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a b s t r a c t

The purpose of this article is to develop a new approach to the robust regulation problem for plants
which do not necessarily admit coprime factorizations. The approach is purely algebraic and allows us
dealing with a very general class of systems in a unique simple framework. We formulate the famous
internal model principle in a form suitable for plants defined by fractional representations which are not
necessarily coprime factorizations. By using the internal model principle, we are able to give necessary
and sufficient solvability conditions for the robust regulation problem and to parameterize all robustly
regulating controllers.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Robustness of controllers is of fundamental importance since
it allows them to work under uncertain conditions. Regulating
controllers can asymptotically track a given reference signal. Ro-
bustness means that the controller remains regulating despite
small perturbations of the system. For example, modeling errors,
model simplifications and attrition of components in a real world
application can be seen as perturbations of the system. The robust
regulation problem is to find a robustly regulating controller.

Robust regulation of finite-dimensional plants is well-
understood [1–3]. The finite-dimensional theory has been general-
ized to infinite-dimensional plants and signals by several authors.
See, for instance, [4–12] and the references therein. One of themost
fundamental results of robust regulation is the internalmodel prin-
ciple, which states that any robustly regulating controller contains
a suitably reduplicated model of the dynamics to be tracked.

In the frequency domain, the robust regulation problem is an
algebraic problem. Vidyasagar formulated and solved it by using
coprime factorizations over the ring of stable rational transfer
functions [3]. Vidyasagar’s results state the internal model prin-
ciple, give a necessary and sufficient solvability condition of the
problem, and parameterize all robustly regulating controllers in a
remarkably simple form. These results have been generalized to
fields of fractions over rings suitable for distributed parameter sys-
tems and/or infinite-dimensional reference and disturbance sig-
nals [4,5,7,9,10,12]. The common feature of the results is that they
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require the existence of coprime factorizations. This is problematic
since all plants do not possess coprime factorizations [13,14], or
their existence is not known [9,15].

In this paper, we develop robust regulation theory of single-
input single-output (SISO) plants based on stabilizability results
of [16]. The advantage of the theory presented in [16] is that it
uses no coprime factorizations and allows us to develop theory
with very few assumptions.We only need to define a commutative
ring A of stable elements with a unit and having no zero divisors
to start with. The plants are just elements in the field of fractions
over A. Thismakes the theory applicable in several different classes
of infinite-dimensional systems, for instance in those of [9,17].
From the theoretic point of view, the choice of A is irrelevant, but
when applying the results, the choice of A depends naturally on the
problemat hand. Examples of ringsmotivated by systems theoretic
applications involve H∞ and the Callier–Desoer algebra where all
stabilizable plants have coprime factorizations, A := R[x2, x3] of
Example 5.1 with plants without weakly coprime factorizations,
and P of [9], for which the existence of (weakly) coprime factoriza-
tions of stabilizable transfer functions is not known.

The abstract algebraic approach to robust regulation has re-
ceived only little attention this far. In the last chapter of his
book [3], Vidyasagar discussed the generalization of finite-
dimensional stabilization and regulation theory to infinite-
dimensional systems. Unfortunately, the part concerning robust
regulation uses coprime factorizations and therefore is not appli-
cable for general rings. The same is true for the theory developed
in [10]. In addition, both of the above references use topological
notions in the study of robustness. It is possible to do without
by defining the robustly regulating controllers so that they are

http://dx.doi.org/10.1016/j.sysconle.2017.02.006
0167-6911/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2017.02.006
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2017.02.006&domain=pdf
mailto:petteri.laakkonen@tut.fi
mailto:alban.quadrat@inria.fr
http://dx.doi.org/10.1016/j.sysconle.2017.02.006


P. Laakkonen, A. Quadrat / Systems & Control Letters 103 (2017) 32–37 33

exactly the ones that are regulating for every plant they stabilize.
This definition splits the robust regulation problem into two parts:
robust regulation that involves constructing an internalmodel into
the controller and robust stabilization that involves the topological
aspects of the problem. In this article, we focus on the former.
Robustness of stability is well-understood in many physically in-
teresting algebraic structures [3,18] as well as in the abstract
setting [19,20].

By using the fractional representation approach, we generalize
the theory of [3] to the plants which do not necessarily possess
coprime factorizations. The main contributions of this article are:

• We give a reformulation of the internal model principle
without using coprime factorizations.

• We give a checkable necessary and sufficient condition for
solvability of the robust regulation problem.

• We parameterize all robustly regulating controllers for sig-
nal generators with a weakly coprime factorization.

The internal model principle and the solvability condition can
be found in the preliminary version [21] of this article. How-
ever, in this article, we require only weakly coprime factoriza-
tions instead of coprime factorizations, which extends some of
the results of [21]. Theorem 4.6 and Corollary 4.8, which give a
parametrization of all robustly regulating controllers, are new. We
formulate the results of this paper using fractional representations.
For fractional ideal approach, see [21].

The remaining part of the paper is organized as follows. Nota-
tions, preliminary results, and the problem formulation are given
in Section 2. The internalmodel principle is considered in Section 3.
Section 4 contains solvability considerations and, by using the
results of the section, we are able to give a parametrization of
all robustly regulating controllers. In Section 5, we illustrate the
theoretical results by examples. Finally, the concluding remarks
are made in Section 6.

2. The problem formulation

Let A be an integral domain, namely a commutative ring with a
unit element 1 and without zero divisors [22]. We denote by Al×m

the A-module of l × m matrices with entries in A and by

Q (A) :=

{n
d

| 0 ̸= d, n ∈ A
}

the field of fractions of A.

Definition 2.1.

1. An element h ∈ Q (A) (resp., a matrix H ∈ Q (A)l×m) is said
to be stable if we have h ∈ A (resp., H ∈ Al×m) and unstable
otherwise.

2. A controller c ∈ Q (A) stabilizes p ∈ Q (A) if the closed loop
system of Fig. 1 from (yr d)T to (e u)T given by

H(p, c) :=

⎛⎜⎝
1

1 − p c
p

1 − p c
c

1 − p c
1

1 − p c

⎞⎟⎠
is stable, i.e., if we have H(p, c) ∈ A2×2.

Let Stab(p) be the set of all the stabilizing controllers of p. Note
that c ∈ Stab(p) is equivalent to p ∈ Stab(c).

Definition 2.2. Let Θ ∈ Q (A). Then, we have:

1. A fractional representation of Θ is defined by Θ =
γ

θ
, where

0 ̸= θ, γ ∈ A.
2. A fractional representation Θ =

γ

θ
is called a coprime

factorization if there exist α, β ∈ A such that α γ − β θ = 1.

Fig. 1. The control configuration.

3. A fractional representation Θ =
γ

θ
is called a weakly coprime

factorization if we have:

∀ k ∈ Q (A) : k γ , k θ ∈ A H⇒ k ∈ A.

The approach developed in this article is based on the stabiliz-
ability results of [16]. The following theorem combines Theorems
1 and 2 of [16].

Theorem 2.3. The plant p is stabilizable if and only if there exist
a, b ∈ A such that:{
a − p b = 1,
p a ∈ A.

(1)

Moreover, a controller c stabilizes p if and only if it is of the form
c =

b
a , where 0 ̸= a, b ∈ A satisfy (1). In this case, we have that

a = (1 − p c)−1 and b = c (1 − p c)−1.
If 0 ̸= a, b ∈ A satisfy (1), then all the stabilizing controllers of p

are parametrized by

c(q1, q2) :=
b + q1 a2 + q2 b2

a + q1 p a2 + q2 p b2
, (2)

where q1, q2 ∈ A are such that the denominator of (2) does not
vanish.

We make a standing assumption that all the reference and
disturbance signals are generated by a fixed signal generator Θ ∈

Q (A), i.e., the reference and disturbance signals are of the form:

yr := Θ y0, d := Θ d0, y0, d0 ∈ A.

Definition 2.4.

1. We say that a controller c is regulating p with the signal
generator Θ if

e =

(
1

1 − p c
p

1 − p c

)
Θ

(
y0
d0

)
∈ A,

for all y0, d0 ∈ A, or equivalently if we have:

Θ

(
1

1 − p c
p

1 − p c

)
∈ A1×2. (3)

2. A controller c is called robustly regulating with the signal
generator Θ if we have:

i. c stabilizes p, i.e., c ∈ Stab(p).
ii. c regulates every plant it stabilizes, i.e., if for all p′

∈

Stab(c), we then have:

Θ

(
1

1 − p′ c
p′

1 − p′ c

)
∈ A1×2.

The robust regulation problem is the problem of finding a
robustly regulating controller.
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3. The internal model principle

The first main result of this paper is the formulation of the
internal model principle given by the next theorem, namely Theo-
rem 3.2. This result gives a necessary and sufficient condition for a
stabilizing controller to be robustly regulating.

Lemma 3.1. A stabilizing controller c is regulating p if and only if
there exist α, β ∈ A such that:

Θ = α + β c. (4)

Proof. Let us first assume that c is regulating. Then, we have
α = (1 − p c)−1 Θ ∈ A and β := −(1 − p c)−1 pΘ ∈ A, and
thus we get:

Θ =
1 − p c
1 − p c

Θ =
Θ

1 − p c
−

Θ p
1 − p c

c = α + β c.

Let us now assume that there exist α, β ∈ A such that (4) holds.
Since c stabilizes p, wehave (1−p c)−1, c (1−p c)−1, (1−p c)−1 p ∈

A, and thus⎧⎪⎨⎪⎩
Θ

1 − p c
= α

1
1 − p c

+ β
c

1 − p c
∈ A,

Θ p
1 − p c

= α
p

1 − p c
+ β

p c
1 − p c

∈ A,
(5)

which proves that c is regulating. □

Theorem 3.2. A controller c is robustly regulating if and only if it
stabilizes p and there exist α, β ∈ A such that Θ = α + β c.

Proof. The necessity can be proved like in Lemma 3.1. In order to
show the sufficiency,we assume that there existα, β ∈ A such that
we haveΘ = α+β c . For all p′

∈ Stab(c), the stability of the closed
loop H(p′, c) yields (1 − p′ c)−1, c (1 − p′ c)−1, (1 − p′ c)−1 p′

∈ A,
so we obtain (5) where p is replaced by p′. Thus, c is robustly
regulating. □

Theorem 3.2 proves that for SISO plants, every stabilizing and
regulating controller is robustly regulating. This result is well-
known in the literature for plants admitting coprime factoriza-
tions [3].

According to Theorem 3.2, we will say that a controller c con-
tains an internal model of the generator if there exist α, β ∈ A
such that Θ = α + β c. This means that the instability generated
by the signal generator Θ must be built into a robustly regulating
controller c .

Next, we ask whether the instability generated by the signal
generator Θ can be represented by a single stable element θ . By
this, we mean that a controller c that solves the robust regulation
problem with the signal generator θ−1 is also robustly regulating
with Θ . The following corollary shows that the denominator θ of
any factorization is such an element.

Corollary 3.3. Let Θ =
γ

θ
be a fractional representation of the

signal generator. If c ∈ Stab(p) and there exist α, β ∈ A such that
θ (α + β c) = 1, then c solves the robust regulation problem.

Proof. If c ∈ Stab(p) and if there exist α, β ∈ A such that
θ (α + β c) = 1, then θ ̸= 0 and θ−1

= α + β c , which yields
Θ =

γ

θ
= (γ α)+(γ β) c and proves the result by Theorem 3.2. □

However, θ−1 in Corollary 3.3 may not be a ‘‘minimal’’ internal
model in the sense that a robustly regulating controller with the
signal generator Θ is not necessarily robustly regulating with θ−1.
The next theorem shows that the denominator of aweakly coprime
factorization is minimal in this sense.

Theorem 3.4. If Θ =
γ

θ
is a weakly coprime factorization, then c

solves the robust regulation problem if and only if c ∈ Stab(p) and
there exist α, β ∈ A such that θ (α + β c) = 1, i.e. c is robustly
regulating for the signal generator θ−1.

Proof. By Theorem 3.2, θ (α + β c) = 1 is equivalent to that
c is robustly regulating with θ−1. The sufficiency follows from
Corollary 3.3. In order to show the necessity, we assume that c is
a robustly regulating controller. Since c is stabilizing, Theorem 2.3
shows that there exist a, b ∈ A satisfying (1) such that c =

b
a . Since

c is regulating, γ a
θ

= Θ a = Θ (1 − p c)−1
∈ A and θ a

θ
= a ∈ A.

Weak coprimeness of the factorization Θ =
γ

θ
implies that a

θ
∈ A.

Similarly, we can show that a p
θ

∈ A. By (1), we get

1
θ

=
a
θ

−
a p
θ

c

which completes the proof. □

We end this section by showing that a robustly regulating
controller of a plant admitting a coprime factorization (e.g., p ∈ A)
necessarily contains the denominator of a fractional representation
of the generator as an internal model.

Theorem 3.5. Let p admit a coprime factorization p =
n
d and c

stabilize p. Then, c is robustly regulating if and only if the generator Θ

admits a fractional representationΘ =
z
x , where x is the denominator

of a coprime factorization c =
y
x . In particular,we have x (α+β c) = 1

for some α, β ∈ A. Finally, if Θ admits a coprime factorization
Θ =

γ

θ
, then x = δ θ for a certain δ ∈ A.

Proof. Let us suppose that c robustly regulates p. If p =
n
d and

c =
y
x are coprime factorizations, then a standard result asserts

that c stabilizes p if and only if d x−n y = u, where u is an invertible
element of A, i.e. u−1

∈ A [3]. Then, we have:⎧⎪⎨⎪⎩
Θ

1 − p c
= u−1 d xΘ ∈ A,

pΘ

1 − p c
= u−1 n xΘ ∈ A.

Therefore, we get

xΘ = x (u−1 d xΘ) − y (u−1 n xΘ) ∈ A,

and thus there exists z ∈ A such that Θ =
z
x . Moreover, we have:

x (u−1 d − u−1 n c) = 1. (6)

Conversely, if Θ =
z
x , where x is the denominator of a coprime

factorization c =
y
x and z ∈ A, then we have d x− n y = u, where u

is a unit of A, which yields (6) and proves that c robustly regulates
p by Corollary 3.3.

Finally, if Θ =
γ

θ
is a coprime factorization, then there exist

ε, ν ∈ A such that θ ν − γ ε = 1. Then we have Θ =
γ

θ
=

z
x ,

i.e., x =
z
γ

θ , and

δ :=
z
γ

=
z (θ ν − γ ε)

γ
= x ν − z ε ∈ A. □

4. Solvability of the robust regulation problem

In this section, we give necessary and sufficient conditions for
the solvability of the robust regulation problem. The first lemma
gives a solvability condition for stable plants.

Lemma 4.1. If p ∈ A, then the robust regulation problem is solvable
if and only if:

∃ α, β ∈ A : α Θ−1
− β p = 1. (7)
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Proof. Let us first assume that c is a robustly regulating controller.
Theorem 2.3 shows that c =

b
a , where a, b ∈ A satisfy (1). Since c is

regulating, we have aΘ ∈ A. Thus, 1 = a − b p = (aΘ)Θ−1
− b p,

which proves the necessity.
Let us now assume that there exist α, β ∈ A such that we have

(7). If α = 0, then

hΘ−1
− (1 − hΘ−1)β p = 1,

where h ∈ A \ {0} is chosen so that hΘ−1
∈ A. Thus, without

restricting generality, we can assume that α ̸= 0. Since β p ∈ A,
we see that α Θ−1

∈ A, and pα Θ−1
∈ A. Thus, the Eq. (7)

implies that c :=
β

α
Θ stabilizes p by Theorem 2.3. Furthermore,

Θ (1 − p c)−1
= Θ α Θ−1

= α ∈ A, which is enough to show that
c is robustly regulating. □

We now state the main results of this section: two necessary
and sufficient solvability conditions for the robust regulation prob-
lem. In thenext theorem,we convert the problemof solvability into
a robust regulation problemof a stable plant. A checkable condition
for the solvability follows (see Corollary 4.4). Let us first state a
useful lemma.

Lemma 4.2. Let c ∈ Stab(p), a := (1 − p c)−1
∈ A, b :=

c (1 − p c)−1
∈ A and ci ∈ Stab(b p). Then, we have:

cr := c (1 + ci) ∈ Stab(p). (8)

Hence, the controllers of the form

c̃ (̃q) = c
(
1 +

q̃
1 + b p q̃

)
, (9)

where q̃ ∈ A, stabilize p, i.e., c̃ (̃q) ∈ Stab(p) for all q̃ ∈ A. The
controllers of the form (9) are obtained by choosing q1 = b q̃ and
q2 = −(a p) q̃ in (2), and we have:

1
1 − p c̃ (̃q)

:= a (1 + b p q̃). (10)

Finally, if ci robustly regulates b p, then cr is robustly regulating for p.

Proof. We clearly have:
1

1 − p cr
=

1
(1 − p c) (1 − b p ci)

. (11)

Moreover, we also have:
cr

1 − p cr
=

c
(1 − p c)

(1 + ci)
(1 − b p ci)

,

p
1 − p cr

=
p

(1 − p c)
1

(1 − b p ci)
. (12)

Now, using c ∈ Stab(p) and ci ∈ Stab(b p), we obtain cr ∈ Stab(p).
Since b p ∈ A, considering a′

= 1 and b′
= 0,we get a′

−b′ (b p) = 1
and using (2), all the stabilizing controllers of b p are of the form

q
1+b p q for all q ∈ A, which shows that c̃ (̃q) of (9) stabilizes p.

By (2), all the stabilizing controllers of p are

c(q) :=
b + q
a + p q

,

where q := q1 a2 + q2 b2 and q1, q2 ∈ A. Using (1), we then have:

c(q) = c
a (b + q)
b (a + p q)

= c
(
1 +

q
b (a + p q)

)
.

Considering q1 = b q̃ and q2 = −(a p) q̃ for q̃ ∈ A, we get
q = q1 a2 + q2 b2 = a b q̃ (a − b p) = a b q̃ and:

c(q) = c
(
1 +

a b q̃
a b + a b2 p q̃

)
= c

(
1 +

q̃
1 + b p q̃

)
.

Substituting q = a b q̃ into a + p q, we get (10).
If it is assumed that ci robustly regulates b p, then Θ (1 −

p b ci)−1
∈ A. Thus, (11) and (12) both multiplied by Θ are stable,

and cr is robustly regulating. □

Theorem 4.3. The robust regulation problem is solvable if and only
if there exists a stabilizing controller c =

b
a such that (1) holds and

there exist α, β ∈ A such that:

α Θ−1
− β b p = 1. (13)

Proof. If c =
b
a , with a and b satisfying (1), is robustly regulating,

then we have aΘ ∈ A and 1 = a − b p = (aΘ)Θ−1
− b p. This

shows the necessity.
We next show the sufficiency. Lemma 4.1 shows that there

exists ci that robustly regulates b p. Now cr = c (1 + ci) solves the
robust regulation problem by Lemma 4.2. □

Corollary 4.4. Let c =
b
a be a stabilizing controller of p such that

a, b ∈ A satisfy (1). The robust regulation problem is solvable if and
only if there exist α, β, q1, q2 ∈ A such that:

α Θ−1
− β (b + q1 a2 + q2 b2) p = 1. (14)

Proof. The result follows from Theorem 4.3 and the parametriza-
tion (2) of stabilizing controllers. □

Remark 4.5. If (14) holds, then a stabilizing controller that satisfies
the condition of Theorem 4.3 is given by c =

b+q1 a2+q2 b2

a+q1 p a2+q2 p b2
. The

controller ci in (8) is to be designed so that it robustly regulates the
stable plant (b+q1 a2 +q2 b2) p. Following the proof of Lemma 4.1,
one such controller is ci =

β

α
Θ .

For the remainder of this section, we consider a generator Θ

which admits a weakly coprime factorization. The next theorem is
a simplification of Theorem 4.3 with such a generator.

Theorem 4.6. If Θ =
γ

θ
is a weakly coprime factorization, then

the robust regulation problem is solvable if and only if the plant p is
stabilizable and if there exist α, β ∈ A such that α θ − β p = 1.

Proof. We may assume that p is stabilizable. Let c be a stabilizing
controller, i.e. there exist a, b ∈ A such that c =

b
a and (1) holds.

In order to show the necessity, let us assume that c is robustly
regulating. By Theorem 3.4, there exist α0, β0 ∈ A such that
θ (α0 + β0 c) = 1. By (1), we have

1 = α0 θ + θ β0 c = α0 θ + θ β0 c (a − b p)
= (α0 + β0 b) θ − (β0 θ c b) p.

Since α0 + β0 b ∈ A and (β0 θ c) b = (1− θ α0) b ∈ A, the necessity
follows.

Let us now show the sufficiency. Substituting

q := β a = β a (a − b p) = β a2 − (β p) a b

= β a2 − (β p) a b (a − b p)

= (1 − p b)β a2 + (β p) (a p) b2

to (2), where β p = α θ −1 ∈ A and using the identities α θ −β p =

1 and a − p b = 1, we obtain the stabilizing controller

c(β a) = c
a (b + β a)

b (a + p (β a))
= c

(
1 +

β a
b (a + p (β a))

)
= c

(
1 +

β

b (1 + pβ)

)
= c

(
1 +

β

bα θ

)
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of p by Theorem 2.3. Finally, we observe that the fractional repre-
sentation c(β a) =

β+α θ b
α θ a satisfies{

α θ a − (β + α θ b) p = α θ (a − bp) − β p = 1,
α θ a p ∈ A,

i.e. it satisfies (1), and

(α a γ )Θ−1
− (β + α θ b) p = 1,

so the claim follows by Theorem 4.3. □

By using Theorem 4.6, we are able to state the second main
result of this section: a parametrization of all the robustly reg-
ulating controllers. The next theorem leading to parametrization
of all robustly regulating controllers was given in [3] for finite-
dimensional systems. The actual parametrization will be given by
Corollary 4.8.

Theorem 4.7. Assume that Θ =
γ

θ
is a weakly coprime factorization.

If the robust regulation problem is solvable, then a controller c is
robustly regulating if and only if it is of the form c =

c0
θ
, where c0

is a stabilizing controller of p0 :=
p
θ
.

Proof. Assume that the robust regulation problem is solvable. We
first show that if c0 stabilizes p0, then c is robustly regulating. Since
we assume that c0 stabilizes p0, Theorem 2.3 implies that there
exist stable elements 0 ̸= a, b ∈ A satisfying{
a − p0 b = 1,
p0 a ∈ A,

(15)

and c0 =
b
a . By (15), we see that:

1
1 − p c

=
1

1 − p0 c0
= a ∈ A. (16)

By the assumption that c0 stabilizes p0,
p

1 − p c
=

θ p0
1 − p0 c0

∈ A, (17)

1
θ

p
1 − p c

=
p0

1 − p0 c0
∈ A. (18)

Since the robust regulation problem is solvable, Theorem 4.6 im-
plies that there exist α, β ∈ A such that α θ − β p = 1. By (15), we
have
1
θ

1
1 − p c

=
a
θ
(α θ − β p) = aα − (a p0)β ∈ A, (19)

c
1 − p c

=
b
θ

=
b
θ
(α θ − β p) = bα − (b p0)β ∈ A. (20)

The controller c is stabilizing by (16), (17) and (20). It is regulating
by (18) and (19). The controller is robustly regulating since regula-
tion implies robust regulation in the SISO case.

Next,we show that a robustly regulating controller has the form
c =

c0
θ

where c0 stabilizes p0. By Theorem 2.3, c =
b
a , where

0 ̸= a ∈ A and b ∈ A, satisfy (1). Since c is regulating for the
signal generator θ−1 by Theorem 3.4 and (1) holds, we have:{a − (θ b) p0 = a − p b = 1,

p0 a =
1
θ

p
1 − p c

∈ A.

This completes the proof since c0 = θ c stabilizes p0 by Theo-
rem 2.3. □

Corollary 4.8. Let c be a robustly regulating controller. If Θ =
γ

θ
is a

weakly coprime factorization, then all robustly regulating controllers
are given by

c(q1, q2) =
b + q1 a2 + q2 b2

θ a + q1 a2 p + q2 b2 p
, (21)

where a := (1 − p c)−1, b := θ c (1 − p c)−1, and q1, q2 ∈ A are
arbitrary elements such that:

θ a + q1 a2 p + q2 b2 p ̸= 0.

Proof. Consider the notations of Theorem 4.7. Now the elements
a = (1 − p0 c0)−1 and b = c0 (1 − p0 c0)−1 satisfy{a − p0 b = 1,

p0 a =
1
θ

p
1 − p c

∈ A,

so Theorem 2.3 shows that all the stabilizing controllers of p0 are
of the form:

c0(q1, q2) =
b + q1 a2 + q2 b2

a + q1 a2 p0 + q2 b2 p0
.

Theorem 4.6 shows that we obtain the desired parametrization by
multiplying the above parametrization by θ−1. □

5. Examples

In the first example, the plant does not possess a weakly
coprime factorization. The second example shows that the re-
sults presented here extend the classical ones obtained in
H∞-framework. We will see that the signal generator need not
possess a coprime factorization in order for the robust regulation
problem to be solvable.

Example 5.1. Recall [14, Example 3.2],whereA := R[x2, x3] served
as a discrete finite-time model of some high speed electronic
circuits without unit delays. It was shown in [16, Example 4] that
p :=

x3−1
x2−1

∈ Q (A) does not admit a weakly coprime factorization

over A and that c :=
x2−1
x3+1

is a stabilizing controller. In addition,
a fractional representation c =

a
b that satisfies (1) is given by

a :=
x3+1
2 and b :=

x2−1
2 .

Let us consider robust regulation with the generator Θ :=
1

x5−x2+2
∈ Q (A). If we choose q1 = q2 = 0, α =

1
2 , and β =

x2, then (14) holds. The robust regulation problem is solvable by
Corollary 4.4.

Let us now construct a robustly regulating controller. By Re-
mark 4.5, a robustly regulating controller is given by (8) if we can
find a robustly regulating controller ci for b p. Following the proof
of Lemma 4.1 we find out that ci =

β

α Θ−1 robustly regulates b p.
The desired controller is:

cr = c (1 + ci) =
(x2 − 1)(x5 + x2 + 2)
(x3 + 1)(x5 − x2 + 2)

.

We end this example by parameterizing all robustly regulating
controllers. By Theorem 4.7,

c0 = (x5 − x2 + 2) cr =
(x2 − 1)(x5 + x2 + 2)

x3 + 1

stabilizes p0 =
p

x5−x2+2
. A fractional representation of c0 =

a0
b0

that
satisfies{
a0 − p0 b0 = 1,
p0 a0 ∈ A,

is given by:⎧⎪⎨⎪⎩
a0 =

1
1 − p0 c0

=
x3 + 1

2
∈ A,

b0 = a0 c0 =
x2 − 1

2
∈ A.
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By Corollary 4.8, all the robustly regulating controllers of p are then
given by:

c(q1, q2) =
b0 + q1 a20 + q2 b20

(x5 − x2 + 2) a0 + q1 p a20 + q2 p b20
. ■

Example 5.2. Choose p := 1 ∈ H∞(C+) and assume that
Θ ∈ Q (H∞(C+)) does not posses a coprime factorization,
e.g., see [23]. Any stabilizable plant in Q (H∞(C+)) possesses a
coprime factorization [24], so Θ p is not stabilizable. However,
since 1 = 0Θ−1

+ p, there exists a robustly regulating controller
by Lemma 4.1.

LetΘ =
γ

θ
be an arbitrary fractional representation.We choose

c =
θ−1
θ

. It is easy to see that (1) holds with a := θ and b := θ − 1.
The controller is stabilizing by Theorem 2.3, and admits a coprime
factorization c =

θ−1
θ

. The controller is robustly regulating by
Theorem 3.5. This shows that θ−1 is the internal model built into
the controller.

Above we have found a controller that solves the robust regu-
lation problem. We know that Θ possess a weakly coprime factor-
ization [24]. Using it and Corollary 4.8, we can easily parameterize
all the robustly regulating controllers. ■

6. Concluding remarks

In this article, we have developed a frequency domain theory
of robust regulation that uses no coprime factorizations for SISO
systems. We were able to formulate the internal model principle
and to give necessary and sufficient solvability conditions in a
very general algebraic framework. In addition, a parametrization
of all robustly regulating controllers was given provided that the
signal generator possesses a weakly coprime factorization, but not
necessarily a coprime factorization. Thus, the results of this article
extend the classical ones using coprime factorization. If A = H∞,
this article fully characterizes the solvability and parametrizes all
the robustly regulating controllers since any plant in Q (H∞) has a
weak coprime factorization [24].

The advantage of the adopted approach is that the results of this
paper extend the class of systemswe can dealwith, and gives a new
formulation for some classical results using only general fractional
representations. From the practical point of view, the usefulness of
the results is a consequence of the difficulty to find coprime factor-
izations of the transfer functions of infinite-dimensional systems.
Future work contains generalization of the results to the multi-
input multi-output case.
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