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Abstract. This paper continues the study of a rank factorization prob-
lem arising in gear fault surveillance [10–13]. The structure of a class
of solutions − important in practice − of the rank factorization prob-
lem is studied. We show that these solutions can be parametrized. Using
module theory and computer algebra methods, the parameter space P is
explicitly characterized and is shown to be the complementary of an alge-
braic set. Finally, a finite open cover of P is obtained and for each basic
open subset of the cover of P, a closed-form solution is characterized.
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1 Introduction

Before stating the mathematical problem studied in this paper, we first introduce
a few notations. Let k denote a field (e.g., k = Q, R, C), R a commutative ring,
Rn×m the R-module (the k-vector space if R = k) formed by all the n × m
matrices with entries in R, U(R) := {r ∈ R | ∃ s ∈ R : r s = 1} the group of
units of R, GLn(R) := {U ∈ Rn×n | det(U) ∈ U(R)} the general linear group of
invertible n × n matrices with entries in R, and In the n × n identity matrix of
GLn(R). If A ∈ Rr×s, then we can consider the following R-homomorphisms

.A : R1×r −→ R1×s

λ &−→ λA,
A. : Rs×1 −→ Rr×1

η &−→ A η,

and the following R-modules (the k-vector spaces if R = k):





imR(.A) := R1×r A,
kerR(.A) := {λ ∈ R1×r | λA = 0},
cokerR(.A) := R1×s/imR(.A),






imR(A.) := ARs×1,
kerR(A.) := {η ∈ Rs×1 | A η = 0},
cokerR(A.) := Rr×1/imR(A.).
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Recall that A is said to have full column (resp., full row) rank if kerR(A.) = 0
(resp., kerR(.A) = 0). A ∈ kr×s has full row rank (resp., full column rank) iff it
admits a right (resp., left) inverse B ∈ ks×r, i.e., AB = Ir (resp., BA = Is).

Motivated by the application of vibration analysis to gearbox fault surveil-
lance [2,3], a new demodulation approach of gearbox vibration signals was devel-
oped in [10,11]. It yielded the study of the following mathematical problem.

Rank Factorization Problem:
Let D1, . . . , Dr ∈ kn×n\{0} and M ∈ kn×m\{0} be such that rankk(M) ≤ r.
Determine − if they exist − u ∈ kn×1 and v1, . . . , vr ∈ k1×m satisfying:

M =
r∑

i=1

Di u vi. (1)

Note that (1) is a system formed by mn polynomial equations in the n + mr
entries of u and of the vi’s. Thus, (1) belongs to the realm of algebraic geometry.

The rank factorization problem was first solved for r = 1 and D1 = In in [11],
and then for r = 2 and D1 = In in [12]. In [13], the general problem was studied
with the assumption that the row vectors vi’s are k-linearly independent, i.e.,
that the matrix v := (vT1 . . . vTr )T has full row rank. This assumption, which is
motivated by the application, made the characterization of this class of solutions
possible using linear algebra methods. These results are reviewed in Sect. 2.

Based on module theory and computer algebra methods [7,14,17], the first
goal of the paper is to develop the algorithmic aspects of the results presented
in [13]. We then study the set formed by all the solutions (u, v) of (1) with
full row rank matrices v. An important problem in practice is to know how the
solutions can vary within the solution space. Hence, we develop the local study
of the solution space by proving the existence of local closed-form solutions
that can be computed by computer algebra methods. Finally, the existence of
global solutions is investigated and we show that this problem is related to well-
known difficult problems in module theory (e.g., computing the least number of
generator sets of an ideal, recognizing when a stably free module over certain
localizations of a polynomial ring is free and if so, computing a basis of the free
module) [7,17].

2 The Rank Factorization Problem

In this section, we state again results on the problem obtained in [13]. If we note

A(u) := (D1 u . . . Dr u) ∈ kn×r, v := (vT1 . . . vTr )
T ∈ kr×m,

then (1) can be rewritten as the following factorization of M (bilinear system):

M = A(u) v. (2)

Note that if (u, v) is a solution of (2), then so is (λu, λ−1 v) for all λ ∈ k\{0}.
We also note that Problem (2) is solvable iff there exists u ∈ kn×1 such that:

imk(M.) ⊆ imk(A(u).). (3)
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Indeed, if (2) holds, then ζ ∈ imk(M.) is of the form ζ = M η = A(u) (v η)
for a certain η ∈ km×1, which shows that (3) holds. Conversely, if there exists
a vector u ∈ kn×1 such that (3) holds, then for i = 1, . . . ,m, the ith column
M•i of M belongs to imk(A(u).), and thus, there exists wi ∈ kr×1 such that
M•i = A(u)wi, which yields (2) with v := (w1 . . . wm).

Using (3), a necessary condition for the solvability of (2) is then:

∃ u ∈ kn×1, l := rankk(M) ≤ rankk(A(u)) ≤ min{r, n}. (4)

Suppose that (2) is solvable with a full row rank matrix v. Then, v admits a
right inverse t ∈ km×r, i.e., v t = Ir. Hence, (2) yields A(u) = M t, which yields

imk(A(u).) ⊆ imk(M.), (5)

and thus, we have:
imk(A(u).) = imk(M.). (6)

The existence of u ∈ kn×1 satisfying (6) is then equivalent to:

1. Di u ∈ imk(M.) for i = 1, . . . , r, i.e., (5).
2. rankk(A(u)) = l := rankk(M), i.e., dimk (span{Di u}i=1,...,r) = l, i.e.:

dimk(kerk(A(u).) = r − l.

Remark 1. If r = l, then the last condition becomes kerk(A(u).) = 0, i.e., the
Di u’s are k-linearly independent, which yields the uniqueness of the matrix v.

Remark 2. If rankk(M) = rankk(A(u)), then (3) is equivalent to (6). Using (4),
it holds if l = rankk(M) = r or l = n.

In this paper, we shall focus on the study of (6), i.e., on the above Conditions 1
and 2. In particular, we shall get the solutions (u, v1, . . . , vr) of (2) which are
such that the vi’s are k-linearly independent. In the demodulation problems for
gearbox vibration signals [10], each row vector vi contains Fourier coefficients of
a signal to be estimated. The hypothesis that v has full row rank amounts to
saying that the time signals are k-linearly independent, which is a fair hypothesis
in practice. The general rank factorization problem, i.e., (5), is studied in [6].

Let us now state again the approach developed in [13] for studying (2). We
first suppose that kerk(.M) )= 0 (if kerk(.M) = 0, see Remark 3 below). Let
L ∈ kp×n be a full row rank matrix whose rows define a basis of kerk(.M), i.e.:

kerk(.M) = imk(.L), p := dimk(kerk(.M)) = n − rankk(M) = n − l.

Hence, we get LM = 0, which yields imk(M.) ⊆ kerk(L.). Using
dimk(kerk(L.)) = n − p = rankk(M), we obtain kerk(L.) = imk(M.). Hence,
Condition 1 above is equivalent to Di u ∈ kerk(L.) for i = 1, . . . , r, i.e., to the
following linear system:

N u = 0, N := ((LD1)T . . . (LDr)T )T ∈ kp r×n.
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If kerk(N.) = 0, then u = 0, A(u) = 0 and (6) is not satisfied since M )= 0.
Let us now suppose that kerk(N.) )= 0 and let Z ∈ kn×d be a full column

matrix whose columns define a basis of kerk(N.), where d := dimk(kerk(N.)).
The vectors u ∈ kn×1 satisfying Condition 1 are then defined by:

∀ ψ ∈ kd×1, u = Z ψ. (7)

Remark 3. If kerk(.M) = 0, i.e., rankk(M) = n, then imk(M.) = kn×1. Condi-
tion 1 is Di u ∈ kn×1 for i = 1, . . . , r, which is satisfied for all u ∈ kn×1 and
yields Z = In. Equivalently, if we set L := 0, then N = 0, and thus, Z = In.

Using (7), Condition 2, i.e., rankk(A(u)) = l, is then equivalent to character-
izing the set of all the ψ ∈ kd×1 which are such that:

rankk(A(Z ψ)) = l ⇔ dimk(kerk(A(Z ψ).) = r − l. (8)

Example 1. Let us consider the following matrices:

M =
(
3 5
4 7

)
, D1 = I2, D2 =

(
1 0
0 2

)
.

Then, l := rankk(M) = r := 2, which by Remark 3 shows that Z = I2. Hence,
(6) holds for all u = ψ = (ψ1 ψ2)T satisfying det(A(ψ)) = ψ1 ψ2 )= 0.

Let X ∈ kn×l be a full column rank whose columns define a basis of imk(M.).
Since imk(M.) = imk(X.), there exist T ∈ km×l and a unique matrix Y ∈ kl×m

such that X = M T and M = X Y . Hence, we get X (Il−Y T ) = 0, which yields
Y T = Il because X has full column rank. In particular, Y has full row rank.

By construction, Di Z ψ ∈ kerk(L.) = imk(M.) = imk(X.) for all ψ ∈ kd×1,
which shows that there exists a unique matrix Wi ∈ kl×d such that Di Z = XWi

for i = 1, . . . , r. If we set B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r, then we obtain:

∀ ψ ∈ kd×1, A(Z ψ) = X B(ψ). (9)

Using the fact that X has full column rank, we get kerk(A(Z ψ).) = kerk(B(ψ).).
Hence, using (8), (6) holds iff there exists ψ ∈ kd×1 such that:

dimk(kerk(B(ψ).)) = r − l ⇔ rankk(B(ψ)) = l.

Hence, (6) holds iff the following set

P :=
{
ψ ∈ kd×1 | rankk(B(ψ)) = l

}
(10)

is not empty. In particular, if r = l, then P =
{
ψ ∈ kd×1 | det(B(ψ)) )= 0

}
.

Let us suppose that P )= ∅ and let us show how to characterize the solu-
tions (u, v) of (2). By construction, u = Z ψ for ψ ∈ P and using (9), we get
A(Z ψ) v = X B(ψ) v = X Y . Now, since X has full column rank, we obtain:

B(ψ) v = Y. (11)
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Since ψ ∈ P, B(ψ) admits a right inverse Eψ ∈ kr×l, i.e., B(ψ)Eψ = Il. Hence,
if the matrix Cψ ∈ kr×(r−l) is such that its columns define a basis of kerk(B(ψ).),
i.e., kerk(B(ψ).) = imk(Cψ.), then all the solutions of (11) are given by:

∀ Y ′ ∈ k(r−l)×m, v = Eψ Y + Cψ Y ′.

Note that det((Eψ Cψ)) )= 0. Hence, v has full row rank iff Y ′ ∈ k(r−l)×m is
chosen such that the matrix (Y T Y ′T )T ∈ kr×m has full row rank. If r = l, then
we note that Cψ = 0, which shows again that v is unique (see Remark 1).

Theorem 1 ([13]). With the above notations, (6) holds iff the set P defined by
(10) is not empty. If so, then

∀ ψ ∈ P, ∀ Y ′ ∈ k(r−l)×m,






u = Z ψ,

v = (Eψ Cψ)
(

Y
Y ′

)
,

(12)

are solutions of (2). Moreover, v has full row rank iff the matrix Y ′ ∈ k(r−l)×m

is chosen such that (Y T Y ′T )T ∈ kr×m has full row rank. Finally, P does not
depend on choices of the bases while defining the matrices L, Z and X.

Remark 4. Note that 0 /∈ P since B(0) = 0. If ψ ∈ P and λ ∈ k\{0}, then
B(λ ψ) = λB(ψ), i.e., λ ψ ∈ P. Remark 6 of [13] shows that the solutions (12)
are stable under the transformations (u, v) &−→ (λu, λ−1 v) for all λ ∈ k\{0}.

Note that the matricesX, Y, Z, W1, . . . ,Wr, B of Theorem 1 can be obtained
by linear algebra methods as well as the matrices Eψ and Cψ for a fixed ψ ∈ P.

Example 2. We consider again Example 1. Taking X = M and Y = I2, we get:

W1 =

(
7 −5

−4 3

)
, W2 =

(
7 −10

−4 6

)
, B(ψ) =

(
7ψ1 − 5ψ2 7ψ1 − 10ψ2

−4ψ1 + 3ψ2 −4ψ1 + 6ψ2

)
,

P = {ψ ∈ k2×1 | det(B(ψ)) = ψ1 ψ2 #= 0}, Cψ = 0,

Eψ =
1

ψ1 ψ2

(
−4ψ1 + 6ψ2 −7ψ1 + 10ψ2

4ψ1 − 3ψ2 7ψ1 − 5ψ2

)
.

Hence, the solutions of (2) are then defined by u = ψ ∈ P and v = Eψ.

For more explicit examples, see [12,13].

3 Characterization of P

In this section, we characterize the set P defined by (10). An element ψ ∈ P
is such that at least one of the Cl

r := r!/(l! (r − l)!) l × l-minors mk(ψ) of the
matrix B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r does not vanish, i.e., we have:

P = kd×1 \
{
ψ ∈ kd×1 | mk(ψ) = 0, k = 1, . . . , Cl

r

}
. (13)
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Note that mk is either 0 or a homogeneous polynomial of degree l, i.e., it satisfies
mk(λ ψ) = λl mk(ψ) for all λ ∈ k\{0}. Note also that Cl

r can be very large.
Hence, we have to find a more tractable way to characterize P.

If ψ is considered as an arbitrary vector of kd×1, then B(ψ) can be inter-
preted as a matrix with polynomial entries in the ψi’s. A natural framework for
the study of P is thus module theory over a polynomial ring [7,14]. Based on
module theory and computer algebra methods (Gröbner bases) [7,9,17], in this
section, we give a characterization of P which is more tractable in practice. The
corresponding algorithm is implemented in the OreModules package [5] but
the homalg library (GAP) [1] or the Singular system [9] can also be used.

Let R := k[x1, . . . , xd] be the commutative polynomial ring in x1, . . . , xd with
coefficients in the field k. Moreover, let us consider:

x := (x1 . . . xd)T , B := (W1 x . . . Wr x) ∈ Rl×r.

Then, we can define the following finitely presented R-module [7,17]:

N := cokerR(B.) = Rl×1/imR(B.) = Rl×1/
(
BRr×1

)
.

The R-module N defines the obstruction of the surjectivity of the R-
homomorphism B. : Rr×1 −→ Rl×1, i.e., the obstruction for BRr×1 to be equal
to Rl×1.

Remark 5. In Remark 5 of [13], it is shown that, up to invertible matrices, B
does not depend on arbitrary choices for the matrices L, X and Z (whose rows
or columns define bases of certain k-vector spaces). Hence, up to isomorphism,
the R-module N is associated with the solvability of Problem (2).

We have the following finite presentation of the R-module N [7,14,17], i.e.,
the following exact sequence of R-modules:

0 N!! Rl×1κ!! Rr×1.
B.!! (14)

For each ψ ∈ kd×1, we can define the following maximal ideal of R

mψ := 〈x1 − ψ1, . . . , xd − ψd〉 =
{

d∑

i=1

ai (xi − ψi) | ai ∈ R, i = 1, . . . , d

}
, (15)

i.e., R/mψ is isomorphic to the field k, which is denoted by R/mψ
∼= k [7,14,17].

Applying the covariant right exact functor (R/mψ) ⊗R · to (14), we obtain
the following exact sequence of k-vector spaces [7,17]:

0 (R/mψ) ⊗R N!! kl×1id⊗κ!! kr×1.
B(ψ).!! (16)

Using properties of tensor products [17], B(ψ). : kr×1 −→ kl×1 is surjective iff

N/(mψ N ) ∼= (R/mψ) ⊗R N ∼= kl×1/
(
B(ψ) kr×1

)
= 0,
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where mψ N :=
{∑

i∈I ai ni | ai ∈ mψ, ni ∈ N , %I < ∞
}
, i.e., iff we have:

N = mψ N . (17)

Note that mψ ⊂ R yields mψ N ⊂ N , i.e., (17) is equivalent to N ⊂ mψ N , i.e.:

P =
{
ψ ∈ kd×1 | N ⊂ mψ N

}
.

Nakayama’s lemma [7,14,17] gives a necessary condition for (17). Before
stating again this well-known result, we rewrite (17) in terms of equations. Let
κ : Rl×1 −→ N be the R-homomorphism which sends η ∈ Rl×1 onto its residue
class in N , i.e., κ(η′) = κ(η) if there exists ζ ∈ Rr×1 such that η′ = η+B ζ [17].
Let fj be the jth vector of the standard basis of Rl×1, i.e., the vector defined
by 1 at the jth position and 0 elsewhere, and yj := κ(fj) the residue class of fj
in N . It can be easily show that {yj}j=1,...,l is a set of generators of N [4,16].
Then, (17) is equivalent to the existence of rjk ∈ mψ such that yj =

∑l
k=1 rjk yk

for j = 1, . . . , l. Noting y := (y1, . . . , yl)T , (17) is equivalent to the existence of
G := (rjk) ∈ mψ

l×l such that (Il − G) y = 0, which is then equivalent to the
existence of E ∈ Rr×l such that Il = G+BE, and thus:

P =
{
ψ ∈ kd×1 | ∃ G ∈ mψ

l×l, ∃ E ∈ Rr×l : Il = G+BE
}
.

Setting x := ψ, Il = G+BE yields B(ψ)E(ψ) = Il and rankk(B(ψ)) = l.
Now, if (Il − G)adj denotes adjugate matrix of Il − G, using the standard

identity (Il −G)adj (Il −G) = det(Il −G) [17], then we get det(Il −G) y = 0. Let
p(λ) := det(λ Il −G) = λl + p1 λl− 1 + . . .+ pl be the characteristic polynomial
of G. We can check that pi ∈ mψ for i = 1, . . . , l, and thus, det(Il − G) = p(1) =
1 + a for a certain a ∈ mψ. Since 1 /∈ mψ, det(Il − G) )= 0 and each generator
yj of N satisfies the non-trivial equation (1 + a) yj = 0 for j = 1, . . . , l. Hence,
we get

0 )= 1 + a ∈ annR(N ) := {b ∈ R | bN = 0} , (18)

where annR(N ) is an ideal of R called the annihilator of N . Nakayama’s lemma
asserts (17) implies (18) [7,14,17]. In particular, (18) implies that the R-module
N is torsion, namely, t(N ) := {n ∈ N | ∃ 0 )= b ∈ R : b n = 0} = N [7,17].

Let us consider a family of generators {gi}i=1,...,t of annR(N ), i.e.:

annR(N ) = 〈g1, . . . , gt〉 :=
{

t∑

i=1

ai gi | a1, . . . , at ∈ R

}
. (19)

A set of generators {gi}i=1,...,t of annR(N ) can be computed by the command
PiPolynomial ofOreModules [5]. See also Homalg [1] and Singular [9]. Note
that t is usually much smaller than Cl

r. Now, (18) shows that there exist qi ∈ R
for i = 1, . . . , t satisfying 1 + a =

∑t
i=1 qi gi. Evaluating this identity at the

point x = ψ, we obtain the following Bézout identity:

t∑

i=1

qi(ψ) gi(ψ) = 1. (20)
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Hence, ψ ∈ kd×1 must to be chosen such that the generators g1, . . . , gt of
annR(N ) do not simultaneously vanish at ψ.

Remark 6. For two finitely generated R-modules M and N , it can be proved
that M ⊗R N = 0 implies annR(M) + annR(N ) = R. See, e.g., Corollary 4.9
of [7]. Setting M := R/mψ and using annR(M) = mψ, a necessary condition
for ψ ∈ P is then mψ + annR(N ) = 〈x1 − ψ1, . . . , xd − ψd, g1, . . . , gt〉 = R,
i.e.,

∑t
i=1 qi gi +

∑d
j=1 rj (xj − ψj) = 1 for certain qi, rj ∈ R, i = 1, . . . , t,

j = 1, . . . , d, which, by evaluation at x = ψ, yields again (20).

If I is an ideal of R, we can define the algebraic set of the affine space kd×1:

Vk(I) := {ψ ∈ kd×1 | ∀ g ∈ I : g(ψ) = 0}.

If I = 〈g1, . . . , gt〉, i.e., I is generated by the gi’s, then Vk(I) is the common zeros
ψ ∈ kd×1 of all the gi’s, i.e., Vk(I) = {ψ ∈ kd×1 | gi(ψ) = 0, i = 1, . . . , t}. Hence:

Vk(annR(N )) = Vk(〈g1, . . . , gt〉) =
t⋂

i=1

Vk(〈gi〉). (21)

Hence, a necessary condition for (17) to hold is ψ ∈ kd×1\Vk(annR(N )). This
condition is also sufficient as explained in the following remark.

Remark 7. Let Fitt0(N ) be the 0th Fitting ideal of N , namely, the ideal of R
defined by all the l × l-minors of B [7]. Proposition 20.7 of [7] then yields:

annR(N )l ⊆ Fitt0(N ) ⊆ annR(N ).

If
√
I := {a ∈ R | ∃ n ∈ Z≥0 : an ∈ I} denotes the radical of I [7,14], then

√
annR(N ) =

√
Fitt0(N ) ⇒ Vk(annR(N )) = Vk(Fitt0(N ))),

which also shows again (13), i.e., P = kd×1\Vk(Fitt0(N ))).

In Sect. 4, we shall give a more useful proof of P = kd×1\Vk(annR(N )).

Example 3. We consider the following matrices:

M =




0 0

−147360 −96804
0 0



 , D1 =




0 0 0
0 54 −31
0 0 0



 ,

D2 =




0 0 0
0 −58 −77
0 0 0



 , D3 =




0 0 0
79 0 0
0 0 0



 .

We can check that l := rankk(M) = 1 < r = 3,

X =




0

−147360
0



 , Y =
(
1

8067
12280

)
, L =

(
1 0 0
0 0 1

)
, N = 0, Z = I3,
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and ψ = (ψ1 ψ2 ψ3)
T . If c := 1/(147360), then we have:

W1 = c (0 − 54 31) , W2 = c (0 58 77) , W3 = c (−79 0 0) ,
B(ψ) = c (−54ψ2 + 31ψ3 58ψ2 + 77 ψ3 − 79ψ1) .

Let R = k[x1, x2, x3], x := (x1 x2 x3)T , B := (W1 x W2 x W3 x) ∈ R1×3.
The R-module N = R/

(
BR3×1

)
= R/I, where I = 〈B1, B2, B3〉 is the ideal

generated by the three entries Bi’s (i.e., 1 × 1-minors mk) of B, is clearly a
torsion R-module. The R-module N is generated by the residue class y of 1 in
N and we can check that annR(N ) = I = m0 := 〈x1, x2, x3〉. Such a computation
can directly be obtained by the PiPolynomial command of the OreModules
package [5]. Hence, we get:

Vk(annR(N )) =
{
(0 0 0)T

}
⇒ P = k3×1 \ {0}.

Remark 8. Since the generators gi’s of annR(N ) can be chosen to be homoge-
neous polynomials, 0 ∈ Vk(annR(N )), which shows that 0 /∈ P (see Remark 4).

4 Local and Global Studies of the Solution Space

4.1 Existence of a Local/Global Right Inverse E of B

Let us first study the problem of computing a right inverse Eψ of B(ψ) for ψ ∈ P.
With the notation (19), let us consider the following integral domain

S−1
gi R :=

{
a

gni
| a ∈ R, n ∈ Z≥0

}
,

i.e., the localization of R at the multiplicatively closed set Sgi := {gni | n ∈ Z≥0}
[7,14,17]. We can then consider the localization of N with respect of the powers
of gi, namely, the S−1

gi R-module defined by S−1
gi N := {s−1 n | s ∈ Sgi , n ∈ N}.

It is well-known S−1
gi R is a flat R-module [7,14,17], which yields the isomorphism

S−1
gi N ∼= (S−1

gi R)l×1/
(
B (S−1

gi R)r×1
)

of S−1
gi R-modules. Hence, S−1

gi N can be seen as the S−1
gi R-module obtained from

N by extending the scalars from R to S−1
gi R. See, e.g., [7,14,17]. By definition

(see (19)), we have gi N = 0 and g−1
i ∈ S−1

gi R, which yields S−1
gi N = 0, i.e.:

B (S−1
gi R)r×1 = (S−1

gi R)l×1, i = 1, . . . , t.

Hence, there exists Egi ∈ (S−1
gi R)r×l such that BEgi = Il, i.e., Egi is a right

inverse of B defined over the Zariski distinguished/basic open subset of kd×1 [7]

D(gi) := kd×1 \ Vk(〈gi〉), i = 1, . . . , t,

i.e., Egi(ψ) is a right inverse of B(ψ) for all ψ ∈ D(gi), where Egi(ψ) denotes the
value of the matrix Egi evaluated at x := ψ. The matrix Egi can be computed
by the LocalLeftInverse command of the OreModules package.
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Remark 9. Using (14), we get the split exact sequence of S−1
gi R-modules [17]:

0 = S−1
gi N (S−1

gi R)l×1
S−1
gi

κ
!!

Egi . "" (S−1
gi R)r×1

B.
!! .

Thus, we have S−1
gi imR(B.) = imS−1

gi
R(B.) ∼= (S−1

gi R)l×1 for i = 1, . . . , t, i.e.,
S−1
gi R-module S−1

gi imR(B.) is free of rank l.

From the above results, rankk(B(ψ)) = l for all ψ ∈ kd×1\
⋂t

i=1 Vk(〈gi〉).
Using (21), (2) has solutions in the complementary P of the Zariski closed subset
Vk(annR(N )) in kd×1. Hence, if P )= ∅ (e.g., annR(N ) )= 〈0〉 and k is algebraically
closed), then (2) generically has solutions in the sense of algebraic geometry, i.e.,
outside the Zariski closed subset Vk(annR(N )) of kd×1 [7,14]. Moreover, we have:

P = kd×1 \
t⋂

i=1

Vk(〈gi〉) =
t⋃

i=1

(
kd×1 \ Vk(〈gi〉)

)
=

t⋃

i=1

D(gi)

=
{
ψ ∈ kd×1 | ∃ i ∈ !1, . . . , t" : ψ /∈ Vk(〈gi〉)

}
.

Since P ∩ D(gi) = D(gi), D(gi) is also an open subset of P for the induced
Zariski topology [7,14]. Finally, P is an open subset of the irreducible affine set
kd×1 = Vk(〈0〉), i.e., which shows that P is a quasi-affine variety [9].

Theorem 2. Let R = k[x1, . . . , xd], x = (x1 . . . xd)T , Wi ∈ kl×d, i = 1, . . . , r,
be the matrices defined in Sect. 2, B = (W1 x . . . Wr x) ∈ Rl×r, the R-module
N = Rl×1/

(
BRr×1

)
and its annihilator annR(N ) = 〈g1, . . . , gt〉. Then, we get:

P = D(annR(N )) := kd×1 \ Vk(annR(N )). (22)

Hence, Problem (2) has solutions in the complementary P of the closed algebraic
set Vk(annR(N )) in kd×1. Moreover, annR(N ) = 〈0〉 yields P = ∅ and the
converse holds if k is algebraically closed.

The quasi-affine variety P has a finite open cover defined by P =
⋃t

i=1 D(gi),
where D(gi) := kd×1\Vk(〈gi〉) is a basic open subset of kd×1 (of P). Finally, there
exist Egi ∈ (S−1

gi R)r×l such that BEgi = Il for i = 1, . . . , t, i.e., for each D(gi),
there exists a smooth right inverse Egi of B, i.e., ψ ∈ D(gi) &−→ Egi(ψ).

Using Theorem 2, B(ψ) admits a global right inverse E(ψ) over P, i.e.,
B(ψ)E(ψ) = Il for all ψ ∈ P, iff the ideal annR(N ) can be generated by a
single element g ∈ R, i.e., annR(N ) = 〈g〉, in which case annR(N ) is princi-
pal [7,17]. For instance, it is the case if we have l = r and g := det(B) )= 0
(see Example 2), or if d = 1, i.e., R = k[x1] is a principal ideal domain,
namely, every ideal of R (e.g., annR(N )) can be generated by a single ele-
ment g of R which can be obtained by Euclidean division [7,17]. Let us now
study the general case. Let annR(N ) = 〈g1, . . . , gt〉, g be a greatest common
divisor of all the gi’s and g′

i := gi/g ∈ R for i = 1, . . . , t. We then get
annR(N ) = 〈g〉〈g′

1, . . . , g
′
t〉, which shows that annR(N ) is principal iff so is
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〈g′
1, . . . , g

′
t〉, i.e., iff 〈g′

1, . . . , g
′
t〉 = R, i.e., iff there exist hi ∈ R for i = 1, . . . , t

such that
∑t

i=1 hi g′
i = 1. If k = C, using Hilbert’s Nullstellensatz [7,14], this

Bézout identity is equivalent to the fact that all the g′
i’s have no common zeros

in Cd×1, which can be checked by a Gröbner basis computation [7,9]. Now, using
Remark 8, 0 ∈ VC (annR(N )) = VC(〈g〉)

⋃
VC(〈g′

1, . . . , g
′
t〉), i.e., g(0) = 0 or

g′
i(0) = 0 for all i = 1, . . . , t. In particular, if g = 1, then annR(N ) is not a
principal ideal. Finally, if 〈g′

1, . . . , g
′
t〉 = R, i.e., annR(N ) = 〈g〉, then g(0) = 0.

The problem of finding the least number of generators µ(I) of an ideal I is a
well-known difficult problem in module theory (see, e.g., [14,15]). In our problem,
µ(annR(N )) is the least number of open sets D(gi)’s which defines a finite open
cover of P. Since annR(N ) is generated by homogeneous polynomials, it can be
proved that µ (annR(N )) = µ

(
annR(N )/annR(N )2

)
(see Ex. 12 of Chap. V.5 of

[14]), where annR(N )/annR(N )2 is the R/annR(N )-module conormal module.

Example 4. In Example 3, we proved that gi = xi for i = 1, 2, 3. Hence, if
D(xi) := k3×1 \ Vk(〈xi〉) = {ψ = (ψ1 ψ2 ψ3)T ∈ k3×1 | ψi )= 0} for i = 1, 2, 3,
then we have P =

⋃3
i=1 D(xi). Moreover, we can check that

∀ ψ ∈ D(x1) : Ex1(ψ) := c−1

(
0 0 − 1

79ψ1

)T

,

∀ ψ ∈ D(x2) : Ex2(ψ) := (5956 c)−1

(
− 77

ψ2

31
ψ2

0
)T

,

∀ ψ ∈ D(x3) : Ex3(ψ) := (2978 c)−1

(
29
ψ3

27
ψ3

0
)T

,

are local right inverses of B, i.e., BEψi = 1, on D(xi) for i = 1, 2, 3. They are
computed by the command LocalLeftInverse of the OreModules package
[5]. Since g := gcd(g1, g2, g3) = 1, as shown above, annR(N ) is not principal,
and thus, no global right inverse E of B exists over the whole space P. Using
annR(N ) = m0 = 〈x1, x2, x3〉, the R/m0

∼= k-module m0/m2
0 is defined by the k-

linear combinations of the generators xi’s of m0/m2
0, where xi denotes the residue

class of xi in m0/m2
0, i.e., m0/m2

0
∼= k3×1, which shows that t = µ(annR(N )) = 3

is the least number of distinguished open sets of k3×1 defining a cover of P.

4.2 Existence of a Local/Global Basis C of kerR(B.)

To study the local/global structure of the solution space (12) of (2), we now
investigate the existence of a local/global basis C(ψ) of ker(B(ψ).) over P.

As explained in Sect. 3, a matrix C ∈ Rr×s can be computed satisfying
kerR(B.) = imR(C.) (use, e.g., the SyzygyModule command of the Ore-
Modules package). By construction, we have the exact sequence of R-modules:

0 N!! Rl×1κ!! Rr×1B.!! Rs×1C.!! . (23)

Let Q(R) := k(x1, . . . , xd) be the field of fractions of R, i.e., the field of rational
functions in the xi’s with coefficients in k [7,17]. The rank of a finitely gener-
ated R-module L is rankR(L) := dimQ(R) (Q(R) ⊗R L). Since N is a torsion
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R-module, rankR(N ) = 0, the Euler-Poincaré characteristic applied to (14)
yields rankR(kerR(B.)) = r − l [7,17], which yields s ≥ r − l. The equality
holds, i.e., s = r − l, iff kerR(B.) is a free R-module, i.e., kerR(B.) ∼= Rr−l [17].

The problem of recognizing whether or not a module is free is an open
question in module theory [14,15,17]. It can be effectively solved for R =
k[x1, . . . , xd] due to the Quillen-Suslin theorem [14,15,17]. The Quillen-Suslin
theorem is implemented in the QuillenSuslin package [8]. Hence, we can effec-
tively test whether or not kerR(B.) is a free R-module and if so, compute a
basis of kerR(B.), namely, a full column rank matrix C ∈ Rr×(r−l) such that
kerR(B.) = imR(C.) [8]. We then have kerk(B(ψ).) = imk(C(ψ).) for all ψ ∈ P,
i.e., C is a global basis of kerR(B.) on P. In particular, C is a local basis on
D(gi) for all i = 1, . . . , t. Using Theorems 1 and 2, we finally obtain that

∀ ψ ∈ D(gi), ∀ Y ′ ∈ k(r−l)×m,






u = Z ψ,

v = (Egi(ψ) C(ψ))
(

Y
Y ′

)
,

(24)

are solutions of (2) on D(gi). If t = 1, these solutions are globally defined on P.
If d = 1, then R = k[x1] is a principal ideal domain, which implies that

annR(N ) = 〈g1〉 and kerR(B.) is a free R-module of rank r − l [7,17]. Let us
show how to compute g1, Eg1 ∈ (S−1

g1 R)r×l and a basis of kerR(B.), i.e., a full
column rank matrix C ∈ Rr×(r−l) satisfying kerR(B.) = imR(C.). If we note
W := (W1 . . . Wr) ∈ kl×r, then we have B = W x1. Hence, if ψ1 )= 0, then we
get rankk(B(ψ1)) = rankk(W ), which yields P = ∅ if rankk(W ) < l, i.e., g1 = 0,
or P = k\{0} if rankk(W ) = l, i.e., g1 = x1. In the latter case, if F ∈ kr×l

is a right inverse of W , i.e., W F = Il, then Eg1 = x−1
1 F is a right inverse

of B. Moreover, let C ∈ kr×(r−l) be a matrix whose columns define a basis of
kerk(W.). Then, we have kerR(B.) = imR(C.) ∼= Rr−l. We note that E and C
can be computed by standard linear algebra methods.

Example 5. Let us consider the following matrices:

D1 =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 −1



 , D2 =





0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0



 , D3 =





0 0 0 1
0 0 0 0
0 0 0 0

−1 0 0 0



 ,

D4 =





0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0



 , M =





1 0 0 1
0 1 −1 0
0 1 1 0
1 0 0 1



 .

We can easily check that l := rankk(M) = 3, r = 4 and:

X =





1 0 0
0 1 −1
0 1 1
1 0 0



 , Y =




1 0 0 1
0 1 0 0
0 0 1 0



 , L = (1 0 0 − 1), Z =





−1 0 0
0 0 1
0 1 0
1 0 0



 ,
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W1 =




−1 0 0
0 0 0
0 0 0



 , W2 = −1
2




0 0 0
0 1 −1
0 1 1



 , W3 =




1 0 0
0 0 0
0 0 0



 , W4 = −1
2




0 0 0
0 −1 1
0 1 1



 ,

R = k[x1, x2, x3], B =





−x1 0 x1 0

0 −1
2
(x2 − x3) 0

1
2
(x2 − x3)

0 −1
2
(x2 + x3) 0 −1

2
(x2 + x3)




.

If g1 := x1 (x2
2 − x2

3), then annR(N ) = 〈g1〉. Hence, t = 1 and P = k3\Vk(〈g1〉),
where Vk(〈g1〉) = {x1 = 0} ∪ {x2 − x3 = 0} ∪ {x2 + x3 = 0}. We can check
that the R-module kerR(B.) is free of rank 1, i.e., kerR(B.) ∼= R. Using [4,8], we
get kerR(B.) = imR(C.), where C = (1 0 1 0)T ∈ R4×1. Finally, using the
OreModules package, we obtain that the following matrix

Eg1 =
1
g1





0 0 0
0 −x1 (x2 + x3) −x1 (x2 − x3)

x2
2 − x2

3 0 0
0 x1 (x2 + x3) −x1 (x2 − x3)





is a right inverse of B, i.e., BEg1 = I3. Hence, all the solutions of (2) with full
row rank matrices v can be expressed by a single closed-form given by (24) with
t = 1 and for all ψ ∈ P and for all Y ′ = (y′

1 y′
2 y′

3 y′
4) ∈ k1×4 such that:

det((Y T Y ′T )T ) = y′
4 − y′

1 )= 0.

Let us now suppose that the R-module kerR(B.) is not free. Let us study
the module structure of the S−1

gi R-module kerS−1
gi

R(B.). Since S−1
gi R is a flat

R-module, the functor S−1
gi R⊗R · is exact [7,14,17]. Hence, applying S−1

gi R⊗R ·
to (23) and using the fact that S−1

gi R ⊗R N ∼= S−1
gi N = 0, we get the following

split exact sequence of S−1
gi R-modules [7,17]:

0 (S−1
gi R)l×1!! (S−1

gi R)r×1B.!! (S−1
gi R)s×1C.!! .

See also Remark 9. Hence, we first obtain

kerS−1
gi

R(B.) = imS−1
gi

R(C.), (25)

and then (S−1
gi R)r ∼= (S−1

gi R)l ⊕ kerS−1
gi

R(B.), which shows that kerS−1
gi

R(B.) is
a stably free S−1

gi R-module of rank r−l [17]. Thus, kerS−1
gi

R(B.) is not necessarily
a free S−1

gi R-module. Recognizing whether or not a stably free S−1
gi R-module is

free is an open question in module theory as well as the problem of computing
bases of free S−1

gi R-modules. For more details, see, e.g., [14,15,17].
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If kerS−1
gi

R(B.) is a free S−1
gi R-module of rank r − l, then there exists a full

column rank matrix Cgi ∈ (S−1
gi R)r×(r−l) such that

kerS−1
gi

R(B.) = imS−1
gi

R(Cgi .) ∼= (S−1
gi R)(r−l), (26)

i.e., the r − l columns of the matrix Cgi define a basis of the free S−1
gi R-module

kerS−1
gi

R(B.). Hence, we obtain kerk(B(ψ).) = imk(Cgi(ψ).) for all ψ ∈ D(gi).
Thus, Cgi defines a basis of kerR(B.) on D(gi). Theorems 1 and 2 then imply
that the solutions of (2) defined on D(gi) are given by:

∀ ψ ∈ D(gi), ∀ Y ′ ∈ k(r−l)×m,






u = Z ψ,

v = (Egi(ψ) Cgi(ψ))
(

Y
Y ′

)
.

(27)

A stably free module of rank 1 over a commutative ring is free [15]. Hence,
(27) holds when r = rankk(M) + 1. See [8] for the computation of Cgi .

If kerS−1
gi

R(B.) is not a free S−1
gi R-module, then no full column rank matrix

Cgi ∈ (S−1
gi R)r×(r−l) exists such that (26) holds, i.e., such that kerk(B(ψ).) =

Cgi(ψ) k(r−l)×1 for all ψ ∈ D(gi). Hence, no basis of kerk(B(ψ).) exists on D(gi).
But, using (25), we have the following solutions of (2), where s > r − l:

∀ ψ ∈ D(gi), ∀ Y ′′ ∈ ks×m,






u = Z ψ,

v = (Egi(ψ) C(ψ))
(

Y
Y ′′

)
.

(28)

Example 6. We consider again Examples 3 and 4. Using [8], we can check that
kerR(B.) is not a free R-module. Using the OreModules package, we get that

C :=




−58x2 − 77x3 −79x1 0
−54x2 + 31x3 0 −79x1

0 54x2 − 31x3 −58x2 − 77x3





is such that kerR(B.) = imR(C.), i.e., the 3 columns of C generate the R-module
kerR(B.) of rank r−l = 2. We get the solutions (28) of (2) onD(gi) for i = 1, 2, 3.

Finally, we study if the solutions of (2) can be written as (27). As explained,
the S−1

xi
R-module kerS−1

xi
R(B.) is stably free of rank 2. Using Corollary 4.10

of [15], i.e., a variant of the Quillen-Suslin theorem for the generalized Laurent
polynomial ring S−1

xi
R = R[x±1

i , xj ]1≤j )=i≤3, kerS−1
xi

R(B.) is a free S−1
xi

R-module
of rank 2. Using an implementation of this result in theQuillenSuslin package,
a basis of kerS−1

xi
R(B.) is defined by the columns of the matrix Cxi defined by:

Cx1 =




−79x1 0

0 −79x1

54x2 − 31x3 −58x2 − 77x3



 ,

Cx2 =





− 29x2

73680
− 77x3

147360
−6083x1

5956x2

− 9x2

24560
+

31x3

147360
2449x1

5956x2
0 1




, Cx3 =





− 29x2

73680
− 77x3

147360
2291x1

2978x3

− 9x2

24560
+

31x3

147360
2133x1

2978x3
0 1




.
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Hence, we have kerk(B(ψ).) = imk(Cxi(ψ).) ∼= k2×1 for all ψ ∈ D(gi) and for
i = 1, 2, 3, and (27) are solutions of (2) defined on theD(gi)’s given in Example 4.

Finally, we emphasize that all the examples were computed with the Maple
packages OreModules [5] and QuillenSuslin [8]. For more details, see:

https://who.rocq.inria.fr/Alban.Quadrat/MapleConference.
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