Algebraic Aspects of a Rank Factorization Problem Arising in Vibration Analysis

Yacine Bouzidi ${ }^{1}$, Roudy Dagher ${ }^{1}$, Elisa Hubert ${ }^{2}$, and Alban Quadrat ${ }^{3(\boxtimes)}$
${ }^{1}$ Inria Lille - Nord Europe, Villeneuve-d'Ascq, France
yacine.bouzidi@gmail.com, roudy.dagher@inria.fr
${ }^{2}$ University of Lyon, UJM-St-Etienne, LASPI, 42334 Saint-Etienne, France
elisa.hubert@wanadoo.fr
${ }^{3}$ Inria Paris, Ouragan project-team, IMJ - PRG, Sorbonne University, Paris, France
alban.quadrat@inria.fr

Abstract

This paper continues the study of a rank factorization problem arising in gear fault surveillance [10-13]. The structure of a class of solutions - important in practice - of the rank factorization problem is studied. We show that these solutions can be parametrized. Using module theory and computer algebra methods, the parameter space \mathcal{P} is explicitly characterized and is shown to be the complementary of an algebraic set. Finally, a finite open cover of \mathcal{P} is obtained and for each basic open subset of the cover of \mathcal{P}, a closed-form solution is characterized.

Keywords: Polynomial systems • Effective module theory •
Demodulation problems • Gearbox vibration signals

1 Introduction

Before stating the mathematical problem studied in this paper, we first introduce a few notations. Let \mathbb{k} denote a field (e.g., $\mathbb{k}=\mathbb{Q}, \mathbb{R}, \mathbb{C}$), R a commutative ring, $R^{n \times m}$ the R-module (the \mathbb{k}-vector space if $R=\mathbb{k}$) formed by all the $n \times m$ matrices with entries in $R, U(R):=\{r \in R \mid \exists s \in R: r s=1\}$ the group of units of $R, \mathrm{GL}_{n}(R):=\left\{U \in R^{n \times n} \mid \operatorname{det}(U) \in \mathrm{U}(R)\right\}$ the general linear group of invertible $n \times n$ matrices with entries in R, and I_{n} the $n \times n$ identity matrix of $\mathrm{GL}_{n}(R)$. If $A \in R^{r \times s}$, then we can consider the following R-homomorphisms

$$
\begin{array}{rlrl}
A: R^{1 \times r} & \longrightarrow R^{1 \times s} & A .: R^{s \times 1} & \longrightarrow R^{r \times 1} \\
\lambda & \eta A, & & \longmapsto A \eta,
\end{array}
$$

and the following R-modules (the \mathbb{k}-vector spaces if $R=\mathbb{k}$):

$$
\left\{\begin{array} { l }
{ \operatorname { i m } _ { R } (. A) : = R ^ { 1 \times r } A , } \\
{ \operatorname { k e r } _ { R } (. A) : = \{ \lambda \in R ^ { 1 \times r } | \lambda A = 0 \} , } \\
{ \operatorname { c o k e r } _ { R } (. A) : = R ^ { 1 \times s } / \operatorname { i m } _ { R } (. A) , }
\end{array} \quad \left\{\begin{array}{l}
\operatorname{im}_{R}(A .):=A R^{s \times 1}, \\
\operatorname{ker}_{R}(A .):=\left\{\eta \in R^{s \times 1} \mid A \eta=0\right\}, \\
\operatorname{coker}_{R}(A .):=R^{r \times 1} / \operatorname{im}_{R}(A .) .
\end{array}\right.\right.
$$

Recall that A is said to have full column (resp., full row) rank if $\operatorname{ker}_{R}(A)=$. (resp., $\left.\operatorname{ker}_{R}(. A)=0\right) . A \in \mathbb{k}^{r \times s}$ has full row rank (resp., full column rank) iff it admits a right (resp., left) inverse $B \in \mathbb{k}^{s \times r}$, i.e., $A B=I_{r}$ (resp., $B A=I_{s}$).

Motivated by the application of vibration analysis to gearbox fault surveillance $[2,3]$, a new demodulation approach of gearbox vibration signals was developed in $[10,11]$. It yielded the study of the following mathematical problem.

Rank Factorization Problem:

Let $D_{1}, \ldots, D_{r} \in \mathbb{k}^{n \times n} \backslash\{0\}$ and $M \in \mathbb{k}^{n \times m} \backslash\{0\}$ be such that $\operatorname{rank}_{\mathbb{k}}(M) \leq r$. Determine - if they exist $-u \in \mathbb{k}^{n \times 1}$ and $v_{1}, \ldots, v_{r} \in \mathbb{k}^{1 \times m}$ satisfying:

$$
\begin{equation*}
M=\sum_{i=1}^{r} D_{i} u v_{i} . \tag{1}
\end{equation*}
$$

Note that (1) is a system formed by $m n$ polynomial equations in the $n+m r$ entries of u and of the v_{i} 's. Thus, (1) belongs to the realm of algebraic geometry.

The rank factorization problem was first solved for $r=1$ and $D_{1}=I_{n}$ in [11], and then for $r=2$ and $D_{1}=I_{n}$ in [12]. In [13], the general problem was studied with the assumption that the row vectors v_{i} 's are \mathbb{k}-linearly independent, i.e., that the matrix $v:=\left(v_{1}^{T} \ldots v_{r}^{T}\right)^{T}$ has full row rank. This assumption, which is motivated by the application, made the characterization of this class of solutions possible using linear algebra methods. These results are reviewed in Sect. 2.

Based on module theory and computer algebra methods [7,14,17], the first goal of the paper is to develop the algorithmic aspects of the results presented in [13]. We then study the set formed by all the solutions (u, v) of (1) with full row rank matrices v. An important problem in practice is to know how the solutions can vary within the solution space. Hence, we develop the local study of the solution space by proving the existence of local closed-form solutions that can be computed by computer algebra methods. Finally, the existence of global solutions is investigated and we show that this problem is related to wellknown difficult problems in module theory (e.g., computing the least number of generator sets of an ideal, recognizing when a stably free module over certain localizations of a polynomial ring is free and if so, computing a basis of the free module) [7,17].

2 The Rank Factorization Problem

In this section, we state again results on the problem obtained in [13]. If we note

$$
A(u):=\left(D_{1} u \ldots D_{r} u\right) \in \mathbb{k}^{n \times r}, \quad v:=\left(v_{1}^{T} \ldots v_{r}^{T}\right)^{T} \in \mathbb{k}^{r \times m}
$$

then (1) can be rewritten as the following factorization of M (bilinear system):

$$
\begin{equation*}
M=A(u) v \tag{2}
\end{equation*}
$$

Note that if (u, v) is a solution of (2), then so is $\left(\lambda u, \lambda^{-1} v\right)$ for all $\lambda \in \mathbb{k} \backslash\{0\}$.
We also note that Problem (2) is solvable iff there exists $u \in \mathbb{k}^{n \times 1}$ such that:

$$
\begin{equation*}
\operatorname{im}_{\mathfrak{k}}(M .) \subseteq \operatorname{im}_{\mathfrak{k}}(A(u) .) . \tag{3}
\end{equation*}
$$

Indeed, if (2) holds, then $\zeta \in \operatorname{im}_{\mathfrak{k}}(M$.$) is of the form \zeta=M \eta=A(u)(v \eta)$ for a certain $\eta \in \mathbb{k}^{m \times 1}$, which shows that (3) holds. Conversely, if there exists a vector $u \in \mathbb{k}^{n \times 1}$ such that (3) holds, then for $i=1, \ldots, m$, the $i^{\text {th }}$ column $M_{\bullet i}$ of M belongs to $\operatorname{im}_{\mathfrak{k}}(A(u)$.$) , and thus, there exists w_{i} \in \mathbb{k}^{r \times 1}$ such that $M_{\bullet i}=A(u) w_{i}$, which yields (2) with $v:=\left(w_{1} \ldots w_{m}\right)$.

Using (3), a necessary condition for the solvability of (2) is then:

$$
\begin{equation*}
\exists u \in \mathbb{k}^{n \times 1}, \quad l:=\operatorname{rank}_{\mathfrak{k}}(M) \leq \operatorname{rank}_{\mathfrak{k}}(A(u)) \leq \min \{r, n\} . \tag{4}
\end{equation*}
$$

Suppose that (2) is solvable with a full row rank matrix v. Then, v admits a right inverse $t \in \mathbb{k}^{m \times r}$, i.e., $v t=I_{r}$. Hence, (2) yields $A(u)=M t$, which yields

$$
\begin{equation*}
\operatorname{im}_{\mathfrak{k}}(A(u) .) \subseteq \operatorname{im}_{\mathfrak{k}}(M .), \tag{5}
\end{equation*}
$$

and thus, we have:

$$
\begin{equation*}
\operatorname{im}_{\mathfrak{k}}(A(u) .)=\operatorname{im}_{\mathfrak{k}}(M .) . \tag{6}
\end{equation*}
$$

The existence of $u \in \mathbb{k}^{n \times 1}$ satisfying (6) is then equivalent to:

1. $D_{i} u \in \operatorname{im}_{\mathfrak{k}}$ (M.) for $i=1, \ldots, r$, i.e., (5).
2. $\operatorname{rank}_{\mathfrak{k}}(A(u))=l:=\operatorname{rank}_{\mathfrak{k}}(M)$, i.e., $\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{span}\left\{D_{i} u\right\}_{i=1, \ldots, r}\right)=l$, i.e.:

$$
\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(A(u) .)=r-l .\right.
$$

Remark 1. If $r=l$, then the last condition becomes $\operatorname{ker}_{\mathfrak{k}}(A(u))=$.0 , i.e., the $D_{i} u$'s are \mathbb{k}-linearly independent, which yields the uniqueness of the matrix v.

Remark 2. If $\operatorname{rank}_{\mathfrak{k}}(M)=\operatorname{rank}_{\mathfrak{k}}(A(u))$, then (3) is equivalent to (6). Using (4), it holds if $l=\operatorname{rank}_{\mathfrak{k}}(M)=r$ or $l=n$.

In this paper, we shall focus on the study of (6), i.e., on the above Conditions 1 and 2. In particular, we shall get the solutions $\left(u, v_{1}, \ldots, v_{r}\right)$ of (2) which are such that the v_{i} 's are \mathbb{k}-linearly independent. In the demodulation problems for gearbox vibration signals [10], each row vector v_{i} contains Fourier coefficients of a signal to be estimated. The hypothesis that v has full row rank amounts to saying that the time signals are \mathbb{k}-linearly independent, which is a fair hypothesis in practice. The general rank factorization problem, i.e., (5), is studied in [6].

Let us now state again the approach developed in [13] for studying (2). We first suppose that $\operatorname{ker}_{\mathfrak{k}}(. M) \neq 0$ (if $\operatorname{ker}_{\mathfrak{k}}(. M)=0$, see Remark 3 below). Let $L \in \mathbb{k}^{p \times n}$ be a full row rank matrix whose rows define a basis of $\operatorname{ker}_{\mathfrak{k}}(. M)$, i.e.:

$$
\operatorname{ker}_{\mathfrak{k}}(. M)=\operatorname{im}_{\mathfrak{k}}(. L), \quad p:=\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(. M)\right)=n-\operatorname{rank}_{\mathfrak{k}}(M)=n-l .
$$

Hence, we get $L M=0$, which yields $\operatorname{im}_{\mathfrak{k}}(M.) \subseteq \operatorname{ker}_{\mathfrak{k}}(L$.$) . Using$ $\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(L).\right)=n-p=\operatorname{rank}_{\mathfrak{k}}(M)$, we obtain $\operatorname{ker}_{\mathfrak{k}}(L)=.\operatorname{im}_{\mathfrak{k}}(M$.$) . Hence,$ Condition 1 above is equivalent to $D_{i} u \in \operatorname{ker}_{\mathbb{k}_{k}}(L$.$) for i=1, \ldots, r$, i.e., to the following linear system:

$$
N u=0, \quad N:=\left(\left(L D_{1}\right)^{T} \ldots\left(L D_{r}\right)^{T}\right)^{T} \in \mathbb{k}^{p r \times n} .
$$

If $\operatorname{ker}_{\mathrm{r}_{k}}(N)=$.0 , then $u=0, A(u)=0$ and (6) is not satisfied since $M \neq 0$.
Let us now suppose that $\operatorname{ker}_{\mathfrak{k}}(N) \neq$.0 and let $Z \in \mathbb{k}^{n \times d}$ be a full column matrix whose columns define a basis of $\operatorname{ker}_{\mathfrak{k}}(N$.$) , where d:=\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(N).\right)$. The vectors $u \in \mathbb{k}^{n \times 1}$ satisfying Condition 1 are then defined by:

$$
\begin{equation*}
\forall \psi \in \mathbb{k}^{d \times 1}, \quad u=Z \psi . \tag{7}
\end{equation*}
$$

Remark 3. If $\operatorname{ker}_{\mathfrak{k}}(. M)=0$, i.e., $\operatorname{rank}_{\mathfrak{k}}(M)=n$, then $\operatorname{im}_{\mathbb{k}}(M)=.\mathbb{k}^{n \times 1}$. Condition 1 is $D_{i} u \in \mathbb{k}^{n \times 1}$ for $i=1, \ldots, r$, which is satisfied for all $u \in \mathbb{k}^{n \times 1}$ and yields $Z=I_{n}$. Equivalently, if we set $L:=0$, then $N=0$, and thus, $Z=I_{n}$.

Using (7), Condition 2, i.e., $\operatorname{rank}_{\mathfrak{k}}(A(u))=l$, is then equivalent to characterizing the set of all the $\psi \in \mathbb{k}^{d \times 1}$ which are such that:

$$
\begin{equation*}
\operatorname{rank}_{\mathfrak{k}}(A(Z \psi))=l \Leftrightarrow \operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(A(Z \psi) .)=r-l .\right. \tag{8}
\end{equation*}
$$

Example 1. Let us consider the following matrices:

$$
M=\left(\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right), \quad D_{1}=I_{2}, \quad D_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right) .
$$

Then, $l:=\operatorname{rank}_{\mathfrak{k}}(M)=r:=2$, which by Remark 3 shows that $Z=I_{2}$. Hence, (6) holds for all $u=\psi=\left(\begin{array}{ll}\psi_{1} & \psi_{2}\end{array}\right)^{T}$ satisfying $\operatorname{det}(A(\psi))=\psi_{1} \psi_{2} \neq 0$.

Let $X \in \mathbb{K}^{n \times l}$ be a full column rank whose columns define a basis of $\operatorname{im}_{\mathfrak{k}}\left(M_{.}\right)$. Since $\operatorname{im}_{\mathfrak{k}}(M)=.\operatorname{im}_{\mathfrak{k}}(X$.$) , there exist T \in \mathbb{k}^{m \times l}$ and a unique matrix $Y \in \mathbb{k}^{l \times m}$ such that $X=M T$ and $M=X Y$. Hence, we get $X\left(I_{l}-Y T\right)=0$, which yields $Y T=I_{l}$ because X has full column rank. In particular, Y has full row rank.

By construction, $D_{i} Z \psi \in \operatorname{ker}_{\mathfrak{k}}(L)=.\operatorname{im}_{\mathfrak{k}}(M)=.\operatorname{im}_{\mathfrak{k}}(X$.$) for all \psi \in \mathbb{k}^{d \times 1}$, which shows that there exists a unique matrix $W_{i} \in \mathbb{k}^{l \times d}$ such that $D_{i} Z=X W_{i}$ for $i=1, \ldots, r$. If we set $B(\psi):=\left(W_{1} \psi \ldots W_{r} \psi\right) \in \mathbb{k}^{l \times r}$, then we obtain:

$$
\begin{equation*}
\forall \psi \in \mathbb{k}^{d \times 1}, \quad A(Z \psi)=X B(\psi) . \tag{9}
\end{equation*}
$$

Using the fact that X has full column rank, we get $\operatorname{ker}_{\mathfrak{k}}(A(Z \psi))=.\operatorname{ker}_{\mathfrak{k}}(B(\psi)$.$) .$ Hence, using (8), (6) holds iff there exists $\psi \in \mathbb{k}^{d \times 1}$ such that:

$$
\operatorname{dim}_{\mathfrak{k}}\left(\operatorname{ker}_{\mathfrak{k}}(B(\psi) .)\right)=r-l \Leftrightarrow \operatorname{rank}_{\mathfrak{k}}(B(\psi))=l .
$$

Hence, (6) holds iff the following set

$$
\begin{equation*}
\mathcal{P}:=\left\{\psi \in \mathbb{k}^{d \times 1} \mid \operatorname{rank}_{\mathbb{k}}(B(\psi))=l\right\} \tag{10}
\end{equation*}
$$

is not empty. In particular, if $r=l$, then $\mathcal{P}=\left\{\psi \in \mathbb{k}^{d \times 1} \mid \operatorname{det}(B(\psi)) \neq 0\right\}$.
Let us suppose that $\mathcal{P} \neq \emptyset$ and let us show how to characterize the solutions (u, v) of (2). By construction, $u=Z \psi$ for $\psi \in \mathcal{P}$ and using (9), we get $A(Z \psi) v=X B(\psi) v=X Y$. Now, since X has full column rank, we obtain:

$$
\begin{equation*}
B(\psi) v=Y \tag{11}
\end{equation*}
$$

Since $\psi \in \mathcal{P}, B(\psi)$ admits a right inverse $E_{\psi} \in \mathbb{k}^{r \times l}$, i.e., $B(\psi) E_{\psi}=I_{l}$. Hence, if the matrix $C_{\psi} \in \mathbb{k}^{r \times(r-l)}$ is such that its columns define a basis of $\operatorname{ker}_{\mathfrak{k}}(B(\psi)$.), i.e., $\operatorname{ker}_{\mathfrak{k}}(B(\psi))=.\operatorname{im}_{\mathfrak{k}}\left(C_{\psi}.\right)$, then all the solutions of (11) are given by:

$$
\forall Y^{\prime} \in \mathbb{k}^{(r-l) \times m}, \quad v=E_{\psi} Y+C_{\psi} Y^{\prime} .
$$

Note that $\operatorname{det}\left(\left(E_{\psi} \quad C_{\psi}\right)\right) \neq 0$. Hence, v has full row rank iff $Y^{\prime} \in \mathbb{k}^{(r-l) \times m}$ is chosen such that the matrix $\left(Y^{T} Y^{\prime T}\right)^{T} \in \mathbb{k}^{r \times m}$ has full row rank. If $r=l$, then we note that $C_{\psi}=0$, which shows again that v is unique (see Remark 1).

Theorem 1 ([13]). With the above notations, (6) holds iff the set \mathcal{P} defined by (10) is not empty. If so, then

$$
\forall \psi \in \mathcal{P}, \quad \forall Y^{\prime} \in \mathbb{k}^{(r-l) \times m}, \quad\left\{\begin{array}{l}
u=Z \psi, \tag{12}\\
v=\left(\begin{array}{ll}
E_{\psi} & C_{\psi}
\end{array}\right)\binom{Y}{Y^{\prime}},
\end{array}\right.
$$

are solutions of (2). Moreover, v has full row rank iff the matrix $Y^{\prime} \in \mathbb{k}^{(r-l) \times m}$ is chosen such that $\left(Y^{T} Y^{r^{T}}\right)^{T} \in \mathbb{k}^{r \times m}$ has full row rank. Finally, \mathcal{P} does not depend on choices of the bases while defining the matrices L, Z and X.

Remark 4. Note that $0 \notin \mathcal{P}$ since $B(0)=0$. If $\psi \in \mathcal{P}$ and $\lambda \in \mathbb{k} \backslash\{0\}$, then $B(\lambda \psi)=\lambda B(\psi)$, i.e., $\lambda \psi \in \mathcal{P}$. Remark 6 of [13] shows that the solutions (12) are stable under the transformations $(u, v) \longmapsto\left(\lambda u, \lambda^{-1} v\right)$ for all $\lambda \in \mathbb{k} \backslash\{0\}$.

Note that the matrices $X, Y, Z, W_{1}, \ldots, W_{r}, B$ of Theorem 1 can be obtained by linear algebra methods as well as the matrices E_{ψ} and C_{ψ} for a fixed $\psi \in \mathcal{P}$.

Example 2. We consider again Example 1. Taking $X=M$ and $Y=I_{2}$, we get:

$$
\begin{aligned}
W_{1} & =\left(\begin{array}{cc}
7 & -5 \\
-4 & 3
\end{array}\right), \quad W_{2}=\left(\begin{array}{cc}
7 & -10 \\
-4 & 6
\end{array}\right), \quad B(\psi)=\left(\begin{array}{cc}
7 \psi_{1}-5 \psi_{2} & 7 \psi_{1}-10 \psi_{2} \\
-4 \psi_{1}+3 \psi_{2}-4 \psi_{1}+6 \psi_{2}
\end{array}\right), \\
\mathcal{P} & =\left\{\psi \in \mathbb{k}^{2 \times 1} \mid \operatorname{det}(B(\psi))=\psi_{1} \psi_{2} \neq 0\right\}, \quad C_{\psi}=0, \\
E_{\psi} & =\frac{1}{\psi_{1} \psi_{2}}\left(\begin{array}{c}
-4 \psi_{1}+6 \psi_{2}-7 \psi_{1}+10 \psi_{2} \\
4 \psi_{1}-3 \psi_{2} \\
7 \psi_{1}-5 \psi_{2}
\end{array}\right) .
\end{aligned}
$$

Hence, the solutions of (2) are then defined by $u=\psi \in \mathcal{P}$ and $v=E_{\psi}$.
For more explicit examples, see $[12,13]$.

3 Characterization of \mathcal{P}

In this section, we characterize the set \mathcal{P} defined by (10). An element $\psi \in \mathcal{P}$ is such that at least one of the $C_{r}^{l}:=r!/(l!(r-l)!) l \times l$-minors $\mathrm{m}_{k}(\psi)$ of the matrix $B(\psi):=\left(W_{1} \psi \ldots W_{r} \psi\right) \in \mathbb{k}^{l \times r}$ does not vanish, i.e., we have:

$$
\begin{equation*}
\mathcal{P}=\mathbb{k}^{d \times 1} \backslash\left\{\psi \in \mathbb{k}^{d \times 1} \mid \mathfrak{m}_{k}(\psi)=0, k=1, \ldots, C_{r}^{l}\right\} . \tag{13}
\end{equation*}
$$

Note that m_{k} is either 0 or a homogeneous polynomial of degree l, i.e., it satisfies $\mathfrak{m}_{k}(\lambda \psi)=\lambda^{l} \mathfrak{m}_{k}(\psi)$ for all $\lambda \in \mathbb{k} \backslash\{0\}$. Note also that C_{r}^{l} can be very large. Hence, we have to find a more tractable way to characterize \mathcal{P}.

If ψ is considered as an arbitrary vector of $\mathbb{k}^{d \times 1}$, then $B(\psi)$ can be interpreted as a matrix with polynomial entries in the ψ_{i} 's. A natural framework for the study of \mathcal{P} is thus module theory over a polynomial ring [7,14]. Based on module theory and computer algebra methods (Gröbner bases) [7,9,17], in this section, we give a characterization of \mathcal{P} which is more tractable in practice. The corresponding algorithm is implemented in the OreModules package [5] but the homalg library (GAP) [1] or the Singular system [9] can also be used.

Let $R:=\mathbb{k}\left[x_{1}, \ldots, x_{d}\right]$ be the commutative polynomial ring in x_{1}, \ldots, x_{d} with coefficients in the field \mathbb{k}. Moreover, let us consider:

$$
x:=\left(x_{1} \ldots x_{d}\right)^{T}, \quad B:=\left(W_{1} x \ldots W_{r} x\right) \in R^{l \times r}
$$

Then, we can define the following finitely presented R-module $[7,17]$:

$$
\mathcal{N}:=\operatorname{coker}_{R}(B .)=R^{l \times 1} / \operatorname{im}_{R}(B .)=R^{l \times 1} /\left(B R^{r \times 1}\right) .
$$

The R-module \mathcal{N} defines the obstruction of the surjectivity of the R homomorphism B. : $R^{r \times 1} \longrightarrow R^{l \times 1}$, i.e., the obstruction for $B R^{r \times 1}$ to be equal to $R^{l \times 1}$.

Remark 5. In Remark 5 of [13], it is shown that, up to invertible matrices, B does not depend on arbitrary choices for the matrices L, X and Z (whose rows or columns define bases of certain \mathbb{k}-vector spaces). Hence, up to isomorphism, the R-module \mathcal{N} is associated with the solvability of Problem (2).

We have the following finite presentation of the R-module \mathcal{N} [7,14, 17], i.e., the following exact sequence of R-modules:

$$
\begin{equation*}
0 \lessdot \mathcal{N}<^{\kappa} R^{l \times 1}<^{B .} R^{r \times 1} . \tag{14}
\end{equation*}
$$

For each $\psi \in \mathbb{k}^{d \times 1}$, we can define the following maximal ideal of R

$$
\begin{equation*}
\mathfrak{m}_{\psi}:=\left\langle x_{1}-\psi_{1}, \ldots, x_{d}-\psi_{d}\right\rangle=\left\{\sum_{i=1}^{d} a_{i}\left(x_{i}-\psi_{i}\right) \mid a_{i} \in R, i=1, \ldots, d\right\} \tag{15}
\end{equation*}
$$

i.e., R / \mathfrak{m}_{ψ} is isomorphic to the field \mathbb{k}, which is denoted by $R / \mathfrak{m}_{\psi} \cong \mathbb{k}[7,14,17]$.

Applying the covariant right exact functor $\left(R / \mathfrak{m}_{\psi}\right) \otimes_{R} \cdot$ to (14), we obtain the following exact sequence of \mathbb{k}-vector spaces $[7,17]$:

$$
\begin{equation*}
0 \longleftarrow\left(R / \mathfrak{m}_{\psi}\right) \otimes_{R} \mathcal{N} \longleftarrow_{\leftarrow}^{\mathrm{id} \otimes \kappa} \mathbb{k}^{l \times 1} \stackrel{B(\psi) .}{\longleftarrow} \mathbb{k}^{r \times 1} . \tag{16}
\end{equation*}
$$

Using properties of tensor products [17], $B(\psi) .: \mathbb{k}^{r \times 1} \longrightarrow \mathbb{k}^{l \times 1}$ is surjective iff

$$
\mathcal{N} /\left(\mathfrak{m}_{\psi} \mathcal{N}\right) \cong\left(R / \mathfrak{m}_{\psi}\right) \otimes_{R} \mathcal{N} \cong \mathbb{k}^{l \times 1} /\left(B(\psi) \mathbb{k}^{r \times 1}\right)=0
$$

where $\mathfrak{m}_{\psi} \mathcal{N}:=\left\{\sum_{i \in I} a_{i} n_{i} \mid a_{i} \in \mathfrak{m}_{\psi}, n_{i} \in \mathcal{N}, \sharp I<\infty\right\}$, i.e., iff we have:

$$
\begin{equation*}
\mathcal{N}=\mathfrak{m}_{\psi} \mathcal{N} \tag{17}
\end{equation*}
$$

Note that $\mathfrak{m}_{\psi} \subset R$ yields $\mathfrak{m}_{\psi} \mathcal{N} \subset \mathcal{N}$, i.e., (17) is equivalent to $\mathcal{N} \subset \mathfrak{m}_{\psi} \mathcal{N}$, i.e.:

$$
\mathcal{P}=\left\{\psi \in \mathbb{k}^{d \times 1} \mid \mathcal{N} \subset \mathfrak{m}_{\psi} \mathcal{N}\right\} .
$$

Nakayama's lemma $[7,14,17]$ gives a necessary condition for (17). Before stating again this well-known result, we rewrite (17) in terms of equations. Let $\kappa: R^{l \times 1} \longrightarrow \mathcal{N}$ be the R-homomorphism which sends $\eta \in R^{l \times 1}$ onto its residue class in \mathcal{N}, i.e., $\kappa\left(\eta^{\prime}\right)=\kappa(\eta)$ if there exists $\zeta \in R^{r \times 1}$ such that $\eta^{\prime}=\eta+B \zeta[17]$. Let f_{j} be the $j^{\text {th }}$ vector of the standard basis of $R^{l \times 1}$, i.e., the vector defined by 1 at the $j^{\text {th }}$ position and 0 elsewhere, and $y_{j}:=\kappa\left(f_{j}\right)$ the residue class of f_{j} in \mathcal{N}. It can be easily show that $\left\{y_{j}\right\}_{j=1, \ldots, l}$ is a set of generators of $\mathcal{N}[4,16]$. Then, (17) is equivalent to the existence of $r_{j k} \in \mathfrak{m}_{\psi}$ such that $y_{j}=\sum_{k=1}^{l} r_{j k} y_{k}$ for $j=1, \ldots, l$. Noting $y:=\left(y_{1}, \ldots, y_{l}\right)^{T},(17)$ is equivalent to the existence of $G:=\left(r_{j k}\right) \in \mathfrak{m}_{\psi}^{l \times l}$ such that $\left(I_{l}-G\right) y=0$, which is then equivalent to the existence of $E \in R^{r \times l}$ such that $I_{l}=G+B E$, and thus:

$$
\mathcal{P}=\left\{\psi \in \mathbb{k}^{d \times 1} \mid \exists G \in \mathfrak{m}_{\psi}^{l \times l}, \exists E \in R^{r \times l}: I_{l}=G+B E\right\} .
$$

Setting $x:=\psi, I_{l}=G+B E$ yields $B(\psi) E(\psi)=I_{l}$ and $\operatorname{rank}_{\mathrm{k}}(B(\psi))=l$.
Now, if $\left(I_{l}-G\right)^{\text {adj }}$ denotes adjugate matrix of $I_{l}-G$, using the standard identity $\left(I_{l}-G\right)^{\text {adj }}\left(I_{l}-G\right)=\operatorname{det}\left(I_{l}-G\right)[17]$, then we get $\operatorname{det}\left(I_{l}-G\right) y=0$. Let $p(\lambda):=\operatorname{det}\left(\lambda I_{l}-G\right)=\lambda^{l}+p_{1} \lambda^{l-1}+\ldots+p_{l}$ be the characteristic polynomial of G. We can check that $p_{i} \in \mathfrak{m}_{\psi}$ for $i=1, \ldots, l$, and thus, $\operatorname{det}\left(I_{l}-G\right)=p(1)=$ $1+a$ for a certain $a \in \mathfrak{m}_{\psi}$. Since $1 \notin \mathfrak{m}_{\psi}, \operatorname{det}\left(I_{l}-G\right) \neq 0$ and each generator y_{j} of \mathcal{N} satisfies the non-trivial equation $(1+a) y_{j}=0$ for $j=1, \ldots, l$. Hence, we get

$$
\begin{equation*}
0 \neq 1+a \in \operatorname{ann}_{R}(\mathcal{N}):=\{b \in R \mid b \mathcal{N}=0\} \tag{18}
\end{equation*}
$$

where $\operatorname{ann}_{R}(\mathcal{N})$ is an ideal of R called the annihilator of \mathcal{N}. Nakayama's lemma asserts (17) implies (18) [7,14,17]. In particular, (18) implies that the R-module \mathcal{N} is torsion, namely, $t(\mathcal{N}):=\{n \in \mathcal{N} \mid \exists 0 \neq b \in R: b n=0\}=\mathcal{N}[7,17]$.

Let us consider a family of generators $\left\{g_{i}\right\}_{i=1, \ldots, t}$ of $\operatorname{ann}_{R}(\mathcal{N})$, i.e.:

$$
\begin{equation*}
\operatorname{ann}_{R}(\mathcal{N})=\left\langle g_{1}, \ldots, g_{t}\right\rangle:=\left\{\sum_{i=1}^{t} a_{i} g_{i} \mid a_{1}, \ldots, a_{t} \in R\right\} . \tag{19}
\end{equation*}
$$

A set of generators $\left\{g_{i}\right\}_{i=1, \ldots, t}$ of $\operatorname{ann}_{R}(\mathcal{N})$ can be computed by the command PiPolynomial of OreModules [5]. See also Homalg [1] and Singular [9]. Note that t is usually much smaller than C_{r}^{l}. Now, (18) shows that there exist $q_{i} \in R$ for $i=1, \ldots, t$ satisfying $1+a=\sum_{i=1}^{t} q_{i} g_{i}$. Evaluating this identity at the point $x=\psi$, we obtain the following Bézout identity:

$$
\begin{equation*}
\sum_{i=1}^{t} q_{i}(\psi) g_{i}(\psi)=1 \tag{20}
\end{equation*}
$$

Hence, $\psi \in \mathbb{k}^{d \times 1}$ must to be chosen such that the generators g_{1}, \ldots, g_{t} of $\operatorname{ann}_{R}(\mathcal{N})$ do not simultaneously vanish at ψ.

Remark 6. For two finitely generated R-modules \mathcal{M} and \mathcal{N}, it can be proved that $\mathcal{M} \otimes_{R} \mathcal{N}=0$ implies $\operatorname{ann}_{R}(\mathcal{M})+\operatorname{ann}_{R}(\mathcal{N})=R$. See, e.g., Corollary 4.9 of [7]. Setting $\mathcal{M}:=R / \mathfrak{m}_{\psi}$ and using $\operatorname{ann}_{R}(\mathcal{M})=\mathfrak{m}_{\psi}$, a necessary condition for $\psi \in \mathcal{P}$ is then $\mathfrak{m}_{\psi}+\operatorname{ann}_{R}(\mathcal{N})=\left\langle x_{1}-\psi_{1}, \ldots, x_{d}-\psi_{d}, g_{1}, \ldots, g_{t}\right\rangle=R$, i.e., $\sum_{i=1}^{t} q_{i} g_{i}+\sum_{j=1}^{d} r_{j}\left(x_{j}-\psi_{j}\right)=1$ for certain $q_{i}, r_{j} \in R, i=1, \ldots, t$, $j=1, \ldots, d$, which, by evaluation at $x=\psi$, yields again (20).

If I is an ideal of R, we can define the algebraic set of the affine space $\mathbb{k}^{d \times 1}$:

$$
V_{\mathfrak{k}}(I):=\left\{\psi \in \mathbb{k}^{d \times 1} \mid \forall g \in I: g(\psi)=0\right\} .
$$

If $I=\left\langle g_{1}, \ldots, g_{t}\right\rangle$, i.e., I is generated by the g_{i} 's, then $V_{k}(I)$ is the common zeros $\psi \in \mathbb{k}^{d \times 1}$ of all the g_{i} 's, i.e., $V_{\mathbb{k}}(I)=\left\{\psi \in \mathbb{k}^{d \times 1} \mid g_{i}(\psi)=0, i=1, \ldots, t\right\}$. Hence:

$$
\begin{equation*}
V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)=V_{\mathfrak{k}}\left(\left\langle g_{1}, \ldots, g_{t}\right\rangle\right)=\bigcap_{i=1}^{t} V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right) . \tag{21}
\end{equation*}
$$

Hence, a necessary condition for (17) to hold is $\psi \in \mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$. This condition is also sufficient as explained in the following remark.

Remark 7. Let $\operatorname{Fitt}_{0}(\mathcal{N})$ be the $0^{\text {th }}$ Fitting ideal of \mathcal{N}, namely, the ideal of R defined by all the $l \times l$-minors of $B[7]$. Proposition 20.7 of [7] then yields:

$$
\operatorname{ann}_{R}(\mathcal{N})^{l} \subseteq \operatorname{Fitt}_{0}(\mathcal{N}) \subseteq \operatorname{ann}_{R}(\mathcal{N})
$$

If $\sqrt{I}:=\left\{a \in R \mid \exists n \in \mathbb{Z}_{\geq 0}: a^{n} \in I\right\}$ denotes the radical of $I[7,14]$, then

$$
\left.\sqrt{\operatorname{ann}_{R}(\mathcal{N})}=\sqrt{\operatorname{Fitt}_{0}(\mathcal{N})} \Rightarrow V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)=V_{\mathfrak{k}}\left(\operatorname{Fitt}_{0}(\mathcal{N})\right)\right)
$$

which also shows again (13), i.e., $\left.\mathcal{P}=\mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\operatorname{Fitt}_{0}(\mathcal{N})\right)\right)$.
In Sect. 4, we shall give a more useful proof of $\mathcal{P}=\mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$.
Example 3. We consider the following matrices:

$$
\begin{array}{ll}
M=\left(\begin{array}{cc}
0 & 0 \\
-147360 & -96804 \\
0 & 0
\end{array}\right), D_{1}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 54 & -31 \\
0 & 0 & 0
\end{array}\right), \\
D_{2}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -58 & -77 \\
0 & 0 & 0
\end{array}\right), & D_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
79 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
\end{array}
$$

We can check that $l:=\operatorname{rank}_{\mathfrak{k}}(M)=1<r=3$,

$$
X=\left(\begin{array}{c}
0 \\
-147360 \\
0
\end{array}\right), Y=\left(\begin{array}{ll}
1 & \frac{8067}{12280}
\end{array}\right), L=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right), N=0, Z=I_{3}
$$

and $\psi=\left(\begin{array}{lll}\psi_{1} & \psi_{2} & \psi_{3}\end{array}\right)^{T}$. If $c:=1 /(147360)$, then we have:

$$
\begin{aligned}
& W_{1}=c\left(\begin{array}{lll}
0 & -54 & 31
\end{array}\right), \quad W_{2}=c\left(\begin{array}{lll}
0 & 58 & 77
\end{array}\right), \quad W_{3}=c\left(\begin{array}{lll}
-79 & 0 & 0
\end{array}\right), \\
& B(\psi)=c\left(-54 \psi_{2}+31 \psi_{3} \quad 58 \psi_{2}+77 \psi_{3} \quad-79 \psi_{1}\right) .
\end{aligned}
$$

Let $R=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right], x:=\left(\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right)^{T}, B:=\left(\begin{array}{lll}W_{1} x & W_{2} x & W_{3} x\end{array}\right) \in R^{1 \times 3}$. The R-module $\mathcal{N}=R /\left(B R^{3 \times 1}\right)=R / I$, where $I=\left\langle B_{1}, B_{2}, B_{3}\right\rangle$ is the ideal generated by the three entries B_{i} 's (i.e., 1×1-minors m_{k}) of B, is clearly a torsion R-module. The R-module \mathcal{N} is generated by the residue class y of 1 in \mathcal{N} and we can check that $\operatorname{ann}_{R}(\mathcal{N})=I=\mathfrak{m}_{0}:=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$. Such a computation can directly be obtained by the PiPolynomial command of the OreModules package [5]. Hence, we get:

$$
V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)=\left\{\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)^{T}\right\} \Rightarrow \mathcal{P}=\mathbb{k}^{3 \times 1} \backslash\{0\} .
$$

Remark 8. Since the generators g_{i} 's of $\operatorname{ann}_{R}(\mathcal{N})$ can be chosen to be homogeneous polynomials, $0 \in V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$, which shows that $0 \notin \mathcal{P}$ (see Remark 4).

4 Local and Global Studies of the Solution Space

4.1 Existence of a Local/Global Right Inverse \boldsymbol{E} of \boldsymbol{B}

Let us first study the problem of computing a right inverse E_{ψ} of $B(\psi)$ for $\psi \in \mathcal{P}$. With the notation (19), let us consider the following integral domain

$$
S_{g_{i}}^{-1} R:=\left\{\left.\frac{a}{g_{i}^{n}} \right\rvert\, a \in R, n \in \mathbb{Z}_{\geq 0}\right\}
$$

i.e., the localization of R at the multiplicatively closed set $S_{g_{i}}:=\left\{g_{i}^{n} \mid n \in \mathbb{Z}_{\geq 0}\right\}$ [$7,14,17]$. We can then consider the localization of \mathcal{N} with respect of the powers of g_{i}, namely, the $S_{g_{i}}^{-1} R$-module defined by $S_{g_{i}}^{-1} \mathcal{N}:=\left\{s^{-1} n \mid s \in S_{g_{i}}, n \in \mathcal{N}\right\}$. It is well-known $S_{g_{i}}^{-1} R$ is a flat R-module [7,14,17], which yields the isomorphism

$$
S_{g_{i}}^{-1} \mathcal{N} \cong\left(S_{g_{i}}^{-1} R\right)^{l \times 1} /\left(B\left(S_{g_{i}}^{-1} R\right)^{r \times 1}\right)
$$

of $S_{g_{i}}^{-1} R$-modules. Hence, $S_{g_{i}}^{-1} \mathcal{N}$ can be seen as the $S_{g_{i}}^{-1} R$-module obtained from \mathcal{N} by extending the scalars from R to $S_{g_{i}}^{-1} R$. See, e.g., [7,14,17]. By definition (see (19)), we have $g_{i} \mathcal{N}=0$ and $g_{i}^{-1} \in S_{g_{i}}^{-1} R$, which yields $S_{g_{i}}^{-1} \mathcal{N}=0$, i.e.:

$$
B\left(S_{g_{i}}^{-1} R\right)^{r \times 1}=\left(S_{g_{i}}^{-1} R\right)^{l \times 1}, \quad i=1, \ldots, t
$$

Hence, there exists $E_{g_{i}} \in\left(S_{g_{i}}^{-1} R\right)^{r \times l}$ such that $B E_{g_{i}}=I_{l}$, i.e., $E_{g_{i}}$ is a right inverse of B defined over the Zariski distinguished/basic open subset of $\mathbb{k}^{d \times 1}[7]$

$$
D\left(g_{i}\right):=\mathbb{k}^{d \times 1} \backslash V_{\mathbb{k}}\left(\left\langle g_{i}\right\rangle\right), \quad i=1, \ldots, t,
$$

i.e., $E_{g_{i}}(\psi)$ is a right inverse of $B(\psi)$ for all $\psi \in D\left(g_{i}\right)$, where $E_{g_{i}}(\psi)$ denotes the value of the matrix $E_{g_{i}}$ evaluated at $x:=\psi$. The matrix $E_{g_{i}}$ can be computed by the LocalLeftInverse command of the OreModules package.

Remark 9. Using (14), we get the split exact sequence of $S_{g_{i}}^{-1} R$-modules [17]:

$$
0=S_{g_{i}}^{-1} \mathcal{N} \stackrel{S_{g_{i}}^{-1} \kappa}{\rightleftarrows}\left(S_{g_{i}}^{-1} R\right)^{l \times 1} \stackrel{E_{g_{i}} .}{\rightleftarrows}\left(S_{g_{i}}^{-1} R\right)^{r \times 1} .
$$

Thus, we have $S_{g_{i}}^{-1} \operatorname{im}_{R}(B)=.\operatorname{im}_{S_{g_{i}}^{-1} R}(B.) \cong\left(S_{g_{i}}^{-1} R\right)^{l \times 1}$ for $i=1, \ldots, t$, i.e., $S_{g_{i}}^{-1} R$-module $S_{g_{i}}^{-1} \mathrm{im}_{R}(B$.$) is free of rank l$.

From the above results, $\operatorname{rank}_{\mathfrak{k}}(B(\psi))=l$ for all $\psi \in \mathbb{k}^{d \times 1} \backslash \bigcap_{i=1}^{t} V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right)$. Using (21), (2) has solutions in the complementary \mathcal{P} of the Zariski closed subset $V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$ in $\mathbb{k}^{d \times 1}$. Hence, if $\mathcal{P} \neq \emptyset$ (e.g., $\operatorname{ann}_{R}(\mathcal{N}) \neq\langle 0\rangle$ and \mathbb{k} is algebraically closed), then (2) generically has solutions in the sense of algebraic geometry, i.e., outside the Zariski closed subset $V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$ of $\mathbb{k}^{d \times 1}[7,14]$. Moreover, we have:

$$
\begin{aligned}
\mathcal{P} & =\mathbb{k}^{d \times 1} \backslash \bigcap_{i=1}^{t} V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right)=\bigcup_{i=1}^{t}\left(\mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right)\right)=\bigcup_{i=1}^{t} D\left(g_{i}\right) \\
& =\left\{\psi \in \mathbb{k}^{d \times 1} \mid \exists i \in \llbracket 1, \ldots, t \rrbracket: \psi \notin V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right)\right\} .
\end{aligned}
$$

Since $\mathcal{P} \cap D\left(g_{i}\right)=D\left(g_{i}\right), D\left(g_{i}\right)$ is also an open subset of \mathcal{P} for the induced Zariski topology $[7,14]$. Finally, \mathcal{P} is an open subset of the irreducible affine set $\mathbb{k}^{d \times 1}=V_{\mathbb{k}}(\langle 0\rangle)$, i.e., which shows that \mathcal{P} is a quasi-affine variety [9].

Theorem 2. Let $R=\mathbb{k}\left[x_{1}, \ldots, x_{d}\right], x=\left(x_{1} \ldots x_{d}\right)^{T}, W_{i} \in \mathbb{k}^{l \times d}, i=1, \ldots, r$, be the matrices defined in Sect. 2, $B=\left(W_{1} x \ldots W_{r} x\right) \in R^{l \times r}$, the R-module $\mathcal{N}=R^{l \times 1} /\left(B R^{r \times 1}\right)$ and its annihilator $\operatorname{ann}_{R}(\mathcal{N})=\left\langle g_{1}, \ldots, g_{t}\right\rangle$. Then, we get:

$$
\begin{equation*}
\mathcal{P}=D\left(\operatorname{ann}_{R}(\mathcal{N})\right):=\mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right) . \tag{22}
\end{equation*}
$$

Hence, Problem (2) has solutions in the complementary \mathcal{P} of the closed algebraic set $V_{\mathbb{k}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)$ in $\mathbb{k}^{d \times 1}$. Moreover, $\operatorname{ann}_{R}(\mathcal{N})=\langle 0\rangle$ yields $\mathcal{P}=\emptyset$ and the converse holds if \mathbb{k} is algebraically closed.

The quasi-affine variety \mathcal{P} has a finite open cover defined by $\mathcal{P}=\bigcup_{i=1}^{t} D\left(g_{i}\right)$, where $D\left(g_{i}\right):=\mathbb{k}^{d \times 1} \backslash V_{\mathfrak{k}}\left(\left\langle g_{i}\right\rangle\right)$ is a basic open subset of $\mathbb{k}^{d \times 1}$ (of \mathcal{P}). Finally, there exist $E_{g_{i}} \in\left(S_{g_{i}}^{-1} R\right)^{r \times l}$ such that $B E_{g_{i}}=I_{l}$ for $i=1, \ldots, t$, i.e., for each $D\left(g_{i}\right)$, there exists a smooth right inverse $E_{g_{i}}$ of B, i.e., $\psi \in D\left(g_{i}\right) \longmapsto E_{g_{i}}(\psi)$.

Using Theorem 2, B(ψ) admits a global right inverse $E(\psi)$ over \mathcal{P}, i.e., $B(\psi) E(\psi)=I_{l}$ for all $\psi \in \mathcal{P}$, iff the ideal $\operatorname{ann}_{R}(\mathcal{N})$ can be generated by a single element $g \in R$, i.e., $\operatorname{ann}_{R}(\mathcal{N})=\langle g\rangle$, in which case $\operatorname{ann}_{R}(\mathcal{N})$ is principal $[7,17]$. For instance, it is the case if we have $l=r$ and $g:=\operatorname{det}(B) \neq 0$ (see Example 2), or if $d=1$, i.e., $R=\mathbb{k}\left[x_{1}\right]$ is a principal ideal domain, namely, every ideal of R (e.g., $\operatorname{ann}_{R}(\mathcal{N})$) can be generated by a single element g of R which can be obtained by Euclidean division [7,17]. Let us now study the general case. Let $\operatorname{ann}_{R}(\mathcal{N})=\left\langle g_{1}, \ldots, g_{t}\right\rangle, g$ be a greatest common divisor of all the g_{i} 's and $g_{i}^{\prime}:=g_{i} / g \in R$ for $i=1, \ldots, t$. We then get $\operatorname{ann}_{R}(\mathcal{N})=\langle g\rangle\left\langle g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\rangle$, which shows that $\operatorname{ann}_{R}(\mathcal{N})$ is principal iff so is
$\left\langle g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\rangle$, i.e., iff $\left\langle g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\rangle=R$, i.e., iff there exist $h_{i} \in R$ for $i=1, \ldots, t$ such that $\sum_{i=1}^{t} h_{i} g_{i}^{\prime}=1$. If $\mathbb{k}=\mathbb{C}$, using Hilbert's Nullstellensatz [7,14], this Bézout identity is equivalent to the fact that all the $g_{i}^{\prime \prime}$ s have no common zeros in $\mathbb{C}^{d \times 1}$, which can be checked by a Gröbner basis computation $[7,9]$. Now, using Remark $8,0 \in V_{\mathbb{C}}\left(\operatorname{ann}_{R}(\mathcal{N})\right)=V_{\mathbb{C}}(\langle g\rangle) \bigcup V_{\mathbb{C}}\left(\left\langle g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\rangle\right)$, i.e., $g(0)=0$ or $g_{i}^{\prime}(0)=0$ for all $i=1, \ldots, t$. In particular, if $g=1$, then $\operatorname{ann}_{R}(\mathcal{N})$ is not a principal ideal. Finally, if $\left\langle g_{1}^{\prime}, \ldots, g_{t}^{\prime}\right\rangle=R$, i.e., $\operatorname{ann}_{R}(\mathcal{N})=\langle g\rangle$, then $g(0)=0$.

The problem of finding the least number of generators $\mu(I)$ of an ideal I is a well-known difficult problem in module theory (see, e.g., $[14,15])$. In our problem, $\mu\left(\operatorname{ann}_{R}(\mathcal{N})\right)$ is the least number of open sets $D\left(g_{i}\right)$'s which defines a finite open cover of \mathcal{P}. Since $\operatorname{ann}_{R}(\mathcal{N})$ is generated by homogeneous polynomials, it can be proved that $\mu\left(\operatorname{ann}_{R}(\mathcal{N})\right)=\mu\left(\operatorname{ann}_{R}(\mathcal{N}) / \operatorname{ann}_{R}(\mathcal{N})^{2}\right)$ (see Ex. 12 of Chap. V. 5 of [14]), where $\operatorname{ann}_{R}(\mathcal{N}) / \operatorname{ann}_{R}(\mathcal{N})^{2}$ is the $R / \operatorname{ann}_{R}(\mathcal{N})$-module conormal module.

Example 4. In Example 3, we proved that $g_{i}=x_{i}$ for $i=1,2,3$. Hence, if $D\left(x_{i}\right):=\mathfrak{k}^{3 \times 1} \backslash V_{\mathfrak{k}}\left(\left\langle x_{i}\right\rangle\right)=\left\{\left.\psi=\left(\begin{array}{lll}\psi_{1} & \psi_{2} & \psi_{3}\end{array}\right)^{T} \in \mathbb{k}^{3 \times 1} \right\rvert\, \psi_{i} \neq 0\right\}$ for $i=1,2,3$, then we have $\mathcal{P}=\bigcup_{i=1}^{3} D\left(x_{i}\right)$. Moreover, we can check that

$$
\begin{aligned}
& \forall \psi \in D\left(x_{1}\right): E_{x_{1}}(\psi):=c^{-1}\left(\begin{array}{lll}
0 & 0 & -\frac{1}{79 \psi_{1}}
\end{array}\right)^{T}, \\
& \forall \psi \in D\left(x_{2}\right): E_{x_{2}}(\psi):=\left(\begin{array}{lll}
5956 c)^{-1}\left(\begin{array}{ccc}
-\frac{77}{\psi_{2}} & \frac{31}{\psi_{2}} & 0
\end{array}\right)^{T}, \\
\forall \psi \in D\left(x_{3}\right): E_{x_{3}}(\psi):=(2978 c)^{-1}\left(\begin{array}{lll}
\frac{29}{\psi_{3}} & \frac{27}{\psi_{3}} & 0
\end{array}\right)^{T},
\end{array},=\right.\text {, }
\end{aligned}
$$

are local right inverses of B, i.e., $B E_{\psi_{i}}=1$, on $D\left(x_{i}\right)$ for $i=1,2,3$. They are computed by the command LocalLeftInverse of the OreModules package [5]. Since $g:=\operatorname{gcd}\left(g_{1}, g_{2}, g_{3}\right)=1$, as shown above, $\operatorname{ann}_{R}(\mathcal{N})$ is not principal, and thus, no global right inverse E of B exists over the whole space \mathcal{P}. Using $\operatorname{ann}_{R}(\mathcal{N})=\mathfrak{m}_{0}=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$, the $R / \mathfrak{m}_{0} \cong \mathbb{k}$-module $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$ is defined by the \mathbb{k} linear combinations of the generators $\overline{x_{i}}$'s of $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$, where $\overline{x_{i}}$ denotes the residue class of x_{i} in $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$, i.e., $\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2} \cong \mathfrak{k}^{3 \times 1}$, which shows that $t=\mu\left(\operatorname{ann}_{R}(\mathcal{N})\right)=3$ is the least number of distinguished open sets of $\mathbb{k}^{3 \times 1}$ defining a cover of \mathcal{P}.

4.2 Existence of a Local/Global Basis C of $\operatorname{ker}_{R}(B$.

To study the local/global structure of the solution space (12) of (2), we now investigate the existence of a local/global basis $C(\psi)$ of $\operatorname{ker}(B(\psi)$.) over \mathcal{P}.

As explained in Sect. 3, a matrix $C \in R^{r \times s}$ can be computed satisfying $\operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C$.$) (use, e.g., the SyzygyModule command of the Ore-$ Modules package). By construction, we have the exact sequence of R-modules:

$$
\begin{equation*}
0<\mathcal{N}<{ }^{\kappa} R^{l \times 1}<B . \quad R^{r \times 1}<\frac{C .}{\leftarrow} R^{s \times 1} . \tag{23}
\end{equation*}
$$

Let $Q(R):=\mathbb{k}\left(x_{1}, \ldots, x_{d}\right)$ be the field of fractions of R, i.e., the field of rational functions in the x_{i} 's with coefficients in $\mathbb{k}[7,17]$. The rank of a finitely generated R-module \mathcal{L} is $\operatorname{rank}_{R}(\mathcal{L}):=\operatorname{dim}_{Q(R)}\left(Q(R) \otimes_{R} \mathcal{L}\right)$. Since \mathcal{N} is a torsion
R-module, $\operatorname{rank}_{R}(\mathcal{N})=0$, the Euler-Poincaré characteristic applied to (14) yields $\operatorname{rank}_{R}\left(\operatorname{ker}_{R}(B).\right)=r-l[7,17]$, which yields $s \geq r-l$. The equality holds, i.e., $s=r-l$, iff $\operatorname{ker}_{R}\left(B\right.$.) is a free R-module, i.e., $\operatorname{ker}_{R}(B.) \cong R^{r-l}[17]$.

The problem of recognizing whether or not a module is free is an open question in module theory $[14,15,17]$. It can be effectively solved for $R=$ $\mathbb{k}\left[x_{1}, \ldots, x_{d}\right]$ due to the Quillen-Suslin theorem $[14,15,17]$. The Quillen-Suslin theorem is implemented in the QuillenSuslin package [8]. Hence, we can effectively test whether or not $\operatorname{ker}_{R}(B$.) is a free R-module and if so, compute a basis of $\operatorname{ker}_{R}(B$.$) , namely, a full column rank matrix C \in R^{r \times(r-l)}$ such that $\operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C).[8]$. We then have $\operatorname{ker}_{\mathbb{k}}(B(\psi))=.\operatorname{im}_{\mathfrak{k}}(C(\psi)$.$) for all \psi \in \mathcal{P}$, i.e., C is a global basis of $\operatorname{ker}_{R}(B$.) on \mathcal{P}. In particular, C is a local basis on $D\left(g_{i}\right)$ for all $i=1, \ldots, t$. Using Theorems 1 and 2 , we finally obtain that

$$
\forall \psi \in D\left(g_{i}\right), \quad \forall Y^{\prime} \in \mathbb{k}^{(r-l) \times m}, \quad\left\{\begin{array}{l}
u=Z \psi, \tag{24}\\
v=\left(E_{g_{i}}(\psi) \quad C(\psi)\right)\binom{Y}{Y^{\prime}},
\end{array}\right.
$$

are solutions of (2) on $D\left(g_{i}\right)$. If $t=1$, these solutions are globally defined on \mathcal{P}.
If $d=1$, then $R=\mathbb{k}\left[x_{1}\right]$ is a principal ideal domain, which implies that $\operatorname{ann}_{R}(\mathcal{N})=\left\langle g_{1}\right\rangle$ and $\operatorname{ker}_{R}(B$.) is a free R-module of rank $r-l[7,17]$. Let us show how to compute $g_{1}, E_{g_{1}} \in\left(S_{g_{1}}^{-1} R\right)^{r \times l}$ and a basis of $\operatorname{ker}_{R}(B$.), i.e., a full column rank matrix $C \in R^{r \times(r-l)}$ satisfying $\operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C$.). If we note $W:=\left(W_{1} \ldots W_{r}\right) \in \mathbb{k}^{l \times r}$, then we have $B=W x_{1}$. Hence, if $\psi_{1} \neq 0$, then we get $\operatorname{rank}_{\mathfrak{k}}\left(B\left(\psi_{1}\right)\right)=\operatorname{rank}_{\mathfrak{k}}(W)$, which yields $\mathcal{P}=\emptyset$ if $\operatorname{rank}_{\mathfrak{k}}(W)<l$, i.e., $g_{1}=0$, or $\mathcal{P}=\mathbb{k} \backslash\{0\}$ if $\operatorname{rank}_{\mathfrak{k}}(W)=l$, i.e., $g_{1}=x_{1}$. In the latter case, if $F \in \mathbb{k}^{r \times l}$ is a right inverse of W, i.e., $W F=I_{l}$, then $E_{g_{1}}=x_{1}^{-1} F$ is a right inverse of B. Moreover, let $C \in \mathbb{k}^{r \times(r-l)}$ be a matrix whose columns define a basis of $\operatorname{ker}_{\mathfrak{k}}(W$.$) . Then, we have \operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C.) \cong R^{r-l}$. We note that E and C can be computed by standard linear algebra methods.

Example 5. Let us consider the following matrices:

$$
\begin{gathered}
D_{1}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad D_{2}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad D_{3}=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right), \\
D_{4}=\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), \quad M=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & 1 & -1 & 0 \\
0 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right) .
\end{gathered}
$$

We can easily check that $l:=\operatorname{rank}_{\mathrm{k}}(M)=3, r=4$ and:

$$
X=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1 \\
1 & 0 & 0
\end{array}\right), Y=\left(\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), L=\left(\begin{array}{llll}
1 & 0 & 0 & -1
\end{array}\right), Z=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

$$
\begin{gathered}
W_{1}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), W_{2}=-\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 1 & -1 \\
0 & 1 & 1
\end{array}\right), W_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), W_{4}=-\frac{1}{2}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 1 \\
0 & 1 & 1
\end{array}\right), \\
R=\mathbb{k}\left[x_{1}, x_{2}, x_{3}\right], \quad B=\left(\begin{array}{cccc}
-x_{1} & 0 & x_{1} & 0 \\
0 & -\frac{1}{2}\left(x_{2}-x_{3}\right) & 0 & \frac{1}{2}\left(x_{2}-x_{3}\right) \\
0 & -\frac{1}{2}\left(x_{2}+x_{3}\right) & 0 & -\frac{1}{2}\left(x_{2}+x_{3}\right)
\end{array}\right) .
\end{gathered}
$$

If $g_{1}:=x_{1}\left(x_{2}^{2}-x_{3}^{2}\right)$, then $\operatorname{ann}_{R}(\mathcal{N})=\left\langle g_{1}\right\rangle$. Hence, $t=1$ and $\mathcal{P}=\mathbb{k}^{3} \backslash V_{\mathfrak{k}}\left(\left\langle g_{1}\right\rangle\right)$, where $V_{\mathfrak{k}}\left(\left\langle g_{1}\right\rangle\right)=\left\{x_{1}=0\right\} \cup\left\{x_{2}-x_{3}=0\right\} \cup\left\{x_{2}+x_{3}=0\right\}$. We can check that the R-module $\operatorname{ker}_{R}\left(B\right.$.) is free of rank 1, i.e., $\operatorname{ker}_{R}(B.) \cong R$. Using [4, 8$]$, we get $\operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C$.$) , where C=\left(\begin{array}{llll}1 & 0 & 1 & 0\end{array}\right)^{T} \in R^{4 \times 1}$. Finally, using the OreModules package, we obtain that the following matrix

$$
E_{g_{1}}=\frac{1}{g_{1}}\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -x_{1}\left(x_{2}+x_{3}\right) & -x_{1}\left(x_{2}-x_{3}\right) \\
x_{2}^{2}-x_{3}^{2} & 0 & 0 \\
0 & x_{1}\left(x_{2}+x_{3}\right) & -x_{1}\left(x_{2}-x_{3}\right)
\end{array}\right)
$$

is a right inverse of B, i.e., $B E_{g_{1}}=I_{3}$. Hence, all the solutions of (2) with full row rank matrices v can be expressed by a single closed-form given by (24) with $t=1$ and for all $\psi \in \mathcal{P}$ and for all $Y^{\prime}=\left(\begin{array}{llll}y_{1}^{\prime} & y_{2}^{\prime} & y_{3}^{\prime} & y_{4}^{\prime}\end{array}\right) \in \mathbb{k}^{1 \times 4}$ such that:

$$
\operatorname{det}\left(\left(\begin{array}{ll}
Y^{T} & Y^{\prime T}
\end{array}\right)^{T}\right)=y_{4}^{\prime}-y_{1}^{\prime} \neq 0
$$

Let us now suppose that the R-module $\operatorname{ker}_{R}(B$.) is not free. Let us study the module structure of the $S_{g_{i}}^{-1} R$-module $\operatorname{ker}_{S_{g_{i}}^{-1} R}\left(B\right.$.). Since $S_{g_{i}}^{-1} R$ is a flat R-module, the functor $S_{g_{i}}^{-1} R \otimes_{R}$. is exact [7,14,17]. Hence, applying $S_{g_{i}}^{-1} R \otimes_{R}$. to (23) and using the fact that $S_{g_{i}}^{-1} R \otimes_{R} \mathcal{N} \cong S_{g_{i}}^{-1} \mathcal{N}=0$, we get the following split exact sequence of $S_{g_{i}}^{-1} R$-modules [7,17]:

$$
0 \longleftarrow\left(S_{g_{i}}^{-1} R\right)^{l \times 1} \longleftarrow{ }^{B .}\left(S_{g_{i}}^{-1} R\right)^{r \times 1} \longleftarrow C .
$$

See also Remark 9. Hence, we first obtain

$$
\begin{equation*}
\operatorname{ker}_{S_{g_{i}}^{-1} R}(B .)=\operatorname{im}_{S_{g_{i}}^{-1} R}(C .), \tag{25}
\end{equation*}
$$

and then $\left(S_{g_{i}}^{-1} R\right)^{r} \cong\left(S_{g_{i}}^{-1} R\right)^{l} \oplus \operatorname{ker}_{S_{g_{i}}^{-1} R}(B$.$) , which shows that \operatorname{ker}_{S_{g_{i}}{ }^{-1} R}(B$.$) is$ a stably free $S_{g_{i}}^{-1} R$-module of rank $r-l[17]$. Thus, $\operatorname{ker}_{S_{g_{i}}^{-1} R}(B$.$) is not necessarily$ a free $S_{g_{i}}^{-1} R$-module. Recognizing whether or not a stably free $S_{g_{i}}^{-1} R$-module is free is an open question in module theory as well as the problem of computing bases of free $S_{g_{i}}^{-1} R$-modules. For more details, see, e.g., $[14,15,17]$.

If $\operatorname{ker}_{S_{g_{i}}^{-1} R}(B$.$) is a free S_{g_{i}}^{-1} R$-module of rank $r-l$, then there exists a full column rank matrix $C_{g_{i}} \in\left(S_{g_{i}}^{-1} R\right)^{r \times(r-l)}$ such that

$$
\begin{equation*}
\operatorname{ker}_{S_{g_{i}}^{-1} R}(B .)=\operatorname{im}_{S_{g_{i}}^{-1} R}\left(C_{g_{i}} .\right) \cong\left(S_{g_{i}}^{-1} R\right)^{(r-l)} \tag{26}
\end{equation*}
$$

i.e., the $r-l$ columns of the matrix $C_{g_{i}}$ define a basis of the free $S_{g_{i}}^{-1} R$-module $\operatorname{ker}_{S_{g_{i}}^{-1} R}(B$.$) . Hence, we obtain \operatorname{ker}_{\mathfrak{k}}(B(\psi))=.\operatorname{im}_{\mathfrak{k}}\left(C_{g_{i}}(\psi)\right.$.) for all $\psi \in D\left(g_{i}\right)$. Thus, $C_{g_{i}}$ defines a basis of $\operatorname{ker}_{R}(B$.$) on D\left(g_{i}\right)$. Theorems 1 and 2 then imply that the solutions of (2) defined on $D\left(g_{i}\right)$ are given by:

$$
\forall \psi \in D\left(g_{i}\right), \quad \forall Y^{\prime} \in \mathbb{k}^{(r-l) \times m}, \quad\left\{\begin{array}{l}
u=Z \psi, \tag{27}\\
v=\left(E_{g_{i}}(\psi) \quad C_{g_{i}}(\psi)\right)\binom{Y}{Y^{\prime}} .
\end{array}\right.
$$

A stably free module of rank 1 over a commutative ring is free [15]. Hence, (27) holds when $r=\operatorname{rank}_{\mathfrak{k}}(M)+1$. See [8] for the computation of $C_{g_{i}}$.

If $\operatorname{ker}_{S_{g_{i}}^{-1} R}\left(B\right.$.) is not a free $S_{g_{i}}^{-1} R$-module, then no full column rank matrix $C_{g_{i}} \in\left(S_{g_{i}}^{-1} R\right)^{r \times(r-l)}$ exists such that (26) holds, i.e., such that $\operatorname{ker}_{\mathfrak{k}}(B(\psi))=$. $C_{g_{i}}(\psi) \mathbb{k}^{(r-l) \times 1}$ for all $\psi \in D\left(g_{i}\right)$. Hence, no basis of $\operatorname{ker}_{\mathfrak{k}}\left(B(\psi)\right.$.) exists on $D\left(g_{i}\right)$. But, using (25), we have the following solutions of (2), where $s>r-l$:

$$
\forall \psi \in D\left(g_{i}\right), \quad \forall Y^{\prime \prime} \in \mathbb{k}^{s \times m}, \quad\left\{\begin{array}{l}
u=Z \psi, \tag{28}\\
v=\left(E_{g_{i}}(\psi) \quad C(\psi)\right)\binom{Y}{Y^{\prime \prime}} .
\end{array}\right.
$$

Example 6. We consider again Examples 3 and 4. Using [8], we can check that $\operatorname{ker}_{R}(B$.) is not a free R-module. Using the OreModules package, we get that

$$
C:=\left(\begin{array}{ccc}
-58 x_{2}-77 x_{3} & -79 x_{1} & 0 \\
-54 x_{2}+31 x_{3} & 0 & -79 x_{1} \\
0 & 54 x_{2}-31 x_{3}-58 x_{2}-77 x_{3}
\end{array}\right)
$$

is such that $\operatorname{ker}_{R}(B)=.\operatorname{im}_{R}(C$. $)$, i.e., the 3 columns of C generate the R-module $\operatorname{ker}_{R}\left(B\right.$.) of rank $r-l=2$. We get the solutions (28) of (2) on $D\left(g_{i}\right)$ for $i=1,2,3$.

Finally, we study if the solutions of (2) can be written as (27). As explained, the $S_{x_{i}}^{-1} R$-module $\operatorname{ker}_{S_{x_{i}}^{-1} R}(B$.$) is stably free of rank 2. Using Corollary 4.10$ of [15], i.e., a variant of the Quillen-Suslin theorem for the generalized Laurent polynomial ring $S_{x_{i}}^{-1} R=R\left[x_{i}^{ \pm 1}, x_{j}\right]_{1 \leq j \neq i \leq 3}, \operatorname{ker}_{S_{x_{i}}^{-1} R}(B$.$) is a free S_{x_{i}}^{-1} R$-module of rank 2. Using an implementation of this result in the QuillenSuslin package, a basis of $\operatorname{ker}_{S_{x_{i}}^{-1} R}(B$.$) is defined by the columns of the matrix C_{x_{i}}$ defined by:

$$
\begin{gathered}
C_{x_{1}}=\left(\begin{array}{cc}
-79 x_{1} & 0 \\
0 & -79 x_{1} \\
54 x_{2}-31 x_{3}-58 x_{2}-77 x_{3}
\end{array}\right), \\
C_{x_{2}}=\left(\begin{array}{cc}
-\frac{29 x_{2}}{73680}-\frac{77 x_{3}}{147360} & -\frac{6083 x_{1}}{5956 x_{2}} \\
-\frac{9 x_{2}}{24560}+\frac{31 x_{3}}{147360} & \frac{2449 x_{1}}{5956 x_{2}} \\
0 & 1
\end{array}\right), C_{x_{3}}=\left(\begin{array}{cc}
-\frac{29 x_{2}}{73680}-\frac{77 x_{3}}{147360} & \frac{2291 x_{1}}{2978 x_{3}} \\
-\frac{9 x_{2}}{24560}+\frac{31 x_{3}}{147360} & \frac{2133 x_{1}}{2978 x_{3}} \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

Hence, we have $\operatorname{ker}_{\mathfrak{k}}(B(\psi))=.\operatorname{im}_{\mathbb{k}}\left(C_{x_{i}}(\psi).\right) \cong \mathbb{k}^{2 \times 1}$ for all $\psi \in D\left(g_{i}\right)$ and for $i=1,2,3$, and (27) are solutions of (2) defined on the $D\left(g_{i}\right)$'s given in Example 4.

Finally, we emphasize that all the examples were computed with the Maple packages OreModules [5] and QuillenSuslin [8]. For more details, see:
https://who.rocq.inria.fr/Alban.Quadrat/MapleConference.

References

1. Barakat, M., Lange-Hegermann, M.: The homalg project. ComputeralgebraRundbrief 51, 6-9 (2012). https://github.com/homalg-project/HomalgProject.jl
2. Capdessus, C.: Aide au diagnostic des machines tournantes par traitement du signal. Ph.D. thesis, University of Grenoble (1992)
3. Capdessus, C., Sidahmed, M.: Analyse des vibrations d'un engrenage: cepstre, corrélation, spectre. In: GRETSI, vol. 8, pp. 365-372. Saint Martin d'Hères (1991)
4. Chyzak, F., Quadrat, A., Robertz, R.: Effective algorithms for parametrizing linear control systems over Ore algebras. Appl. Algebra Eng. Commun. Comput. 16, 319376 (2005)
5. Chyzak, F., Quadrat, A., Robertz, D.: OreModules: a symbolic package for the study of multidimensional linear systems. In: Chiasson, J., Loiseau, J.J. (eds.) Applications of Time Delay Systems. Lecture Notes in Control and Information Sciences, vol. 352. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-49556-7_15
6. Dagher, R., Hubert, E., Quadrat, A.: On the general solutions of a rank factorization problem arising in vibration analysis (2021)
7. Eisenbud, D.: Commutative Algebra with a View Toward Algebraic Geometry. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4612-5350-1
8. Fabiańska, A., Quadrat, A.: Applications of the Quillen-Suslin theorem to multidimensional systems theory. In: Radon Series on Computation and Applied Mathematics, vol. 3, pp. 23-106, de Gruyter publisher (2007)
9. Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-540-73542-7. https://www.singular.uni-kl.de/
10. Hubert, E.: Amplitude and phase demodulation of multi-carrier signals: application to gear vibration signals. Ph.D. thesis, Université de Lyon (2019)
11. Hubert, E., Barrau, A., El Badaoui, M.: New multi-carrier demodulation method applied to gearbox vibration analysis. In: Proceedings of ICASSP 2018 (2018)
12. Hubert, E., Bouzidi, B., Dagher, R., Barrau, A., Quadrat, A.: Algebraic aspects of the exact signal demodulation problem. In: Proceedings of SSSC \& TDS (2019)
13. Hubert, E., Bouzidi, B., Dagher, R., Barrau, A., Quadrat, A.: On a rank factorisation problem arising in gearbox vibration analysis. In: Proceedings of IFAC World Congress (2020)
14. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel (1985)
15. Lam, T.Y.: Serre's Problem on Projective Modules. Springer, Heidelberg (2006). https://doi.org/10.1007/978-3-540-34575-6
16. Quadrat, A.: An introduction to constructive algebraic analysis and its applications. Les cours du CIRM, 1: Journées Nationales de Calcul Formel 1, 281-471 (2010)
17. Rotman, J.J.: Introduction to Homological Algebra. Springer, Heidelberg (2009). https://doi.org/10.1007/b98977
