References
Y. A. Blinkov, C. F. Cid, V. P. Gerdt, W. Plesken, D. Robertz,
The MAPLE Package "Janet": I. Polynomial Systems,
In the Proccedings of Computer Algebra in Scientific Computing CASC 2003
edited by V. G. Ganzha, E.W. Mayr, E.V. Vorozhtsov, 31-40.
Also available with the package from
http://http://wwwb.math.rwth-aachen.de/Janet.
D. Cox, j. Little, D. O'Shea,
Using Algebraic Geometry,
Springer, 1998.
A. Fabiańska, A. Quadrat,
Flat Multidimensional linear systems with constant coefficients are equivalent to controllable 1-D systems,
In the Proceedings of Mathematical Theory of Networks and Systems (MTNS),
Kyoto (Japan), 24-28/07/06.
A. Fabiańska, A. Quadrat,
Applications of the Quillen-Suslin theorem to the multidimensional systems theory,
INRIA Report 6126 (2007), published in
Gröbner Bases in Control Theory and Signal Processing ,
H. Park et G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3,
de Gruyter publisher, pp. 23-106.
Available as .pdf
N. Fitchas, A. Galigo,
Nullstellensatz effectif et conjecture de Serre (Théorème de Quillen-Suslin) pour le calcul formel,
Math. Nachr., 149 (1990), 231-253.
J. Gago-Vargas,
Constructions in R[x_1,... x_n]: applications to K-theory,
Journal of Pure and Applied Algebra, 171 (2002), 185-196.
K. Gałkowski,
State-space realizations of
linear 2-D systems with extensions to the general nD case,
Lecture Notes in Control and Information Sciences, Springer 2001
H. Kwakernaak, R. Sivan,
Linear Optimal Control Systems,
Wiley-Interscience, 1972.
R. C. Laubenbacher, C.J. Woodburn,
A new algorithm for the Quillen-Suslin Theorem,
Contributions to Algebra and Geometry, 41 (2000), 23-31.
T.Y. Lam,
Serre's Conjecture,
Lecture Notes in Mathematics 635, Springer Verlag, 1978.
T.Y. Lam,
Serre's Problem on projective Modules,
Springer Monograph in Mathematics, Springer Verlag, 2006.
Z. Lin, N. K. Bose,
A generalisation of Serre's Conjecture and related issues,
Linear Algebra and Its Applications, 338 (2001), 125-138.
A. Logar, B. Sturmfels,
Algorithms for the Quillen-Suslin Theorem,
Journal of Algebra, 145 (1992), 231-239.
H. Logemann,
On the transfer matrix of a neutral system: characterizations of exponential stability in input-output terms,
Systems and Control Letters, 9 (1987), 393-400.
H. Lombardi, I. Yengui,
Suslin's algorithms for reduction of unimodular rows,
Journal of Symbolic Computation, 39 (2005), 707-717.
A. Morou, I. Yengui,
An algorithm for unimodular completion over Laurent polynomial rings,
private communication, (preprint, 2007).
H. Mounier,
Propriétés structurelles des systèmes linéaires à retards: aspects
théoriques et pratiques,
PhD Thesis, University of Orsay, France, 1995.
H. Park, C. J. Woodburn,
An algorithmic proof of Suslin's stability theorem for Polynomial rings,
Journal of Algebra, 178 (1995), 277-298.
H. Park,
A Computational Theory of Laurent Polynomial Rings and Multidimensional FIR Systems,
PhD Thesis, University of Berkeley, USA, 1995.
H. Park,
Symbolic computation and signal processing,
Journal of Symbolic Computation, 37 (2004), 209-226.
H. Park,
Generalizations and variations of Quillen-Suslin theorem and their applications,
workshop Gröbner Bases in Control Theory and Signal Processing,
Special semester on Gröbner Bases and related methods 2006, University of Linz (Austria), 19/05/06.
J. F. Pommaret,
Solving Bose conjecture on linear multidimensional systems,
In the Proceedings of European Control Conference (ECC), Porto (Portugal), 04-07/09/01.
A. Quadrat, D.Robertz,
Constructive computation of bases of free modules over the Weyl algebras,
INRIA Report 5786 (2005),
available at
http://www-sop.inria.fr/apics/personnel/Alban.Quadrat/index.html.
D. Quillen,
Projective modules over polynomial rings,
Invent. Math., 36 (1976), 167-171.
J. J. Rotman,
An Introduction to Homological Algebra,
Academic Press, 1979.
A. A. Suslin,
Projective modules over polynomial rings are free,
Dokl. Akad. Nauk. S.S.S.R. 229 (176),(Soviet Math. Dokl., 17, 1160-1164).
L. N. Vaserstein, A. A. Suslin,
Serre's Problem on projective modules over polynomial rings and algebraic K-theory,
Math. USSR Izviestija, 10 (1976), no. 5, 937-1001.
I. Yengui,
Suslin's lemma for elimination,
preprint 2006, private communication.
D. C. Youla, P. F. Pickel,
The Quillen-Suslin theorem and the structure of n-dimensional elementary polynomial matrices,
Trans, Circuits and Systems, 31 (1984), 513-517.
M. Wang, D. Feng
On Lin-Bose problem,
LinearAlgebra and its Applications, 390 (2004), 279-285.
M. Wang, C. P. Kwong
On multivariate polynomial matrix factorizations problems,
Math. Control Signals Systems, 17 (2005), 297-311.