
,

b =
1947111321950592219128255965533823

20769187434139310514121985316880384
.

3.2. PARAMETRIC CASE 131

In this case, by using one of the proposed methods in Section 3.1, we obtain the isolating

interval of γmax [
6100687164736347533

4611686018427387904
,
24402748658945394263

18446744073709551616

]
,

which is the isolating interval of the element of index 8 in the sorted set of the real

roots of R = Res(n, ∂n
∂ω
, ω) ∈ Z[γ]. Finally we get [C1, index1 = 8] as an element

returned in the output list. In order to match this result with Example 46 and by

considering the same notations, we can see that the real roots of R are ordered as

{−
√
X2, −1, −r2, −

√
X1,
√
X1, r

2, 1,
√
X2} over C1 and the element of index 8 is indeed

the L∞-norm of G as proven in Example 46, Proposition 3.4.

Similarly, after substituting α by sample2 in n(ω, γ), we see that γmax is of isolating

interval [
6100687164736347533

1152921504606846976
,
24402748658945394263

4611686018427387904

]
,

which is also the isolating interval of the element of index 8 in the sorted set of the real roots

of R = Res(n, ∂n
∂ω
, ω) ∈ Z[γ]. Thus the second element of the output list of Algorithm 6

is [C2, index2 = 8]. With the notations of Example 46, the real roots of R are ordered

as {−
√
X2, −r2, −1, −

√
X1,
√
X1, 1, r

2,
√
X2} over C2, and we can see that the result

matches with Proposition 3.4.

By following the same approach and substituting α by sample3 in n(ω, γ), we ob-

tain that γmax is of isolating interval
[
1, 1
]
, which is the isolating interval of the element

of index 7 in the sorted set of the real roots of R. The third element of the output

list of Algorithm 6 is thus [C3, index3 = 7]. Moreover, with the notations of Exam-

ple 46, we can verify the result of Proposition 3.4 where the real roots of R are ordered

as {−
√
X2, −1, −r2, −

√
X1,
√
X1, r

2, 1,
√
X2} over C3.

Finally, by substituting α by sample4 in n(ω, γ), we obtain that γmax is of isolat-

ing interval
[
4, 4
]
which is the isolating interval of the element of index 7 in the sorted

set of the real roots of R. The fourth element of the output list of Algorithm 6 is thus

[C4, index4 = 7]. With the notations of Example 46, the real roots of R are ordered over

C4 as {−
√
X2, −r2, −1, −

√
X1,
√
X1, 1, r

2,
√
X2}, and we can see that the result matches

with Proposition 3.4.

132 CHAPTER 4

Chapter 4

Application

4.1 Implementation and experiments

The three proposed methods for the non-parametric case can be implemented in a few

lines of Maple but we then have to use implementations at different levels that do not give

valuable information about the intrinsic efficiency. For instance, the RUR is implemented in

C but for general zero dimensional polynomial systems: a variant for bivariate polynomials,

the one used for the complexity analysis, is not part of Maple and is much more efficient for

bivariate systems.

In order to have fair comparisons, we extract the dominating operations and com-

pare them using exactly the same implementations. Namely, resultant computations of

sheared/non sheared systems and Root Isolation carry the largest percentage of the com-

putation time. For instance, Algorithm 5 saves time on the resultant computation since it

does not perform any shear while it loses time on the root isolation.

For the three methods, the principle subresultant sequence is computed using the rou-

tine SubResultantChain of the Maple package RegularChain.

Isolating the real roots of univariate polynomials is another common basic block shared

between the three algorithms for which we use Isolate provided by the Maple routine

package RootFinding.

In Table 4.1, we list the main steps of the three algorithms. The check marks mean

that the step makes part of the method and the double check marks indicate that this step

is the bottleneck of the method. Note that Res1 stands for the resultant of the original

system and Res2 for the resultant of the sheared system. Moreover, Hinf RUR stands for

the RUR method, Hinf Sep stands for the separation method and Hinf Sres stands for the

Sturm-Habicht method. Keep in mind that the shear done in Hinf RUR is different from the

133

134 CHAPTER 4

Res1 + Iso Res2 + Iso List of signs
Hinf RUR ✓ ✓✓

Hinf Srep ✓ ✓✓

Hinf Sres ✓ ✓✓

Table 4.1: Main steps considered in the implementation of the proposed method.

α N Hinf RUR Hinf Sep Hinf Sres

2

2 0.2 3 0.2
3 0.5 7 0.5
4 2.5 25 2
5 10 83 6
6 37 96 10
7 50 186 47.5
8 133.5 353 59
9 236 394 130

Table 4.2: Timings for L∞-norm for random matrices valued functions with τG = 2.

one done in Hinf Sep. Finally, Iso means Isolate.

In Table 4.2, we report the average running time in CPU seconds of the marked steps

listed in Table 4.1 for the three proposed algorithms ran on square matrices of size α, with

entries given by random proper rational functions of degree N (degree of the denominators)1.

These random matrices are of a fixed input coefficient bitsize τ = 2, i.e., the rational

functions constituting the entries of the matrices F have coefficients of magnitude O(2τ).

We finally mention that with these experiments, our goal is not to illustrate the theo-

retical complexity but, on the contrary, to show that on practical examples, the results are

different from theory. In theory, the RUR algorithm might asymptotically be the fastest

while in practice the Sturm-Habicht method performs better.

1The experiments were conducted on Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz 2.90 GHz, Installed
RAM 8.00 GB under a Windows platform

4.2. SOME NUMERICAL METHOD DRAWBACKS 135

4.2 Some numerical method drawbacks

Error in [77, Proposition 5.2]: In Example 46 we have computed the L∞-norm of the

following transfer function

G =

(
s

ω0

)2

+ 2 ξ

(
s

ω0

)
+ 1(

s

ω1

)2

+ 2 ξ

(
s

ω1

)
+ 1

,

which depends on three parameters ξ, ω0, ω1 ∈ R>0, ω0 ̸= ω1 and 0 < ξ ≤ 1. This

computation was done manually by using Maple tools and we obtained in Proposition 3.3

that the L∞-norm of G is given by:

∥ G ∥∞=

 max{1, r2} if ξ ≥ 1√
2
,

δ if ξ < 1√
2
,

where r = ω1/ω0, µ = 4 ξ2 (ξ − 1) (ξ + 1) and δ is the maximal real root of:

M = µ γ4 +
(
(r2 − 1)2 − 2µ r2

)
γ2 + µ r4 ∈ R[γ].

Then, we verified this result by applying Algorithm 6 in Example 47.

This norm was already computed in [77, Proposition 5.2], where the author has obtained

a result with an error. In this mentioned proposition, with the notation λ = (r2 + 1)2 −
4 r2 (2 ξ2 − 1)2, the L∞-norm of G was given by:

∥ G ∥∞=

1 if ξ ≥ 1√
2
, r < 1,

r2 if ξ ≥ 1√
2
, r > 1,

r

√
1− r2 +

√
λ

r2 − 1 +
√
λ

if ξ < 1√
2
, r < 1,

r

√
r2 − 1 +

√
λ

1− r2 +
√
λ

if ξ < 1√
2
, r > 1.

(4.1)

The error of this result can be checked by considering the numerical values:

ω0 = 1, ω1 = 50, ξ = 0.01. (4.2)

136 CHAPTER 4

By substituting the values of (4.2) into (4.1), we obtain:

∥ G ∥∞ = 124975.0075.

However, by substituting the values of (4.2) into (3.5) of Proposition 3.3, we get ∥ G ∥∞
= 124956.2680. We can notice the difference between the results. Using one of the Maple

implemented methods of the algorithms proposed in Section 3.1, i.e., either Hinf RUR or

Hinf Sep or Hinf Sres, we then get

∥ G ∥∞ ∈ [124956.2680, 124956.2680],

that refers to the isolating interval of the searched value. We can clearly see that the result

matches with the one of Proposition 3.3 and thus make sure of the error occurring in [77,

Proposition 5.2].

Moreover, we can also check this result using the standard numerical method for the

L∞-norm computation based on the bisection algorithm and eigenvalue computation of

Hamiltonian matrices (see Section 1.4 and Setion 1.5). This numerical method is imple-

mented in Maple under the name NormHinf of the package DynamicSystems. However, the

obtained result is

∥ G ∥∞ = 124950.134953011.

We can also clearly notice the inaccuracy of this numerical method for the computation of

the L∞-norm.

Another drawback of the above numerical method is the instability whenever we chose

parameter values that are very close to the discriminant variety of the polynomial system

corresponding to the transfer function. For instance, consider again the transfer function

G =

(
s

ω0

)2

+ 2 ξ

(
s

ω0

)
+ 1(

s

ω1

)2

+ 2 ξ

(
s

ω1

)
+ 1

,

and let α = [r, ω0, ξ] ∈ R3. The corresponding polynomial system is given by Σ ={
n(ω, γ), ∂n

∂ω
(ω, γ)

}
⊂ Z[α][ω, γ], which has been already defined in Proposition 3.3. Fol-

lowing Example 47, the discriminant variety of the system is the union of the curves defined

4.2. SOME NUMERICAL METHOD DRAWBACKS 137

by the following polynomials:{
r, ω0, ξ, r − 1, r + 1, ξ − 1, ξ + 1, 2 ξ2 − 1, −4 r ξ2 + r2 + 2 r + 1, 4 r ξ2 + r2 − 2 r + 1

}
.

Thus, if we consider the following numerical values

ω0 = 1, ω1 = 2, ξ = 10−10, (4.3)

then we get the transfer function:

G =
100000000000s2 + 2s+ 100000000000

25000000000s2 + s+ 100000000000
.

Using the Maple NormHinf function for the system corresponding to this transfer function

G, the execution is then interrupted on the step of bisection and returns an error (see

Figure 4.1) since the system is considered to be unstable and of norm equals to infinity.

Figure 4.1

But by substituting the values of (4.3) into (3.5) of Proposition 3.3, we get:

∥ G ∥∞ = 1.500000000 1010.

Using one of the algorithms proposed in Section 3.1 and implemented in Maple, we obtain

∥ G ∥∞ ∈ [1.500000000 1010, 1.500000000 1010],

that refers to the isolating interval of the searched value. The results match.

In fact, by simplifying the expression of the transfer function G, we get:

G = r2
s2 + 2ω0 ξ s + ω2

0

s2 + 2 r ω0 ξ s + r2 ω2
0

.

Thus, the poles of the transfer function G are the complex roots of the denominator l :=

138 CHAPTER 4

s2 + 2 r ω0 ξ s + r2 ω2
0 ∈ R[s]. The discriminant of l is:

∆ = 4 r2 ω2
0 (ξ − 1) (ξ + 1).

Hence, ∆ < 0 if and only if ξ < 1. In the case where ∆ < 0, the two complex solutions of l

are defined by l± := −r ω0 ξ ± δ i, where δ = r ω0

√
(1− ξ) (1 + ξ). Hence, when ξ tends to

0, the poles of G become close to the imaginary axis and the system tends to be unstable,

which represents a problem to the numerical method.

4.3 Practical examples

Spring mass damper system: We aim in this paragraph at computing the H∞-norm

of the transfer function G computed in Example 2 that represents the spring mass damper

system discussed in Example 1. Let

G =
1

ms2 + b s+ k
,

where m, b, k ∈ R>0. We apply Algorithm 6 on the corresponding polynomial system{
n(ω, γ), ∂n

∂ω
(ω, γ)

}
for

n(ω, γ) = −γ2m2 ω4 + (−b2 + 2 km) γ2 ω2 − γ2 k2 + 1,

by taking into consideration the inequalities m > 0, b > 0, k > 0. In this case, we get the

output {
[C1, 5], [C2, 4], [C3, 3]

}
, (4.4)

where

C1 =

{
m > 0

}
∩
{
k > 0

}
∩
{
0 < b <

√
2 km

}
,

C2 =

{
m > 0

}
∩
{
k > 0

}
∩
{√

2 km < b < 2
√
km

}
,

C3 =

{
m > 0

}
∩
{
k > 0

}
∩
{
b > 2

√
km

}
,

and the numbers 5, 4 and 3 refer to the index of the searched value ∥ G ∥∞ in the sorted

set of the real roots of the polynomial R = Res(n, ∂n
∂ω
, ω) ∈ R[γ], whenever the parameters

take values in the corresponding cell.

4.3. PRACTICAL EXAMPLES 139

For a better visualization of this result, we consider a sample point in each cell Ci. For

instance, let sample1 = [b = 1, k = 1,m = 1] ∈ C1. In this case, by evaluating the values of

sample1 in G, we obtain

G1 =
1

s2 + s+ 1
, n1(ω, γ) = −γ2 ω4 + γ2 ω2 − γ2 + 1,

and the sorted set of the isolating intervals of the real roots of Res(n1,
∂n1

∂ω
, ω) using the

command Isolate on Maple is given by{
[−a,−b], [−1,−1], [0, 0], [1, 1], [c, d]

}
, (4.5)

such that when converted from rational to float, the values

a ≈ b ≈ c ≈ d ≈ 1.154700538.

Now based on (4.4), we can say that ∥ G1 ∥∞∈ [c, d], which is the 5th element of (4.5).

We visualise the curve of n1(ω, γ) in order to see the critical points and their maximal

γ-projection in Figure 4.2.

Figure 4.2: Plot of n1(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis

140 CHAPTER 4

We can also visualize in Figure 4.3 the Bode magnitude plot of G1 where ∥ G1 ∥∞
equals the peak value.

Figure 4.3: Bode plot of G1

Let

sample2 = [b =
30752501854533959

18014398509481984
, k = 1,m = 1] ∈ C2.

In this case, by evaluating the values of sample2 in G, we obtain

G2 =
1

s2 +
30752501854533959

18014398509481984
s+ 1

,

and

n2(ω, γ) = −γ2 ω4 + α γ2 ω2 − γ2 + 1,

for

α =
296679262996261134024893043061169

324518553658426726783156020576256
.

The sorted set of the isolating intervals of the real roots of Res(n2,
∂n2

∂ω
, ω) using the command

Isolate on Maple is given by{
[−a,−b], [−1,−1], [0, 0], [1, 1], [c, d]

}
, (4.6)

4.3. PRACTICAL EXAMPLES 141

such that when converted from rational to float, the values

a ≈ b ≈ c ≈ d ≈ 1.124338551.

Now based on (4.4), we can say that ∥ G1 ∥∞∈ [1, 1], which is the 4th element of (4.6).

We visualise the curve of n2(ω, γ) in order to see the critical points and their maximal

γ-projection in Figure 4.4.

Figure 4.4: Plot of n2(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis

We can also visualize in Figure 4.5 the Bode magnitude plot of G2 where ∥ G2 ∥∞
equals the peak value.

142 CHAPTER 4

Figure 4.5: Bode plot of G2

Similarly, let

sample3 = [b = 3, k = 1,m = 1] ∈ C3.

In this case, by evaluating the values of sample3 in G, we obtain

G3 =
1

s2 + 3 s+ 1
,

and

n3(ω, γ) = −γ2 ω4 − 7 γ2 ω2 − γ2 + 1.

The sorted set of the isolating intervals of the real roots of Res(n3,
∂n3

∂ω
, ω) using the command

Isolate on Maple is given by

{
[−1,−1], [0, 0], [1, 1]

}
, (4.7)

Based on (4.4), we can say that ∥ G1 ∥∞∈ [1, 1], which is the 3rd element of (4.7). We

visualise the curve of n3(ω, γ) in order to see the critical points and their maximal γ-

projection in Figure 4.6.

4.3. PRACTICAL EXAMPLES 143

Figure 4.6: Plot of n3(ω, γ) = 0, where ω/γ is in the horizontal/vertical axis

We can also visualize in Figure 4.7 the Bode magnitude plot of G3 where ∥ G3 ∥∞
equals the peak value.

Figure 4.7: Bode plot of G3

144 CHAPTER 4

Example with more parameters In this example, we consider the servo-control of a

mechanical axis of a sight, characterized by an inertia J . This axis is driven by a motor. R

designates the resistance of the motor, L its inductance, and ke its electrical constant. The

motor current is measured along with the speed of the line of sight. This latter is measured

using a gyro-meter. The transfer function of the system is given by

G(s) :=

 1

J s
KeE(s)M(s)

E(s)

 ,

where E(s) is the electric transfer function and is given by

E(s) =
1

R + Ls
,

and M(s) is the transfer function of a mechanical mode of resonance pulsation ωd (of anti-

resonance ωn) given by

M(s) :=

1 + 2 ξn
s

ωn

+

(
s

ωn

)2

1 + 2 ξd
s

ωd

+

(
s

ωd

)2 .

After simplifying the expression of G(s) and substituting Ke/J by the parameter α, we

get

G(s) =

α s

(
s2 + 2 s ωn ξn + ω2

n

)
ω2
d(

L s+R
) (

s2 + 2 s ωd ξd + ω2
d

)
ω2
n

1

L s+R

 .

We can apply Algorithm 6 for computing or representing the L∞-norm of the transfer

matrix G as a function in the parameter set {α, ωn, ξn, ωd, ξd, L, R} ⊂ R>0. However,

this example is considered to be a huge one and exhausting to the implemented function for

executing it in the presence of all the seven parameters. Nevertheless, for some simplified

models that remain interesting in practice, it is possible for the algorithm to execute with up

to five parameters in some cases. For instance, we consider in the first place the substitution

L = 0 in the transfer matrix G. In this case, Algorithm 6 has successfully executed with

the following substitutions in the matrix G:

{L = 0, ξd = 0}, {L = 0, ξd = 1}, {L = 0, ωd = 1},
{L = 0, ξn = 1} and {L = 0, ξn = 0},

4.3. PRACTICAL EXAMPLES 145

where the transfer matrix G is left with five parameters. Whereas the cases that failed to

execute with five parameters are the cases with the following parameter substitutions

{L = 0, R = 1}, {L = 0, ωn = 1} and {L = 0, α = 1}. (4.8)

Thus, for the failed cases in (4.8), we try to execute with four parameters, by substi-

tuting one more parameter with a numerical value such as

R = 1 or α = 1 or ξd = 0 or ξd = 1 or ωd = 1 or ωn = 1 or ξn = 0 or ξn = 1.

All the cases were executed successfully except for the substitutions

{L = 0, R = 1, ωn = 1}, {L = 0, R = 1, α = 1} and {L = 0, α = 1, ωn = 1}.

For these cases, we again substitute one more parameter with a numerical value in order

to obtain a system depending on three parameters. After this substitution, Algorithm 6

executed successfully except for the case

{L = 0, α = 1, ωn = 1, R = 1},

i.e., when the system is left with the parameters ξd, ξn and ωd. This last case can however

be executed by substituting one more parameter and being left with a transfer matrix

depending on two parameters only.

With this said, we consider for instance the example

G5 =

α s

(
s2 + 2 s ωn ξn + ω2

n

)
ω2
d

R
(
s2 + ω2

d

)
ω2
n

1

R

depending on the five parameters {α, ωn, ξn, ωd, R} ⊂ R>0, which is obtained after

the substitution {L = 0, ξd = 0} in G. The corresponding polynomial system{
n5(ω, γ), ∂n5

∂ω
(ω, γ)

}
⊂ Q[R,α, ωn, ξn, ωd][ω, γ] is such that

n5(ω, γ) = α2ω4
d ω6 − ω2

nf5 ω4 + g5 ω2
d ω4

n ω2 − h5,

146 CHAPTER 4

where
f5 = R2 ω2

n γ2 − 2 ω4
d

(
2 ξ2n − 1

)
α2 − ω2

n,

g5 = 2 R2 γ2 + α2 ω2
d − 2,

h5 =
(
R γ − 1

) (
R γ + 1

)
ω4
d ω4

n,

deg(n5) = 14 and degω(n5) = 6.

In this case, the output of Algorithm 6 applied to
{
n5(ω, γ), ∂n5

∂ω
(ω, γ)

}
along with{

α > 0, ωn > 0, ξn > 0, ωd > 0, R > 0
}
using Maple functions is{

[C1, 7], [C2, 5], [C3, 3] [C4, 3], [C5, 5], [C6, 7] [C7, 5],

[C8, 3] [C9, 3], [C10, 7], [C11, 5], [C12, 3] [C13, 6], [C14, 4]

}
,

such that {C1, . . . , C14} is the corresponding cell decomposition of the parameter space.

We tackle another example where the transfer matrix should depend on four parameters

and we consider the substitution {L = 0, ωn = 1, ξn = 0} in G. In this case, we obtain the

transfer matrix

G4 =

α s

(
s2 + 1

)
ω2
d

R
(
s2 + 2 ωd ξd s+ ω2

d

)
1

R

depending on five parameters {α, ωd, ξd, R} ⊂ R>0. The corresponding polynomial system{
n4(ω, γ), ∂n4

∂ω
(ω, γ)

}
⊂ Q[R,α, ωd, ξd][ω, γ] is such that

n4(ω, γ) = α2ω4
d ω6 − f4 ω4 − g4 ω2

d ω2 − h4,

where
f4 = R2 γ2 + 2 ω4

d α2 − 1,

g4 =
(
4 ξ2d − 2

)
R2 γ2 − α2 ω2

d − 4 ξ2d + 2,

h4 =
(
R γ − 1

) (
R γ + 1

)
ω4
d,

deg(n4) = 12 and degω(n4) = 6.

In this case, the output of Algorithm 6 applied to
{
n4(ω, γ), ∂n4

∂ω
(ω, γ)

}
along with

4.3. PRACTICAL EXAMPLES 147{
α > 0, ξd > 0, ωd > 0, R > 0

}
using Maple functions is{

[C1, 8], [C2, 6], [C3, 4] [C4, 4], [C5, 8], [C6, 8] [C7, 6],

[C8, 4] [C9, 4], [C10, 8], [C11, 6], [C12, 4] [C13, 8], [C14, 6]

}
,

such that {C1, . . . , C14} is the corresponding cell decomposition of the parameter space.

We tackle an example where the transfer matrix needs to be depending on three pa-

rameters only and we consider the substitution

{L = 0, ωn = 1, R = 1, ξd = 1}

in G. In this case, we obtain the transfer matrix

G3 =

α s

(
s2 + 2 ξn s+ 1

)
ω2
d

s2 + 2 ωd s+ ω2
d

1

depending on three parameters {ωd, α, ξn} ⊂ R>0. The corresponding polynomial system{
n3(ω, γ),

∂n3

∂ω
(ω, γ)

}
⊂ Q[ωd, α, ξn][ω, γ] is such that

n3(ω, γ) = α2ω4
d ω6 − f3 ω4 − g3 ω2

d ω2 − h3,

where
f3 = γ2 − 4

(
ξ2n − 1

2

)
ω4
d α2 − 1,

g3 = 2 γ2 − α2 ω2
d − 2,

h3 =
(
γ − 1

) (
γ + 1

)
ω4
d,

deg(n3) = 12 and degω(n3) = 6.

In this case, the output of Algorithm 6 applied to
{
n3(ω, γ), ∂n3

∂ω
(ω, γ)

}
along with{

α > 0, ωd > 0, ξn > 0
}
using Maple functions is{

[C1, 8], [C2, 6], [C3, 8] [C4, 6], [C5, 4], [C6, 2] [C7, 8], [C8, 6], [C9, 4],

[C10, 2], [C11, 8], [C12, 6] [C13, 4], [C14, 2] [C15, 8], [C16, 4], [C17, 4]

[C18, 2], [C19, 8], [C20, 6], [C21, 4] [C22, 2], [C23, 8], [C24, 6] [C25, 4]

}
,

148 CHAPTER 4

such that {C1, . . . , C25} is the corresponding cell decomposition of the parameter space.

We study finally an example where the transfer matrix needs to be depending on two

parameters only and we consider the substitution

{L = 0, ωn = 1, R = 1, α = 1, ξn = 1}

in G. In this case, we obtain the transfer matrix

G2 =

s
(
s2 + 2 s+ 1

)
ω2
d

s2 + 2 ωd ξd s+ ω2
d

1

depending on three parameters {ωd, ξd} ⊂ R>0. The corresponding polynomial system{
n2(ω, γ), ∂n2

∂ω
(ω, γ)

}
⊂ Q[ωd, ξd][ω, γ] is such that

n2(ω, γ) = ω4
d ω6 − f3 ω4 − g3 ω2

d ω2 − h3,

where
f3 = γ2 − 2 ω4

d − 1,

g3 =
(
4 ξ2d − 2

)
γ2 − ω2

d −
(
4 ξ2d − 2

)
,

h3 =
(
γ − 1

) (
γ + 1

)
ω4
d,

deg(n2) = 10 and degω(n2) = 6.

In this case, the output of Algorithm 6 applied to
{
n2(ω, γ), ∂n2

∂ω
(ω, γ)

}
along with{

ωd > 0, ξd > 0
}
using Maple functions is{

[C1, 8], [C2, 8], [C3, 8] [C4, 8], [C5, 4], [C6, 8] [C7, 4], [C8, 4],

[C9, 8], [C10, 4], [C11, 2], [C12, 4] [C13, 4], [C14, 8] [C15, 6], [C16, 2],

[C17, 4], [C18, 4], [C19, 8], [C20, 4], [C21, 4] [C22, 2], [C23, 6], [C24, 6]

}
,

such that {C1, . . . , C24} is the corresponding cell decomposition of the parameter space.

Chapter 5

Conclusion

In this dissertation, we were interested in computing the L∞-norm of finite-dimensional

linear time-invariant systems represented by their transfer matrix. After defining this norm

and studying its properties, we have modeled this problem to a problem of computing

the maximal y-projection of the real solutions (x, y) of a bivariate polynomial system

Σ ={P, ∂P
∂x
}, with P ∈ R[x, y]. Two cases then arose. The first one was when the system

does not depend on parameters, i.e., when P ∈ Z[x, y].

In this case, for computing the maximal y-projection of the system real solutions, we

have proposed three different symbolic-numeric algorithms. The first one is called the RUR

method, named after the famous Rational Univariate Representation algorithm for solving

bivariate polynomial systems, and it mainly consists in first computing a separating linear

form t = y + s x to shear the original system into a generic one, using the shearing map

(x, y) 7→ (x, t− s x), so that no two solutions are horizontally aligned. Then, by computing

a rational univariate representation, it represents the variables x, y as rational functions in

one variable t. Using a one-to-one correspondence between the real roots of a univariate

polynomial f ∈ Q[t] and the real solutions of the polynomial system, the problem is reduced

to isolating the univariate polynomial f . After some interval evaluation, this approach leads

to obtaining isolating boxes of the real solutions of the system.

We applied this algorithm to our polynomial system and then managed to choose the

isolating interval of the maximal y-projection of the system real solutions, after refining

the y-intervals up to the separation bound of a particular polynomial. More precisely,

this polynomial is univariate in y such that it embodies the y-projection of the system

solutions, called the resultant polynomial of P and ∂P
∂x

with respect to the variable x,

written as Res
(
P, ∂P

∂x
, x
)
∈ Q[y]. We have computed the worst-case bit complexity of this

algorithm in terms of the degrees of P with respect to both variables x and y, to obtain

149

150 CONCLUSION

ÕB

(
dy d

3
x (d

2
y+dx dy+dx τ)

)
bit operations in the worst-case, and then implemented it using

Maple tools.

This RUR method is systematic, meaning that whenever it is called, it returns the

whole system solutions in which we have to pick the isolating interval of the maximal y-

projection. In the second proposed method, the Roots Separation method, we focused only

on the maximal y-projection of the system solutions. This was done by first projecting the

system solutions to the y-axis, simply by computing the real roots, represented by their

isolating intervals, of the univariate resultant polynomial Res
(
P, ∂P

∂x
, x
)
∈ Q[y]. The next

step was to verify between the y-projections which one is the best candidate to be searched

value. For this purpose, we used a special separating linear map that puts the system in

a generic position. What made this linear map special was that it enables us to locate

the searched value simply by localizing the maximal y-projection of the real solutions of

the sheared system. This was also computed by isolating the resultant polynomial of the

sheared polynomials with respect to the variable x. However, this method came with a

high cost since the slope of the chosen shearing linear map was of a very large size and led

to a large coefficient bitsize of the sheared polynomials. This high coefficient bitsize was

carried along in the computation of the resultant polynomial of the sheared polynomials

with respect to x and in isolating its real roots. This isolation was the bottleneck of this

algorithm and was of worst-case bit complexity ÕB(d
5
x d

4
y τ).

We finally proposed a third method named Sturm-Habicht method that also focused

only on the y-projections of the system solutions in order to locate the maximal one that

corresponds to a real solution. Differently from the previous methods, this method did not

use any shear and used instead the real root counting principle. This was done to verify the

existence of a real root for the gcd polynomial of the system polynomials over the maximal

y-projection ȳ ∈ R. Then, to reduce the cost of counting the number of real roots of the

gcd polynomial, we took advantage of the fact that the curve P = 0 is bounded on the

y-direction by the searched value. Thus, the problem of real root counting was then applied

to the polynomial P over the algebraic value ȳ. For this purpose, we used the Sturm-Habiht

sequence corresponding to the polynomial P seen as a univariate polynomial in x, which is

a signed subresultant sequence of P ∈ Z[y][x] and its derivative. The reason for using this

sequence was mainly the fact that it is stable under specialization. This property allowed

us to count the number of real roots of the univariate polynomial P (x, ȳ) by evaluating the

sequence of principle subresultants over ȳ and studying the signs sequence. This evaluation

was the bottleneck of this algorithm and was of worst-case bit complexity ÕB

(
d4x d

2
y (dy+τ)

)
.

Additionally, we saw that when the real curve P = 0 does not show any isolated

151

singular point, the evaluation can be done over a rational value between the largest algebraic

y-projections. This has slightly reduced the worst-case bit complexity to ÕB(d
4
x d

2
y τ).

We then implemented the three methods using Maple tools to compare their practical

complexity. We have concluded that since the Stum-Habicht method is adaptive, it has the

best average complexity, as seen in the experiments.

Finally, we generalised the proposed approach to the case where P ∈ Z[α][x, y] depends

on a parameters set α = [α1, . . . , αd] ∈ Rd. In this case, we have seen that structure of

the system solutions depends on the parameters. Moreover, the y-projection of the system

solutions were represented by continuous functions in the parameters, where the position of

their curves also varies with respect to the parameters values.

Thus, in our proposed algorithm, we have excluded from the parameters space the

“bad” parameter values where any two curves of the functions representing the y-projection

of the solutions “collapse”. Then, using a cylindrical algebraic decomposition, we have

decomposed the space of “good” parameter values into connected open sets, named cells,

where the y-curves are well positioned. This allowed us to choose a rational sample point

in each cell, then apply an algorithm from the non-parametric approach to obtain the index

indexi of the searched value in the ordered set of the real roots of Res
(
P, ∂P

∂x
, x
)
∈ Q[y].

Hence, above each cell, we could assure that the searched value is represented by the indexi
th

y-curve.

152 CONCLUSION

Bibliography

[1] M. E. Alonso et al. “Zeros, multiplicities, and idempotents for zero-dimensional sys-

tems”. In: Algorithms in algebraic geometry and applications (Santander, 1994).

[2] H. Anai. “A symbolic-numeric approach to multi-parametric programming for control

design”. In: 2009 ICCAS-SICE. IEEE. 2009, pp. 3525–3530.

[3] D. S. Arnon, G. E. Collins, and S. McCallum. “Cylindrical algebraic decomposition

I: The basic algorithm”. In: SIAM Journal on Computing 13.4 (1984), pp. 865–877.

[4] P. Aubry, D. Lazard, and M. M. Maza. “On the theories of triangular sets”. In:

Journal of Symbolic Computation 28.1-2 (1999), pp. 105–124.

[5] A. Avan den Boom et al. “SLICOT, A Subroutine Library in Control and Sys-

tems Theory”. In: IFAC Symposium on Computer Aided Design in Control Systems.

Vol. 24. 1991, pp. 71–76.

[6] S. Basu, R. Pollack, and M. F. Roy. Algorithms in Real Algebraic Geometry. Springer

Verlag, 2006.

[7] S. Basu, R. Pollack, and M. F. Roy. Existential theory of the reals, volume 10 of

algorithms and computation in mathematics. 2006.

[8] M. N. Belur and C. Praagman. “An Efficient Algorithm for Computing the H∞-

norm”. In: IEEE Transactions on automatic control 56.7 (2011), pp. 1656–1660.

[9] P. Benner, R. Byers, and E. Barth. “Algorithm 800: Fortran 77 subroutines for com-

puting the eigenvalues of Hamiltonian matrices I: The square-reduced method”. In:

ACM Transactions on Mathematical Software 26.1 (2000), pp. 49–77.

[10] P. Benner and T. Mitchell. “Faster and More Accurate Computation of the H∞ Norm

via Optimization”. In: SIAM Journal on Scientific Computing 40.5 (2018), pp. 3609–

3635.

153

154 BIBLIOGRAPHY

[11] P. Benner, V. Sima, and M. Voigt. “L∞-Norm Computation for Continuous-Time

Descriptor Systems Using Structured Matrix Pencils”. In: IEEE Transactions on

Automatic Control 57.1 (2012), pp. 233–238.

[12] P. Benner, V. Sima, and M. Voigt. “Robust and Efficient Algorithms for L∞-norm

Computation for Descriptor Systems”. In: IFAC Proceedings Volumes 45.13 (2012),

pp. 195–200.

[13] E. Berberich, P. Emeliyanenko, and M. Sagraloff. “An elimination method for solving

bivariate polynomial systems: Eliminating the usual drawbacks”. In: 2011 Proceedings

of the Thirteenth Workshop on Algorithm Engineering and Experiments (ALENEX).

SIAM. 2011, pp. 35–47.

[14] M. Bizzarri and M. Lávička. “A symbolic-numerical approach to approximate pa-

rameterizations of space curves using graphs of critical points”. In: Journal of Com-

putational and Applied Mathematics 242 (2013), pp. 107–124.

[15] Y. Bouzidi et al. “Improved algorithm for computing separating linear forms for

bivariate systems”. In: Proceedings of the 39th International Symposium on Symbolic

and Algebraic Computation. 2014, pp. 75–82.

[16] Y. Bouzidi et al. “Separating linear forms and rational univariate representations of

bivariate systems”. In: Journal of Symbolic Computation 68 (2015), pp. 84–119.

[17] Y. Bouzidi et al. “Solving bivariate systems using rational univariate representa-

tions”. In: Journal of Complexity 37 (2016), pp. 34–75.

[18] S. Boyd and V. Balakrishnan. “A regularity result for the singular values of a transfer

matrix and a quadratically convergent algorithm for computing its L∞-norm”. In:

Systems and Control Letters 15 (1990), pp. 1–7.

[19] S. Boyd, V. Balakrishnan, and P. Kabamba. “A bisection method for computing the

H∞ norm of a transfer matrix and related problems”. In: Math. Control, Signals,

and Systems 2 (1989), pp. 207–220.

[20] R. W. Brocket. Finite Dimensional Linear Systems. 74. SIAM, 2015.

[21] C. W. Brown. “Improved projection for cylindrical algebraic decomposition”. In:

Journal of Symbolic Computation 32.5 (2001), pp. 447–465.

[22] N. A. Bruinsma and M. Steinbucha. “A fast algorithm to compute compute the

H∞-norm of a transfer function matrix”. In: Systems and Control Letters 14 (1990),

pp. 287–293.

BIBLIOGRAPHY 155

[23] B. F. Caviness. Jeremy. R. Johnson, editors. Quantifier Elimination and Cylindrical

Algebraic Decomposition. 1998.

[24] Changbo Chen, Marc Moreno Mazza, and Yuzhen Xie. “Computing the Supremum

of the Real Roots of a Parametric Univariate Polynomial”. In: (2013).

[25] J. S. Cheng, X. S. Gao, and J. Li. “Root isolation for bivariate polynomial systems

with local generic position method”. In: Proceedings of the 2009 international sym-

posium on Symbolic and algebraic computation. ACM. 2009, pp. 103–110.

[26] J. S. Cheng, X. S. Gao, and C. K. Yap. “Complete numerical isolation of real roots

in zero-dimensional triangular systems”. In: Journal of Symbolic Computation 44.7

(2009), pp. 768–785.

[27] G. E. Collins. “Quantifier elimination for real closed fields by cylindrical algebraic

decompostion”. In: Automata theory and formal languages. Springer, 1975, pp. 134–

183.

[28] G. E. Collins and A. G. Akritas. “Polynomial real root isolation using Descarte’s rule

of signs”. In: Proceedings of the third ACM symposium on Symbolic and algebraic

computation. 1976, pp. 272–275.

[29] G. E. Collins and H. Hong. “Partial cylindrical algebraic decomposition for quantifier

elimination”. In: Journal of Symbolic Computation 12.3 (1991), pp. 299–328.

[30] G. E. Collins, J. R. Johnson, and W. Krandick. “Interval arithmetic in cylindrical

algebraic decomposition”. In: Journal of Symbolic Computation 34.2 (2002), pp. 145–

157.

[31] D. A. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms: an introduction

to computational algebraic geometry and commutative algebra. Springer Science &

Business Media, 2013.

[32] D. A. Cox, J. Little, and D. O’Shea. “Using Algebraic Geometry”. In: Graduate Texts

in Mathematics 185 (1998).

[33] R. Curtain and H. Zwart. Introduction to Infinite-Dimensional Linear Systems The-

ory. Springer-Verlag, 1995.

[34] R. Descartes. Géométrie.(1636) In: A source book in Mathematics. Massachussetts.

1969.

[35] D. I. Diochnos, I. Z. Emiris, and E. Tsigaridas. “On the asymptotic and practi-

cal complexity of solving bivariate systems over the reals”. In: Journal of Symbolic

Computation 44.7 (2009), pp. 818–835.

156 BIBLIOGRAPHY

[36] A. Dolzmann, A. Seidl, and T. Sturm. “Efficient projection orders for CAD”. In: Pro-

ceedings of the 2004 international symposium on Symbolic and algebraic computation.

2004, pp. 111–118.

[37] A. Dolzmann, T. Sturm, and V. Weispfenning. “Real quantifier elimination in prac-

tice”. In: Algorithmic algebra and number theory. Springer, 1999, pp. 221–247.

[38] L. F. Dominguez, D. A. Narciso, and E. N. Pistikopoulos. “Recent advances in mul-

tiparametric nonlinear programming”. In: Computers & Chemical Engineering 34.5

(2010), pp. 707–716.

[39] J. C. Doyle, B. A. Francis, and Tannebaum A. R. Feedback Control Theory. Dover

Publications, 1992.

[40] D. Eisenbud. Commutative algebra: with a view toward algebraic geometry. Vol. 150.

Springer Science & Business Media, 2013.

[41] M. El Kahoui. “An elementary approach to subresultants theory”. In: Journal of

Symbolic Computation 35.3 (2003), pp. 281–292.

[42] P. Emeliyanenko and M. Sagraloff. “On the complexity of solving a bivariate polyno-

mial system”. In: Proceedings of the 37th International Symposium on Symbolic and

Algebraic Computation. 2012, pp. 154–161.

[43] I. Z. Emiris and E. Tsigaridas. “Real solving of bivariate polynomial systems”. In: In-

ternational Workshop on Computer Algebra in Scientific Computing. Springer. 2005,

pp. 150–161.

[44] I. A. Fotiou, P. A. Parrilo, and M. Morari. “Nonlinear parametric optimization using

cylindrical algebraic decomposition”. In: Proceedings of the 44th IEEE Conference

on Decision and Control. IEEE. 2005, pp. 3735–3740.

[45] I. A. Fotiou et al. “Parametric optimization and optimal control using algebraic

geometry methods”. In: International Journal of Control 79.11 (2006), pp. 1340–

1358.

[46] P.M. Gahinet and P. Apkarian. “Numerical computation of the L∞ norm revisited”.

In: 31st IEEE Conference on Decision and Control. 1992.

[47] J. Garloff and A. P. Smith. “Investigation of a subdivision based algorithm for solving

systems of polynomial equations”. In: (2000).

[48] Y. Genin, P. Dooren, and V. Vermaut. “Convergence of the calculation of H∞ norms

and related questions”. In: Mathematical Theory of Networks and Systems: proceed-

ings of the MTNS-98 symposium. 1998, pp. 429–432.

BIBLIOGRAPHY 157

[49] J. Gerhard, D. J. Jeffrey, and G. Moroz. “A package for solving parametric poly-

nomial systems”. In: ACM Communications in Computer Algebra 43.3/4 (2010),

pp. 61–72.

[50] M. Giusti, G. Lecerf, and B. Salvy. “A Gröbner free alternative for polynomial system

solving”. In: Journal of complexity 17.1 (2001), pp. 154–211.

[51] K. Glover and D. McFarlane. “Robust stabilization of normalized coprime factor

plant descriptor”. In: IEEE Transactions on Automatic Control 34 (8 1989), pp. 821–

230.

[52] L. Gonzalez-Vega and M. El Kahoui. “An improved upper complexity bound for the

topology computation of a real algebraic plane curve”. In: Journal of Complexity

12.4 (1996), pp. 527–544.

[53] L. Gonzalez-Vega et al. “Sturm—Habicht Sequences, Determinants and Real Roots

of Univariate Polynomials”. In: Quantifier Elimination and Cylindrical Algebraic De-

composition. Springer, 1998, pp. 300–316.

[54] G. M. Greuel and G. Pfister. A Singular introduction to commutative algebra.

Springer Science & Business Media, 2012.

[55] W. Habicht. “Eine verallgemeinerung des sturmschen wurzelzählverfahrens”. In:

Commentarii Mathematici Helvetici 21.1 (1948), pp. 99–116.

[56] J. W. Helton. “Orbit Structure of the Mobius Transformation Semigroup Acting

on H ∞ (Broadband Matching)”. In: Topics in Functional Analysis: Advances in

Mathematics Supplementary Studies 3 (1978), pp. 129–157.

[57] D. Henrion, M. Sebek, and M. Hromcik. “On computing the H∞-norm of a polyno-

mial matrix fraction”. In: European Control Conference (ECC). 2001.

[58] C. Hermite. “Extrait d’une lettre de Mr. Ch. Hermite de Paris à Mr. Borchardt

de Berlin sur le nombre des racines d’une équation algébrique comprises entre des

limites données.” In: Journal für die reine und angewandte Mathematik 52 (1856),

pp. 39–51.

[59] H. Hong. “An improvement of the projection operator in cylindrical algebraic decom-

position”. In: Proceedings of the international symposium on Symbolic and algebraic

computation. 1990, pp. 261–264.

[60] M. Kanno and M. C. Smith. “Validated numerical computation of the L∞-norm

for linear dynamical systems”. In: Journal of Symbolic Computation 41.6 (2006),

pp. 697–707.

158 BIBLIOGRAPHY

[61] M. Kanno et al. “Parametric optimization in control using the sum of roots for para-

metric polynomial spectral factorization”. In: Proceedings of the 2007 international

symposium on Symbolic and algebraic computation. 2007, pp. 211–218.

[62] D. Lazard. “Solving zero-dimensional algebraic systems”. In: Journal of symbolic

computation 13.2 (1992), pp. 117–131.

[63] D. Lazard and F. Rouillier. “Solving parametric polynomial systems”. In: Journal of

Symbolic Computation 42.6 (2007), pp. 636–667.

[64] S. Lazard, M. Pouget, and F. Rouillier. “Bivariate triangular decompositions in the

presence of asymptotes”. In: Journal of Symbolic Computation 82 (2017), pp. 123–

133.

[65] H. P. Le and M. Safey El Din. “Solving parametric systems of polynomial equa-

tions over the reals through Hermite matrices”. In: arXiv preprint arXiv:2011.14136

(2020).

[66] X. Li, M. M. Maza, and W. Pan. “Computations modulo regular chains”. In: Pro-

ceedings of the 2009 international symposium on Symbolic and algebraic computation.

2009, pp. 239–246.

[67] T. Lickteig and M. F. Roy. “Sylvester–Habicht sequences and fast Cauchy index

computation”. In: Journal of Symbolic Computation 31.3 (2001), pp. 315–341.

[68] K. M. Lynch and F. C. Park. Modern robotics. Cambridge University Press, 2017.

[69] K. Mahler. “An inequality for the discriminant of a polynomial.” In: Michigan Math-

ematical Journal 11.3 (1964), pp. 257–262.

[70] M. Marden. Geometry of polynomials. 3. American Mathematical Soc., 1949.

[71] V. J. Mathews and G. Sicuranza. Polynomial signal processing. John Wiley & Sons,

Inc., 2000.

[72] S. McCallum. “An improved projection operation for cylindrical algebraic decompo-

sition of three-dimensional space”. In: Journal of Symbolic Computation 5.1-2 (1988),

pp. 141–161.

[73] K. Mehlhorn, M. Sagraloff, and P. Wang. “From approximate factorization to root

isolation with application to cylindrical algebraic decomposition”. In: Journal of Sym-

bolic Computation 66 (2015), pp. 34–69.

[74] B. Mourrain and J. P. Pavone. “Subdivision methods for solving polynomial equa-

tions”. In: Journal of Symbolic Computation 44.3 (2009), pp. 292–306.

BIBLIOGRAPHY 159

[75] S. J. Orfanidis. Introduction to signal processing. Prentice-Hall, Inc., 1995.

[76] A. Quadrat. “The homological perturbation lemma and its applications to robust

stabilization”. In: 8th IFAC Symposium on Robust Control Design. Vol. 48. 2015,

pp. 07–12.

[77] G. Rance. “Commande H-infini paramétrique et application aux viseurs gyrosta-

bilisés”. PhD thesis. Université Paris-Saclay, 2018.

[78] G. Rance et al. “A symbolic-numeric method for the parametric H∞ loop-shaping

design problem”. In: 8. Vol. 22nd International Symposium on Mathematical Theory

of Networks and Systems. 2016.

[79] G. Rance et al. “ExplicitH∞ controllers for 1st to 3rd order single-input single-output

systems with parameters”. In: 8. Vol. IFAC 2017 Workshop Congress. 2017.

[80] G. Rance et al. “Explicit H∞ controllers for 4th order single-input single-output

systems with parameters and their applications to the two mass-spring system with

damping”. In: 8. Vol. IFAC 2017 Workshop Congress. 2017.

[81] J. Renegar. “On the worst-case arithmetic complexity of approximating zeros of

systems of polynomials”. In: SIAM Journal on Computing 18.2 (1989), pp. 350–370.

[82] W. C. Rheinboldt. Methods for solving systems of nonlinear equations. SIAM, 1998.

[83] R. Rioboo. “Real algebraic closure of an ordered field: implementation in axiom”.

In: Papers from the international symposium on Symbolic and algebraic computation.

1992, pp. 206–215.

[84] G. Robel. “On the computation the infinity norm”. In: IEEE Transactions on Auto-

matic Control 34 (1989), pp. 383–391.

[85] A. Rosales et al. “Formation control and trajectory tracking of mobile robotic

systems–a Linear Algebra approach”. In: Robotica 29.3 (2011), pp. 335–349.

[86] F. Rouillier. “Algorithmes pour l’étude des solutions réelles des systèmes polynomi-

aux”. Habilitation à diriger des recherches. Université Pierre et Marie Curie - Paris

6, Mar. 2007.

[87] F. Rouillier. “Solving zero-dimensional systems through the rational univariate rep-

resentation”. In: Applicable Algebra in Engineering, Communication and Computing

9.5 (1999), pp. 433–461.

[88] F. Rouillier and P. Zimmermann. “Efficient isolation of polynomial’s real roots”. In:

Journal of Computational and Applied Mathematics 162.1 (2004), pp. 33–50.

160 BIBLIOGRAPHY

[89] V. Rovenski and V. Y. Rovenskii. Geometry of Curves and Surfaces with MAPLE.

Springer Science & Business Media, 2000.

[90] S. M. Rump. “Solving algebraic problems with high accuracy”. In: A new approach

to scientific computation. Elsevier, 1983, pp. 51–120.

[91] M. Sagraloff and C. K. Yap. “A simple but exact and efficient algorithm for complex

root isolation. 36th ISSAC”. In: (2011).

[92] R. Seidel and N. Wolpert. “On the exact computation of the topology of real alge-

braic curves”. In: Proceedings of the twenty-first annual symposium on Computational

geometry. 2005, pp. 107–115.

[93] E. C. Sherbrooke and N. M. Patrikalakis. “Computation of the solutions of nonlinear

polynomial systems”. In: Computer Aided Geometric Design 10.5 (1993), pp. 379–

405.

[94] J. Shipman. “Improving the fundamental theorem of algebra”. In: The Mathematical

Intelligencer 29.4 (2007), pp. 9–14.

[95] V. Sima. “Efficient algorithm for L∞-norm calculations”. In: IFAC Proceedings Vol-

umes. Vol. 39. 2006, pp. 519–524.

[96] A. Strzebonski and E. Tsigaridas. “Univariate real root isolation in an extension

field”. In: Proceedings of the 36th international symposium on Symbolic and algebraic

computation. 2011, pp. 321–328.

[97] C. Sturm. “Mémoire sur la résolution des équations numériques”. In: Collected Works

of Charles François Sturm. Springer, 2009, pp. 345–390.

[98] J. J. Sylvester. “XVIII. On a theory of the syzygetic relations of two rational integral

functions, comprising an application to the theory of Sturm’s functions, and that

of the greatest algebraical common measure”. In: Philosophical transactions of the

Royal Society of London 143 (1853), pp. 407–548.

[99] A. Tannenbaum. “Feedback stabilization of linear dynamical plants with uncertainty

in the gain factor”. In: International Journal of Control 32.1 (1980), pp. 1–16.

[100] A. Varga and P. Parrilo. “Fast algorithms for solving H∞-norm minimization prob-

lems”. In: Conference on Decision and Control. 2001, pp. 261–266.

[101] M. Vidyasagar. Nonlinear systems analysis. SIAM, 2002.

[102] G. Vinnicombe. Uncertainty and Feedback, H∞ loop-shaping and the ν-gap metric.

Imperial College Press, 2001.

BIBLIOGRAPHY 161

[103] J. Von Zur Gathen and J. Gerhard. Modern computer algebra. Cambridge university

press, 2013.

[104] X. Wang. “A simple proof of Descartes’s rule of signs”. In: The American Mathemat-

ical Monthly 111.6 (2004), p. 525.

[105] C. K. Yap. Fundamental problems of algorithmic algebra. Vol. 49. Oxford University

Press Oxford, 2000.

[106] G. Zames. “Feedback and optimal sensitivity: Model reference transformations, mul-

tiplicative seminorms, and approximate inverses”. In: IEEE Transactions on Auto-

matic Control 26.2 (Apr. 1981), pp. 301–320. issn: 0018-9286.

[107] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control. Prentice Hall,

1996.

	Introduction
	Existing methods
	Numerical approach
	Symbolic-numeric approach

	Proposed methods
	Non-parametric case
	Parametric case

	Problem Motivation From Control Theory
	Definition of a linear time-invariant system
	Stability of LTI systems
	Maximum energy gain and TEXT-norm
	A real algebraic geometric reformulation
	Existing computational methods
	Robust control theory in a nutshell

	Prerequisite in Computer Algebra
	Notations
	Greatest common divisor
	Resultant of two polynomials
	Subresultant sequence
	Sturm-Habicht Sequence
	Sturm-Habicht sequence and real roots of polynomials

	Univariate polynomials and Root isolation
	Subdivision-based algorithms for root isolation

	Solving bivariate algebraic systems
	Rational Univariate Representation – RUR

	Systems depending on parameters
	Discriminant variety
	Cylindrical Algebraic Decomposition

	 TEXT-norm Computation
	Non-parametric case problem
	RUR method
	Root separation method
	Sturm-Habicht method

	Parametric case

	Application
	Implementation and experiments
	Some numerical method drawbacks
	Practical examples

	Conclusion

