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ABSTRACT
This paper exposes some effective aspects of the algebra of linear

ordinary integro-differential operators with polynomial coefficients.

More precisely, we prove that the annihilator of an evaluation opera-

tor is a finitely generated ideal which can be explicitly characterized

and computed. This is an advance towards the development of an

effective elimination theory for ordinary integro-differential opera-

tors and an effective study of linear systems of integro-differential

equations with polynomial coefficients.

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic ma-
nipulation; • Symbolic and algebraic algorithms → Algebraic
algorithms.
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1 INTRODUCTION AND MOTIVATION
Algebraic analysis, more specifically, algebraic 𝐷-module theory,
where 𝐷 stands for “differential”, is a mathematical field which

studies linear systems of ordinary or partial differential equations

using algebraic theories such as ring theory of differential opera-

tors, module theory, homological algebra [2, 6, 9]. The main idea

of this theory is to use a correspondence between linear systems

of differential equations and finitely presented left modules over a
ring of differential operators (e.g., the Weyl algebra of differential

operators with polynomial coefficients). This theory is nowadays

well-known in fundamental mathematics. In the last decades, the
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development of an effective approach to algebraic 𝐷-module the-

ory was studied by the computer algebra community. It relies on

an effective differential elimination theory using, e.g., Gröbner or

Janet basis methods. Different softwares can nowadays handle effec-

tive aspects of algebraic analysis: Macaulay2, Maple (OreModules),
Singular, HomAlg, etc.

Based on our experience in effective algebraic 𝐷-modules theory,

we aim at extending the algebraic analysis approach to handle linear

systems of ordinary integro-differential equations with polynomial

coefficients. In other words, we would like to replace the Weyl alge-

bra by the ring of ordinary integro-differential operators with poly-

nomial coefficients, denoted by I1 in what follows. Contrary to the

Weyl algebra case, Bavula proved in [1] that I1 is not a noetherian
ring, a fact which seems to compromise the possibility to develop

an effective integro-differential elimination theory, and thus, an ef-

fective algebraic analysis approach to ordinary integro-differential

linear systems. However, he also proved that I1 is coherent [1],
namely, that every finitely generated left/right ideal of I1 is finitely
presented [2, 18, 20]. As explained below, this result is at the core of

the future development of an effective integro-differential theory.

Yet, Bavula’s proof of the coherence of I1 remains not algorithmic.

This paper aims at effectively characterizing the annihilator of
an integro-differential operator with polynomial coefficients, i.e.,

of an element of I1. In [17], such an effective characterization was

obtained and implemented for an element of I1 which is not a so-

called evaluation operator. In this paper, we handle the second case,

namely, the case of an element of I1 which is an evaluation operator.

This result completes the algorithmic characterization of the first of

the two standard conditions characterizing the coherence property

of I1. The second one asserts that the intersection of two finitely

generated left/right ideals is also finitely generated. This problem

will be studied in a future publication.

To further motivate this work, let us explain why the devel-

opment of an effective version of the coherence property of I1
plays a central role towards an effective study of linear systems

of integro-differential equations with polynomial coefficients and

towards the development of dedicated implementations built upon

modern computer algebra systems. Within the algebraic analysis

approach, a linear system of integro-differential equations with

polynomial coefficients is defined by a matrix 𝑅 ∈ I𝑞×𝑝
1

, i.e., by

𝑅 𝜂 = 0, where 𝜂 ∈ F 𝑝×1
and F is a left I1-module (e.g., k[𝑡],

𝐶∞ (R)). It can be proved that the linear integro-differential system

𝑅 𝜂 = 0 is associated with the finitely presented left I1-module

M = cokerI1 (.𝑅) = I
1×𝑝
1

/
(
I
1×𝑞
1

𝑅

)
. Hence, the theory of linear

integro-differential systems deals with the category of finitely pre-

sented left I1-modules [2, 9]. Now, a standard result in module
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theory [2, 18, 20] asserts that if R is a left coherent ring, then a

left R-module M is coherent (namely, M is a finitely generated

left R-module and all of its finitely generated left R-submodules

are finitely presented) if and only if M is finitely presented. Com-

bining this result with the fact that I1 is coherent, we obtain that

the finitely presented left I1-module M = cokerI1 (.𝑅) − associated

with the linear system 𝑅 𝜂 = 0 − is coherent. In other words, due to

the coherence property of I1, the linear system theory over I1 deals
with the study of the category of left coherent I1-modules. Now,

standard theorems on finitely generated modules over noetherian

rings can be extended to finitely presented modules over coherent

rings. Moreover, the coherence property is compatible with all the

standard algebraic operations (e.g., direct sum, intersection, quo-

tient, tensor product, homomorphism, kernel, image, cokernel). For

more details, see [2, 18, 20]. Therefore, if the coherence property

of I1 is made algorithmic and implemented in computer algebra

systems, then the algebraic side of linear system theory over I1 can
also be made effective. Note that, to our knowledge, I1 would be the
first example of a coherent but not noetherian ring implemented in

a computer algebra system, that has important applications (e.g.,

calculus).

2 THE RING OF INTEGRO-DIFFERENTIAL
OPERATORS

In what follows, let k be an algebraically closed field of character-

istic 0 (e.g., k = Q or C), 𝑡0 a base point of k. Let us consider the
noncommutative k-endomorphism ring E = endk (k[t]) of k[𝑡] and
the k-linear endomorphisms defined on the basis (𝑡𝑛)𝑛∈N of k[𝑡]
as follows:

𝑡 : k[𝑡] −→ k[𝑡], 𝑡𝑛 ↦−→ 𝑡𝑛+1,

𝜕 : k[𝑡] −→ k[𝑡], 𝑡𝑛 ↦−→ 𝑛 𝑡𝑛−1,

𝐼 : k[𝑡] −→ k[𝑡], 𝑡𝑛 ↦−→ 𝑡𝑛+1

𝑛 + 1

−
𝑡𝑛+1
0

𝑛 + 1

.

(1)

These k-endomorphisms respectively define the following linear

operators acting on k[𝑡]:
𝑡 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→ 𝑡 𝑝,

𝜕 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→ 𝑝′,

𝐼 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→
∫ 𝑡

𝑡0

𝑝 (𝜏) 𝑑𝜏 .

Definition 2.1 ([1]). A1 is the k-subalgebra of E generated by 𝑡

and 𝜕, and I1 is the k-subalgebra of E generated by 𝑡, 𝜕, and 𝐼 .

Then,A1 (k), or simplyA1, is called theWeyl algebra defining the
ordinary differential operators with polynomial coefficients. Simi-

larly, I1 (k), or simply I1, is the ring of ordinary integro-differential
operators in the variable 𝑡 with polynomial coefficients in k[𝑡].

In particular, we have the inclusion A1 ⊂ I1. The first fundamen-
tal theorem of calculus can be rewritten as 𝜕 𝐼 = 1, where 1 stands

for the identity of E. Moreover, we can see that for every 𝑝 ∈ k[𝑡],
(1 − 𝐼 𝜕) (𝑝) = 𝑝 (𝑡0), which shows that the operator

𝑒 : k[𝑡] −→ k[𝑡], 𝑝 ↦−→ 𝑝 (𝑡0),
belongs to I1.We shall refer to it as the evaluation operator. Note that
𝑒 is multiplicative, i.e., 𝑒 (𝑝1 𝑝2) = 𝑒 (𝑝1) 𝑒 (𝑝2), for all 𝑝1, 𝑝2 ∈ k[𝑡].

The second fundamental theorem of calculus then rewrites 𝐼 𝜕 = 1−𝑒 .
In what follows, we shall simply set 𝑡0 to 0.

Contrary to its subringA1, the ring I1 has nontrivial zero divisors
since 𝑒 𝑡 = 0 and 𝑒 𝐼 = 0.

For 𝑝 ∈ k[𝑡], we have the following fundamental identities in I1:

𝜕 𝑝 = 𝑝 𝜕 + 𝑝′, 𝜕 𝐼 = 1, 𝐼 𝜕 = 1 − 𝑒, 𝑒 𝑝 = 𝑒 (𝑝) 𝑒 = 𝑝 (0) 𝑒.
See, e.g., [15]. We can deduce the following extra identities:

𝑒2 = 𝑒, 𝜕 𝑒 = 0, 𝐼 𝑝 𝜕 = 𝑝 − 𝑒 (𝑝) 𝑒 − 𝐼 𝑝′,

𝐼 𝑝 𝐼 = 𝐼 (𝑝) 𝐼 − 𝐼 𝐼 (𝑝), 𝐼 𝑝 𝑒 = 𝐼 (𝑝) 𝑒.
Note that the first of the aforementioned identities corresponds to

the Leibniz rule and the last but one to the integration by parts.
We state again that an element 𝑃 of I1 can be written uniquely

as

𝑃 =

𝑛∑︁
𝑖=0

𝑎𝑖 𝜕
𝑖 +

𝑚∑︁
𝑗=0

𝑏 𝑗 𝐼 𝑐 𝑗 +
𝑞∑︁

𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 , (2)

where 𝑎𝑖 , 𝑏 𝑗 , 𝑐 𝑗 , 𝑓𝑘 ∈ k[𝑡] and 𝑛, 𝑚, 𝑞 ∈ N. For more details, see

[1, 10, 17]. The identity (2) is called the normal form of 𝑃 .

For instance, let us give the explicit normal form of 𝐼𝑛 . First,

setting 𝑝 = 1 in the identity 𝐼 = 𝐼 (𝑝) 𝐼 − 𝐼 𝐼 (𝑝) and using 𝐼 (1) = 𝑡 ,

we obtain the identity 𝐼2 = 𝑡 𝐼 − 𝐼 𝑡 , which corresponds to the double
integration. More generally, we have the following explicit result on

multiple integrations (that does not seem to appear in the literature).

Proposition 2.2. The operator 𝐼𝑛 can be written as a polynomial
of degree 1 in I. More precisely, we have

∀𝑛 ≥ 1, 𝐼𝑛 =

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐼
(−𝑡)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)! . (3)

Proof. The operators 𝐼𝑛 and

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐼
(−𝑡)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)! are two k-

endomorphisms of k[𝑡], i.e., two linear operators uniquely deter-

mined by their value on the basis (𝑡𝑛)𝑛∈N of k[𝑡]. Let𝑚 be a non-

negative integer. On the one hand, we have

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!
𝐼
(−𝑡)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)!

(
𝑡𝑚

)
=

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!

(−1)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)! 𝐼

(
𝑡𝑛−1−𝑘+𝑚

)
=

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!

(−1)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)!

𝑡𝑛−𝑘+𝑚

(𝑛 − 𝑘 +𝑚)

=

𝑛−1∑︁
𝑘=0

𝑡𝑛+𝑚

𝑘! (𝑛 − 𝑘 +𝑚)
(−1)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)! .

On the other hand, we have

𝐼𝑛
(
𝑡𝑚

)
= 𝐼𝑛−1

(
𝑡𝑚+1

𝑚 + 1

)
= · · · = 𝑡𝑛+𝑚

(𝑚 + 1) (𝑚 + 2) · · · (𝑚 + 𝑛) . (4)

To conclude, we thus have to prove the following identity:

𝑛−1∑︁
𝑘=0

(−1)𝑛−1−𝑘
𝑘! (𝑛 − 1 − 𝑘)! (𝑛 − 𝑘 +𝑚) =

1

(𝑚 + 1) (𝑚 + 2) · · · (𝑚 + 𝑛) . (5)

To do so, let us note 𝑐 = 1

(𝑚+1) ·· · (𝑚+𝑛) and compute its partial

fraction expansion, i.e., write it as 𝑐 =
𝛼1

𝑚+1 + · · · + 𝛼𝑛
𝑚+𝑛 , where

𝛼1, . . . , 𝛼𝑛 ∈ k. The 𝑘𝑡ℎ coefficient 𝛼𝑘 of this decomposition is given
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by 𝛼𝑘 = [(𝑚 + 𝑘) 𝑐] |𝑚=−𝑘 = 1

(−𝑘+1) (−𝑘+2) ·· · (−1) (𝑛−𝑘 )! so that we

get 𝛼𝑘 = 1

(−1)𝑘−1 (𝑘−1)!(𝑛−𝑘 )! . Hence, we have 𝛼𝑛−𝑘 =
(−1)𝑛−𝑘−1
𝑘! (𝑛−𝑘−1)! ,

which proves (5) and thus (3). □

Note that Formula (3) holds for any 𝑡0 ∈ k in the definition of 𝐼

(see (1)) and not only for 𝑡0 = 0.

Proposition 2.3 ([1]). The set ⟨𝑒⟩ = I1 𝑒 I1 is the only two-sided
ideal of I1. Moreover, we have:

⟨𝑒⟩ = k[𝑡] 𝑒 k[𝜕] =
{

𝑞∑︁
𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 | 𝑓𝑘 ∈ k[𝑡], 𝑞 ∈ N

}
.

Using (2), every 𝑃 ∈ I1 can be decomposed as 𝑃 = 𝑃1 + 𝑃2 + 𝑃3,

where 𝑃1 ∈ A1, 𝑃2 ∈ I =

{∑𝑚
𝑗=0 𝑏 𝑗 𝐼 𝑐 𝑗 | 𝑏 𝑗 , 𝑐 𝑗 ∈ k[𝑡], 𝑚 ∈ N

}
,

and 𝑃3 ∈ ⟨𝑒⟩. Moreover, using the identity 𝐼 𝑝 𝐼 = 𝐼 (𝑝) 𝐼 − 𝐼 𝐼 (𝑝) for
all 𝑝 ∈ k[𝑡], we can see that I is a nonunital ring.

If 𝑝 ∈ k[𝑡], then we note

KI1 (𝑝) = {𝑃 ∈ I1 | 𝑃 (𝑝) = 0},
where 𝑃 (𝑝) stands for the application of (1) to 𝑝 . Note thatKI1 (𝑝) is
a left ideal of I1. Similarly, we note KA1

(𝑝) = {𝑃 ∈ A1 | 𝑃 (𝑝) = 0}.
Let us state a result that will be useful in what follows.

Lemma 2.4. Let 𝑃 ∈ I1 and 𝑎 =
∑𝑙
𝑘=0

𝛼𝑘 𝑒 𝜕
𝑘 ∈ ⟨𝑒⟩. We have

𝑃 𝑎 =

𝑙∑︁
𝑘=0

𝑃 (𝛼𝑘 ) 𝑒 𝜕𝑘 ,

where 𝑃 (𝛼𝑘 ) ∈ k[𝑡] is obtained by applying 𝑃 ∈ E to 𝛼𝑘 using (1).

Proof. Let us consider 𝑃 ∈ I1. Then, there are 𝑃1 ∈ A1, 𝑃2 ∈ I,
and 𝑃3 ∈ ⟨𝑒⟩ such that 𝑃 = 𝑃1+𝑃2+𝑃3. By linearity and associativity
properties, we only have to prove that 𝑃 𝑝 𝑒 = 𝑃 (𝑝) 𝑒 , for all 𝑝 ∈
k[𝑡]. If 𝑃1 =

∑𝑛
𝑖=0 𝑎𝑖 𝜕

𝑖
, then, using the identity 𝜕 𝑒 = 0, we get

𝑃1 𝑝 𝑒 =

𝑛∑︁
𝑖=0

𝑎𝑖 𝜕
𝑖 𝑝 𝑒 =

𝑛∑︁
𝑖=0

𝑎𝑖

𝑖∑︁
𝑗=0

(
𝑖

𝑗

)
𝑝 ( 𝑗 ) 𝜕𝑖− 𝑗 𝑒

=

𝑛∑︁
𝑖=0

𝑎𝑖 𝑝
(𝑖 ) 𝑒 = 𝑃1 (𝑝) 𝑒.

If 𝑃2 =
∑𝑚

𝑗=0 𝑏 𝑗 𝐼 𝑐 𝑗 , then, using the identity 𝐼 𝑝 𝑒 = 𝐼 (𝑝) 𝑒 , for all
𝑝 ∈ k[𝑡], we have

𝑃2 𝑝 𝑒 =

𝑚∑︁
𝑗=0

𝑏 𝑗 𝐼 𝑐 𝑗 𝑝 𝑒 =

𝑚∑︁
𝑗=0

𝑏 𝑗 𝐼 (𝑐 𝑗 𝑝) 𝑒 = 𝑃2 (𝑝) 𝑒.

If 𝑃3 =
∑𝑞

𝑘=0
𝑓𝑘 𝑒 𝜕

𝑘
, then, using 𝑒 𝑝 = 𝑒 (𝑝) 𝑒 , for all 𝑝 ∈ k[𝑡], and

𝑒2 = 𝑒 , we obtain

𝑃3 𝑝 𝑒 =

𝑞∑︁
𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 𝑝 𝑒 =

𝑞∑︁
𝑘=0

𝑓𝑘 𝑒 (𝜕𝑘 (𝑝)) 𝑒2 = 𝑃3 (𝑝) 𝑒.

Thus, we have 𝑃 𝑝 𝑒 = 𝑃 (𝑝) 𝑒 , for all 𝑝 ∈ k[𝑡]. This ends the proof.
□

We state again that the annihilator of 𝑎 ∈ I1 is defined by

annI1 (.𝑎) = {𝑃 ∈ I1 | 𝑃 𝑎 = 0}.

By Lemma 2.4, the annihilator of 𝑎 =
∑𝑞

𝑘=0
𝑓𝑘 𝑒 𝜕

𝑘 ∈ ⟨𝑒⟩ can be

described by annI1 (.𝑎) = {𝑃 ∈ I1 | 𝑃 (𝑓𝑘 ) = 0, 𝑘 = 0, . . . , 𝑞}.

It is well-known that A1 is a noetherian ring, i.e., is a left and
a right noetherian ring (see, e.g., [2, 6]). As for I1, the situation

is different. Indeed, we have seen that the identities 𝜕 𝐼 = 1 and

𝐼 𝜕 = 1 − 𝑒 hold in I1. Now, a theorem due to Jacobson [8] asserts

that the existence of a left/right inverse, which is not a two-sided

inverse, of an element in a noncommutative ring R implies that R
is not left/right noetherian. We thus have the following result.

Proposition 2.5 ([1]). The ring I1 is neither a left nor a right
noetherian ring.

A more explicit proof of Proposition 2.5 consists in considering

the chain of left ideals generated by the Taylor operators defined by

∀𝑛 ∈ N, 𝑇𝑛 =

𝑛∑︁
𝑘=0

𝑡𝑘

𝑘!
𝑒 𝜕𝑘 . (6)

One can check that 𝑇𝑛 𝑇𝑛+1 = 𝑇𝑛 and I1𝑇𝑛 ≠ I1𝑇𝑛+1, for all 𝑛 ∈ N,
so that I1𝑇0 ⊊ I1𝑇1 ⊊ I1𝑇2 ⊊ · · · is a strictly ascending chain of

left ideals of I1. This proves that I1 is not a left noetherian ring.

Recall that an involution 𝜃 of a k-algebra R is a k-linear endo-
morphism of R satisfying 𝜃 (𝑑1 𝑑2) = 𝜃 (𝑑2) 𝜃 (𝑑1), for all 𝑑1, 𝑑2 ∈ R,

and 𝜃2 = 1.

Proposition 2.6 ([1]). I1 admits the involution 𝜃 defined by

𝜃 (𝑡) = (𝑡 𝜕 + 1) 𝜕, 𝜃 (𝜕) = 𝐼 , 𝜃 (𝐼 ) = 𝜕. (7)

An important consequence of (7) is that 𝜃 (𝑒) = 𝑒 and 𝜃 (⟨𝑒⟩) =
⟨𝑒⟩. Moreover, the involution 𝜃 defined in Proposition 2.6 can be

used to turn the strictly ascending chain of left ideals exhibited

above into a strictly ascending chain of right ideals of I1. This proves
that I1 is also not a right noetherian ring.

At first sight, the fact that I1 is not a noetherian ring seems to

be a strong obstruction to a pure algebraic, and thus to an effective,

study of I1. The next section explains why an effective study of

linear systems of integro-differential equations with polynomial

coefficients remains feasible.

3 THE COHERENCE PROPERTY OF I1
In this section, let R be a ring andM a left R-module.

Definition 3.1. A left R-moduleM is said to be finitely generated
if there is a finite family (𝑔𝑖 )𝑖∈J1,𝑝K of elements of M satisfying

∀𝑚 ∈ M, ∃ 𝑟1, . . . , 𝑟𝑝 ∈ R, 𝑚 =

𝑝∑︁
𝑖=1

𝑟𝑖 𝑔𝑖 . (8)

(𝑔𝑖 )𝑖∈J1,𝑝K is then a finite set of generators of the left R-module M.

A left R-module M is finitely generated if there exist some sur-

jective R-homomorphism 𝜋 : R1×𝑝 −→ M, i.e., a R-epimorphism.

Let 𝑒𝑖 = (0, . . . , 1, . . . , 0) be the 𝑖𝑡ℎ element of the standard basis of
R1×𝑝

, namely, the row vector of length 𝑝 with 1 at the 𝑖𝑡ℎ position

and 0 elsewhere. If (𝑔𝑖 )𝑖∈J1,𝑝K is a set of generators of M, then we

can consider the following R-epimorphism:

𝜋 : R1×𝑝 −→ M, 𝑒𝑖 ↦−→ 𝑔𝑖 , 𝑖 = 1, . . . , 𝑝 .

Definition 3.2. Let M be a finitely generated left R-module and

(𝑔𝑖 )𝑖∈J1,𝑝K a finite set of generators of M. Then, M is said to be
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finitely presented if the left R-module of all the relations among the

𝑔𝑖 ’s, namely,

ker𝜋 =

{
(𝜆1, . . . , 𝜆𝑝 ) ∈ R1×𝑝 |

𝑝∑︁
𝑖=1

𝜆𝑖 𝑔𝑖 = 0

}
is finitely generated.

By definition, a finitely presented module is finitely generated.

The fact that ker𝜋 is finitely generated is equivalent to the ex-

istence of a finite set of generators of ker𝜋 , i.e., a finite set of

elements 𝑅1•, . . . , 𝑅𝑞• ∈ R1×𝑝
satisfying that, for all 𝜆 ∈ ker𝜋 ,

there are 𝜇1, . . . , 𝜇𝑞 ∈ R such that

𝜆 =

𝑞∑︁
𝑖=1

𝜇𝑖 𝑅𝑖• =
(
𝜇1 . . . 𝜇𝑞

)︸             ︷︷             ︸
𝜇

©«
𝑅1•
.
.
.

𝑅𝑞•

ª®®¬︸                      ︷︷                      ︸
𝑅

= 𝜇 𝑅.

Thus, we can write ker𝜋 = imR (·𝑅) = {𝜇 𝑅 | 𝜇 ∈ R1×𝑞}, where
𝑅 ∈ R𝑞×𝑝

is thematrix having the𝑅𝑖•’s as rows, which is equivalent
to the following exact sequence of left R-modules:

R1×𝑞 ·𝑅 // R1×𝑝 𝜋 //M //
0.

Equivalently, we haveM � cokerR (.𝑅) = R1×𝑝/(R1×𝑞 𝑅), where
� means “isomorphic to”. For more details, see [2, 18, 20].

Definition 3.3. Let R be a noncommutative ring.

• A leftR-moduleM is said to be left coherent ifM is a finitely

generated left R-module and if every finitely generated left

R-submodule ofM is finitely presented.

• The ring R is said to be left coherent if R is a left coherent

R-module, i.e., if every finitely generated left ideal of R is

finitely presented.

Similar definitions hold for right R-modules and a ring is said to

be coherent if it is both left and right coherent.

According to Definitions 3.3 and 3.2, a ring R is left coherent if

for every finitely generated ideal J of R, the left R-module of the

relations among a finite set of generators of J is finitely generated.

Example 3.4. Left (resp., right) noetherian rings are left (resp.,

right) coherent rings. Two examples of coherent rings which are not

noetherian are the ring k[𝑥𝑖 | 𝑖 ∈ N] of polynomials in an infinite

number of variables {𝑥𝑖 }𝑖∈N with coefficients in a field k, and the

ring of the entire functions on C. For more details, see [18].

Let us state a useful characterization of a coherent ring.

Proposition 3.5 ([18, 20]). Let R be a ring. The following two
conditions are equivalent:

(1) R is a left coherent ring.
(2)(a) For every 𝑎 ∈ R, annR (.𝑎) is a finitely generated left ideal.

(b) For all finitely generated left ideals J1 and J2, the left ideal
J1 ∩ J2 is finitely generated.

A similar result holds for a right coherent ring (annR (.𝑎) is then
replaced by annR (𝑎.) and left ideals by right ideals).

We can now state a result that is at the core of this paper.

Theorem 3.6 ([1]). I1 is a coherent ring.

Using the involution 𝜃 of I1 (see Proposition 2.6), the left coher-

ence property yields the right coherence property, and vice versa.

We point out that the proof of Theorem 3.6 given in [1] is not

constructive. The main goal of the present paper is to contribute to

the development of an effective version of the coherence property

of I1 and its implementation in the computer algebra software

Maple. Here, we shall focus on Condition (2)(a) of Proposition 3.5.

The second condition will be studied in a future work.

Note that, to our knowledge, I1 would be the first example of

a coherent but not noetherian ring implemented in a computer

algebra system, which has important applications (e.g., calculus).

4 ANNIHILATOR OF AN EVALUATION
OPERATOR

4.1 Preliminary remarks and results
In Section 3, we have recalled that the ring I1 was coherent. Yet, the
proof of the coherence property given in [1] remains not algorith-

mic. To make it so, we shall rely on Proposition 3.5 which shows

that the coherence property is equivalent to two conditions: one

on the annihilator of elements of I1 and one on the intersection of

finitely generated ideals. In this paper, we shall only focus on the

first one, letting the second one for a future work.

Let us then consider Condition (2) (a) of Proposition 3.5. In the

case 𝑎 ∈ I1 \ ⟨𝑒⟩, the characterization of a finite set of generators for

annI1 (.𝑎) was obtained in [17] and implemented in the IntDiffOp
package [10]. Hence, it remains to study the case 𝑎 ∈ ⟨𝑒⟩.

Note that annI1 (.𝑎) is the left ideal of I1 defining all the com-
patibility conditions of the inhomogeneous linear equation 𝑎 ℎ = 𝑔,

where 𝑔 is fixed in a left I1-module F and ℎ is sought in F . Indeed,

if 𝑃 ∈ annI1 (.𝑎), then by definition, 𝑃 𝑎 = 0, i.e., 𝑃 𝑔 = 0. This last

equation is a necessary condition for the above system to have a

solution, i.e., 𝑃 𝑔 = 0 is a compatibility condition.

We now state two lemmas that will be used in what follows.

Lemma 4.1 ([4]). Let 𝑃 ∈ I1. Then, there is 𝑁 ∈ N such that the
operator 𝜕𝑁 𝑃 belongs to A1. In particular, using the normal form (2)

of 𝑃 , we can take 𝑁 = max( 𝑗, 𝑘 ) ∈J0,𝑚K×J0,𝑞K{deg𝑡 (𝑏 𝑗 ), deg𝑡 (𝑓𝑘 )}+1.

Lemma 4.2. For all 𝑛 ∈ N, we have 𝐼𝑛𝜕𝑛 +𝑇𝑛−1 = 1, where 𝑇𝑛 is
defined by (6). For every 𝑃 ∈ I1, there is 𝑁 ∈ N such that 𝑃 can be
written as 𝑃 = 𝐼𝑁 𝜕𝑁 𝑃+𝑇𝑁−1 𝑃 , where 𝜕𝑁 𝑃 ∈ A1 and𝑇𝑁−1 𝑃 ∈ ⟨𝑒⟩.

Proof. Using (1), let us compare (𝐼𝑛 𝜕𝑛)
(
𝑡𝑙
)
and (1 −𝑇𝑛−1)

(
𝑡𝑙
)
,

for all 𝑙 ≥ 0. If 𝑙 ≤ 𝑛 − 1, we have

(1 −𝑇𝑛−1)
(
𝑡𝑙
)
= 0,

(
𝐼𝑛 𝜕𝑛

) (
𝑡𝑙
)
= 𝐼𝑛 (0) = 0.

Now, for 𝑙 > 𝑛 − 1, we have

(1 −𝑇𝑛−1)
(
𝑡𝑙
)
= 𝑡𝑙 ,

(
𝐼𝑛 𝜕𝑛

) (
𝑡𝑙
)
= 𝑙 . . . (𝑙 − 𝑛 + 1) 𝐼𝑛

(
𝑡𝑙−𝑛

)
.

Using (4), we obtain

𝐼𝑛
(
𝑡𝑙−𝑛

)
=

𝑡𝑙

(𝑙 − 𝑛 + 1) (𝑙 − 𝑛 + 2) . . . 𝑙 .

Then, we have(
𝐼𝑛 𝜕𝑛

) (
𝑡𝑙
)
= 𝑙 . . . (𝑙 − 𝑛 + 1) 𝐼𝑛

(
𝑡𝑙−𝑛

)
= 𝑡𝑙 .
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The second assertion is a direct consequence of the first one, Lemma 4.1,

and Proposition 2.3. □

Using Proposition 2.2, for all 𝑛 ≥ 1 and 𝑝 ∈ k[𝑡], we have

𝐼𝑛 (𝑝) =
𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!

∫ 𝑡

0

(−𝜏)𝑛−1−𝑘
(𝑛 − 1 − 𝑘)! 𝑝 (𝜏) 𝑑𝜏 =

∫ 𝑡

0

(𝑡 − 𝜏)𝑛−1
(𝑛 − 1)! 𝑝 (𝜏) 𝑑𝜏 .

Hence, the identity 𝐼𝑛𝜕𝑛 +𝑇𝑛−1 = 1 of Lemma 4.2 yields

∀ 𝑝 ∈ k[𝑡], 𝑝 = 𝑇𝑛−1 (𝑝) +
(
𝐼𝑛𝜕𝑛

)
(𝑝)

=

𝑛−1∑︁
𝑘=0

𝑡𝑘

𝑘!
𝑝 (𝑘 ) (0) +

∫ 𝑡

0

(𝑡 − 𝜏)𝑛−1
(𝑛 − 1)! 𝑝 (𝑛) (𝜏) 𝑑𝜏,

for all 𝑛 ≥ 1. This shows that Lemma 4.2 encapsulates the Taylor’s
theorem with an integral form of the remainder into a simple identity.

4.2 Annihilator of a simple evaluation operator
Let 𝑝 ∈ k[𝑡] and let us exhibit a generating set of the left I1-ideal
annI1 (.𝑝 𝑒). From Lemma 2.4, we have

annI1 (.𝑝 𝑒) = {𝑃 ∈ I1 | 𝑃 𝑝 𝑒 = 𝑃 (𝑝) 𝑒 = 0} = {𝑃 ∈ I1 | 𝑃 (𝑝) = 0}.
According to [5, Proposition 3.2], KA1

(𝑝) := {𝑄 ∈ A1 | 𝑄 (𝑝) = 0}
is the left ideal of A1 generated by 𝑄1 := 𝜕𝑚+1

and 𝑄2 := 𝑝 𝜕𝑚 −
𝑝 (𝑚)

. In other words, we have KA1
(𝑝) = A1𝑄1 + A1𝑄2 .

Lemma 4.3. Let 𝑝 ∈ k[𝑡] be a polynomial of degree𝑚,𝑄1 = 𝜕𝑚+1,
and 𝑄2 = 𝑝 𝜕𝑚 − 𝑝 (𝑚) . Then, we have

annI1 (.𝑝 𝑒) ∩ ⟨𝑒⟩ ⊆ I1𝑄1 + I1𝑄2 .

Proof. If 𝑃 ∈ annI1 (.𝑝 𝑒) ∩ ⟨𝑒⟩, then, from Lemma 2.4, we have

𝑃 =
∑𝑞

𝑘=0
𝑓𝑘 𝑒 𝜕

𝑘
, where 𝑓𝑘 ∈ k[𝑡], 𝑘 = 0, . . . , 𝑞, and 𝑃 satisfies

𝑃 (𝑝) = 0. If 𝑞 > 𝑚, then we can write

𝑃 =

𝑚∑︁
𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 +

(
𝑞∑︁

𝑘=𝑚+1
𝑓𝑘 𝑒 𝜕

𝑘−𝑚−1
)
𝑄1 .

Thus, 𝑃 ∈ I1𝑄1+I1𝑄2 if and only if 𝑃 =
∑𝑚
𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 ∈ I1𝑄1+I1𝑄2.

Since 𝑃 (𝑝) = 0, then 𝑃 satisfies 𝑃 (𝑝) = 0. Then, we have:

𝑃 (𝑝) = 0 ⇔
𝑚∑︁
𝑘=0

𝑓𝑘 𝑒 𝜕
𝑘 (𝑝) = 0 ⇔

𝑚∑︁
𝑘=0

𝑓𝑘 𝑝
(𝑘 ) (0) = 0.

Since deg𝑡 (𝑝) is exactly𝑚, we get 𝑝 (𝑚) = 𝑝 (𝑚) (0) ≠ 0. Therefore,

we obtain the identity 𝑓𝑚 = − 1

𝑝 (𝑚)
∑𝑚−1
𝑘=0

𝑓𝑘 𝑝
(𝑘 ) (0). Substituting

this expression into 𝑃 and using 𝑝 (𝑘 ) (0) 𝑒 = 𝑒 (𝑝 (𝑘 ) ) 𝑒 = 𝑒 𝑝 (𝑘 ) , we
obtain

𝑃 =

𝑚−1∑︁
𝑘=0

(
𝑓𝑘 𝑒 𝜕

𝑘 − 1

𝑝 (𝑚) 𝑓𝑘 𝑝
(𝑘 ) (0) 𝑒 𝜕𝑚

)
,

=

𝑚−1∑︁
𝑘=0

(
𝑓𝑘 𝑒 𝜕

𝑘 − 1

𝑝 (𝑚) 𝑓𝑘 𝑒 𝑝
(𝑘 ) 𝜕𝑚

)
,

=

𝑚−1∑︁
𝑘=0

𝑓𝑘 𝑒
1

𝑝 (𝑚)

(
𝑝 (𝑚) 𝜕𝑘 − 𝑝 (𝑘 ) 𝜕𝑚

)
.

Therefore, 𝑃 (𝑝) = 0 yields 𝑝 (𝑚) 𝜕𝑘 − 𝑝 (𝑘 ) 𝜕𝑚 ∈ KA1
(𝑝), for 𝑘 ∈

J0,𝑚−1K. From [5, Proposition 3.2], we getKA1
(𝑝) = A1𝑄1+A1𝑄2,

which shows that the term 𝑓𝑘 𝑒
1

𝑝 (𝑚)

(
𝑝 (𝑚) 𝜕𝑘 − 𝑝 (𝑘 ) 𝜕𝑚

)
belongs

to I1𝑄1+I1𝑄2, for𝑘 = 0, . . . ,𝑚−1. This proves 𝑃 ∈ I1𝑄1+I1𝑄2. □

Proposition 4.4. Let 𝑝 ∈ k[𝑡] be of degree𝑚, 𝑄1 = 𝜕𝑚+1, and
𝑄2 = 𝑝 𝜕𝑚 − 𝑝 (𝑚) . Then, we have

annI1 (.𝑝 𝑒) = I1𝑄1 + I1𝑄2 .

Proof. Let 𝑃 ∈ annI1 (.𝑝 𝑒). From Lemma 2.4, we have 𝑃 (𝑝) = 0.

According to Lemma 4.1, there is 𝑁 ∈ N such that 𝜕𝑁 𝑃 ∈ A1.
Thus, we have 𝜕𝑁 𝑃 ∈ KA1

(𝑝). Since KA1
(𝑝) = A1𝑄1 + A1𝑄2,

there is (𝛼, 𝛽) ∈ A2
1
such that 𝜕𝑁 𝑃 = 𝛼 𝑄1 + 𝛽 𝑄2, which yields

𝐼𝑁 𝜕𝑁 𝑃 = (𝐼𝑁 𝛼)𝑄1 + (𝐼𝑁 𝛽)𝑄2. Using the identity of Lemma 4.2,

i.e., 𝐼𝑁 𝜕𝑁 +𝑇𝑁−1 = 1 , we get𝑇𝑁−1 𝑃 = 𝑃−(𝐼𝑁 𝛼)𝑄1−(𝐼𝑁 𝛽)𝑄2 ∈
annI1 (.𝑝 𝑒) ∩ ⟨𝑒⟩ because 𝑃, 𝑄1, 𝑄2 ∈ annI1 (.𝑝 𝑒) and𝑇𝑁−1 𝑃 ∈ ⟨𝑒⟩
since 𝑇𝑁−1 ∈ ⟨𝑒⟩ and ⟨𝑒⟩ is a right ideal of I1 (by Proposition 2.3).

Using Lemma 4.3, 𝑇𝑁−1 𝑃 ∈ I1𝑄1 + I1𝑄2 and so is 𝑃 = 𝑇𝑁−1 𝑃 +
(𝐼𝑁 𝛼)𝑄1 + (𝐼𝑁 𝛽)𝑄2, which finally proves the result since we

clearly have I1𝑄1 + I1𝑄2 ⊆ annI1 (.𝑝 𝑒). □

4.3 Main results
Let us now extend Proposition 4.4 to a general element 𝑎 ∈ ⟨𝑒⟩. In
what follows, for 𝑅 ∈ k[𝑡]𝑞×𝑝 , we use the following k[𝑡]-modules:

kerk[𝑡 ] (.𝑅) =
{
𝜆 ∈ k[𝑡]1×𝑞 | 𝜆 𝑅 = 0

}
,

imk[𝑡 ] (.𝑅) =
{
𝜆 𝑅 | 𝜆 ∈ k[𝑡]1×𝑞

}
.

We shall need the next lemma which characterizes the differ-

ential operators which annihilate a finite family of polynomials

{𝑎𝑖 }𝑖=0,...,𝑟 .

Lemma 4.5. Let𝑎𝑖 ∈ k[𝑡], 𝑖 = 0, . . . , 𝑟 ,𝑚 = max𝑖∈J0, 𝑟K{deg𝑡 (𝑎𝑖 )},

𝐶 =

©«
𝑎0 . . . 𝑎𝑟
.
.
.

.

.

.

𝑎
(𝑚+1)
0

. . . 𝑎
(𝑚+1)
𝑟

ª®®®¬ ∈ k[𝑡] (𝑚+2)×(𝑟+1) , 𝐽𝑚+1 =

©«
1

𝜕

.

.

.

𝜕𝑚+1

ª®®®®¬
.

(9)

Let 𝐷 ∈ k[𝑡]𝑢×(𝑚+2) be a full row rank matrix, where 𝑢 ∈ J1,𝑚 + 2K
is the rank of 𝐷 such that

kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷),

and the vector (
𝑓1 . . . 𝑓𝑢

)𝑇
= 𝐷 𝐽𝑚+1 ∈ A𝑢×1

1
.

Then, we have
𝑟⋂
𝑖=0

KA1
(𝑎𝑖 ) =

𝑢∑︁
𝑗=1

A1 𝑓𝑗 .

Proof. Since 𝜕𝑚+1 (𝑎𝑖 ) = 0, for 𝑖 = 0, . . . , 𝑟 , 𝜕𝑚+1 ∈ ⋂𝑟
𝑖=0KA1

(𝑎𝑖 ).
Hence, if 𝑃 =

∑𝑛
𝑗=0 𝑐 𝑗 𝜕

𝑗 ∈ ⋂𝑟
𝑖=0KA1

(𝑎𝑖 ), where 𝑛 > 𝑚 + 1 and

𝑐 𝑗 ∈ k[𝑡], for 𝑗 = 0, . . . , 𝑛, then we can write

𝑃 =

𝑚∑︁
𝑗=0

𝑐 𝑗 𝜕
𝑗 + ©«

𝑛∑︁
𝑗=𝑚+1

𝑐 𝑗 𝜕
𝑗−𝑚−1ª®¬ 𝜕𝑚+1,
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and we get 𝑃 =
∑𝑚

𝑗=0 𝑐 𝑗 𝜕
𝑗 ∈ ⋂𝑟

𝑗=0KA1
(𝑎𝑖 ). To simplify the ex-

position below, we keep the term of order 𝑚 + 1 in 𝑃 . We then

have:

∀𝑖 ∈ J0, 𝑟K, 𝑃 (𝑎𝑖 ) =
𝑚+1∑︁
𝑗=0

𝑐 𝑗 𝑎
( 𝑗 )
𝑖

= 0 ⇔ (𝑐0 . . . 𝑐𝑚+1)𝐶 = (0 . . . 0),

where the matrix𝐶 ∈ k[𝑡] (𝑚+2)×(𝑟+1)
is defined by (9). This shows

that (𝑐0 . . . 𝑐𝑚+1) ∈ kerk[𝑡 ] (.𝐶). Now, since k[𝑡] is a noetherian
ring, the k[𝑡]-module kerk[𝑡 ] (.𝐶) is finitely generated (see, e.g., [7]),
and thus, there is a finite set of generators for kerk[𝑡 ] (.𝐶). Stack-
ing the corresponding polynomial rows into a matrix, we obtain

a matrix 𝐷 ∈ k[𝑡]𝑢×(𝑚+2)
such that kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷).

Note that kerk[𝑡 ] (.𝐶) is a k[𝑡]-submodule of the free k[𝑡]-module

k[𝑡]1×(𝑚+2)
, and thus, kerk[𝑡 ] (.𝐶) is a free k[𝑡]-module because

k[𝑡] is a principal ideal domain (see, e.g., [18]). Hence, the rows

of the matrix 𝐷 can be chosen so that they are k[𝑡]-linearly inde-

pendent, i.e., such that the matrix 𝐷 has full row rank (i.e., 𝜈 𝐷 = 0

yields 𝜈 = 0). Therefore, we have the following exact sequence of

k[𝑡]-modules:

0
// k[𝑡]1×𝑢 .𝐷 // k[𝑡]1×(𝑚+2) .𝐶 // k[𝑡]1×(𝑟+1) . (10)

Thus, (𝑐0 . . . 𝑐𝑚+1) = 𝛼 𝐷 for a certain𝛼 ∈ k[𝑡]1×𝑢 . Let us consider(
𝑓1 . . . 𝑓𝑢

)𝑇
:= 𝐷 𝐽𝑚+1. Using 𝑃 = (𝑐0 . . . 𝑐𝑚+1) 𝐽𝑚+1, we

then get 𝑃 = 𝛼 𝐷 𝐽𝑚+1 =
∑𝑢

𝑗=1 𝛼 𝑗 𝑓𝑗 , i.e., 𝑃 ∈ ∑𝑢
𝑗=1 A1 𝑓𝑗 . Now

(0 . . . 0 1) ∈ imk[𝑡 ] (.𝐷) since the last row of 𝐶 has zero entries.

This yields (0 . . . 0 1) 𝐽𝑚+1 = 𝜕𝑚+1 ∈ ∑𝑢
𝑗=1 k[𝑡] 𝑓𝑗 . Hence, we have

𝑃 ∈ 𝑃 + A1 𝜕𝑚+1 ⊂ ∑𝑢
𝑗=1 A1 𝑓𝑗 , which proves the first inclusion.

For the converse, we note that each entry of the column vec-

tor 𝐷 𝐽𝑚+1 is an element of A1 which annihilates all the 𝑎𝑖 ’s be-

cause the rows of 𝐷 belong to kerk[𝑡 ] (.𝐶). Hence, we obtain that

(𝑓1 . . . 𝑓𝑢 )𝑇 = 𝐷 𝐽𝑚+1 is a generating set of
⋂𝑟

𝑖=0KA1
(𝑎𝑖 ). □

Note that the generators 𝑓𝑗 ’s of Lemma 4.5 can be explicitly

obtained by the computation of a Hermite normal form (or a Smith
normal form) of the matrix 𝐶 . For more details, see, e.g., [11]. Such

a computation is implemented in computer algebra softwares.

Example 4.6. Let us consider 𝑎0 = 𝑡, 𝑎1 = 𝑡2 + 1, and 𝑎2 = 𝑡3 − 2 𝑡 .

Then, we have𝑚 = max𝑖∈J0, 2K{deg𝑡 (𝑎𝑖 )} = 3 and

𝐶 =
©«

𝑡 1 0 0 0

𝑡2 + 1 2 𝑡 2 0 0

𝑡3 − 2 𝑡 3 𝑡2 − 2 6 𝑡 6 0

ª®¬
𝑇

∈ k[𝑡]5×3 .

Using, e.g., Maple, we can compute a matrix𝐷 whose rows generate

the k[𝑡]-module kerk[𝑡 ] (.𝐶). We find

𝐷 =

(
−6 6 𝑡 −3 𝑡2 + 3 𝑡3 − 3 𝑡 0

0 0 0 0 1

)
.

Thus, two generators 𝑓1 and 𝑓2 of
⋂

2

𝑖=0KA1
(𝑎𝑖 ) are defined by(

𝑓1
𝑓2

)
= 𝐷 𝐽4 =

(
−6 + 6 𝑡 𝜕 + (−3 𝑡2 + 3) 𝜕2 + (𝑡3 − 3 𝑡) 𝜕3

𝜕4

)
,

i.e., we have

⋂
2

𝑖=0KA1
(𝑎𝑖 ) = A1 𝑓1 + A1 𝑓2.

Using Lemma 4.5, the next proposition characterizes a finite set

of generators of the left ideal annI1 (.𝑎)
⋂⟨𝑒⟩ of I1, where 𝑎 ∈ ⟨𝑒⟩.

Proposition 4.7. Let 𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖 ∈ ⟨𝑒⟩, 𝑎𝑖 ∈ k[𝑡], for 𝑘 =

0, . . . , 𝑟 ,𝑚 = max𝑖∈J0, 𝑟K{deg𝑡 (𝑎𝑖 )}, and 𝐶 ∈ k[𝑡] (𝑚+2)×(𝑟+1) and
𝐽𝑚+1 be the matrices defined by (9). If 𝐸 ∈ k𝑣×(𝑚+2) is a full row
rank matrix such that kerk (.𝑒 (𝐶)) = imk (.𝐸) (where 𝑒 (𝐶) is the
evalutation of C at 𝑡 = 0), then we have

annI1 (.𝑎)
⋂

⟨𝑒⟩ =
𝑣∑︁

𝑘=1

I1 𝑔𝑘 ,

where the 𝑔𝑘 ’s are defined by(
𝑔1 . . . 𝑔𝑣

)𝑇
= 𝐸 𝑒 𝐽𝑚+1 ∈ ⟨𝑒⟩𝑣×1 . (11)

Proof. Let 𝑃 ∈ annI1 (.𝑎)
⋂⟨𝑒⟩. We have 𝑃 =

∑𝑙
𝑗=0 𝛼 𝑗 𝑒 𝜕

𝑗
and

𝑃 𝑎 = 0. Using Lemma 2.4, 𝑃 𝑎 =
∑𝑟
𝑖=0 𝑃 (𝑎𝑖 ) 𝑒 𝜕𝑖 = 0 if and only

if 𝑃 (𝑎𝑖 ) = 0, for 𝑖 = 0, . . . , 𝑟 . As a consequence, annI1 (.𝑎)
⋂⟨𝑒⟩ =(⋂𝑟

𝑖=0KI1 (𝑎𝑖 )
) ⋂⟨𝑒⟩. Now, for 𝑖 = 0, . . . , 𝑟 , if we note𝑚𝑖 = deg𝑡 (𝑎𝑖 ),

then we have 𝜕𝑚𝑖+1 ∈ KI1 (𝑎𝑖 ). Hence, we get 𝜕𝑚+1 ∈ ⋂𝑟
𝑖=0KI1 (𝑎𝑖 ).

Consequently, 𝑒 𝜕𝑚+1 ∈ annI1 (.𝑎)
⋂⟨𝑒⟩. Therefore, we can, without

loss of generality, assume 𝑙 = 𝑚 + 1, i.e., 𝑃 =
∑𝑚+1

𝑗=0 𝛼 𝑗 𝑒 𝜕
𝑗 ∈

annI1 (.𝑎). We then have

𝑃 𝑎 = 0 ⇐⇒ 𝑃 (𝑎𝑖 ) = 0, 𝑖 = 0, . . . , 𝑟 ,

⇐⇒ 𝑃 (𝑎𝑖 ) =
𝑚+1∑︁
𝑗=0

𝛼 𝑗 𝑒 (𝜕 𝑗𝑎𝑖 ) = 0, 𝑖 = 0, . . . , 𝑟 ,

⇐⇒ (𝛼0 . . . 𝛼𝑚+1) 𝑒 (𝐶) = (0 . . . 0),
⇐⇒ (𝛼0 . . . 𝛼𝑚+1) ∈ kerk[𝑡 ] (.𝑒 (𝐶)),

where the matrix 𝐶 is defined by (9). Let 𝐸 ∈ k𝑣×(𝑚+2)
be a full

row rank matrix whose rows define a basis of kerk (.𝑒 (𝐶)), where
𝑣 = dimk kerk (.𝑒 (𝐶)). Then, we have the following exact sequence

of k-vector spaces:

0
// k1×𝑣 .𝐸 // k1×(𝑚+2) .𝑒 (𝐶 ) // k1×(𝑟+1) .

The above exact sequence of k-vector spaces splits (see, e.g., [18]).
Thus, taking the tensor product of this exact sequence by the free

k-module k[𝑡] yields the following exact sequence of k[𝑡]-modules

(see, e.g., [18]):

0
// k[𝑡]1×𝑣 .𝐸 // k[𝑡]1×(𝑚+2) .𝑒 (𝐶 ) // k[𝑡]1×(𝑟+1) , (12)

i.e., kerk[𝑡 ] (.𝑒 (𝐶)) = imk[𝑡 ] (.𝐸). From the exactness of (12), we

can deduce that 𝑃 𝑎 = 0 if and only if (𝛼0 . . . 𝛼𝑚+1) ∈ imk[𝑡 ] (.𝐸),
i.e., if and only if there is 𝜈 ∈ k[𝑡]1×𝑣 such that (𝛼0 . . . 𝛼𝑚+1) =
𝜈 𝐸. Hence, 𝑃 can be written 𝑃 = 𝜈 𝐸 𝑒 𝐽𝑚+1. Therefore, 𝑃 𝑎 = 0

if and only if 𝑃 ∈ I1×𝑣
1

𝐸 𝑒 𝐽𝑚+1. Now, using the standard basis of

k[𝑡]1×𝑣 , we obtain that the 𝑔𝑘 ’s defined by (11) generate the left

ideal I1×𝑣
1

𝐸 𝑒 𝐽𝑚+1 of I1. The last row of the matrix 𝑒 (𝐶) is the zero
row. Thus, we have (0 . . . 0 1) ∈ kerk (.𝑒 (𝐶)), which implies

that (0 . . . 0 1) 𝑒 𝐽𝑚+1 = 𝑒 𝜕𝑚+1 ∈ ∑𝑣
𝑘=1
I1 𝑔𝑘 . This proves that

(11) is a set of generators of annI1 (.𝑎)
⋂⟨𝑒⟩, i.e., annI1 (.𝑎)

⋂⟨𝑒⟩ =∑𝑣
𝑘=1
I1 𝑔𝑘 . □
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Example 4.8. We continue Example 4.6. The evaluation of the

matrix 𝐶 defined in Example 4.6 at 𝑡 = 0 is

𝑒 (𝐶) = ©«
0 1 0 0 0

1 0 2 0 0

0 −2 0 6 0

ª®¬
𝑇

,

and kerk (.𝑒 (𝐶)) is generated by the rows of the matrix

𝐸 =

(
2 0 −1 0 0

0 0 0 0 1

)
.

Hence, a set of generators of annI1 (.𝑎)
⋂⟨𝑒⟩ is defined by(

𝑔1
𝑔2

)
= 𝐸 𝑒 𝐽4 =

(
2 𝑒 − 𝑒 𝜕2

𝑒 𝜕4

)
,

i.e., annI1 (.𝑎)
⋂⟨𝑒⟩ =

{
𝛼1 (2 𝑒 − 𝑒 𝜕2) + 𝛼2 𝑒 𝜕

4 | 𝛼1, 𝛼2 ∈ I1
}
.

We can now state the main result of the present article.

Theorem 4.9. Let 𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖 ∈ ⟨𝑒⟩, where 𝑎𝑖 ∈ k[𝑡] for
𝑖 = 0, . . . , 𝑟 . Then, we have

annI1 (.𝑎) =
𝑢∑︁
𝑗=1

I1 𝑓𝑗 +
𝑣∑︁

𝑘=1

I1 𝑔𝑘 ,

where the 𝑓𝑗 ’s (resp., 𝑔𝑘 ’s) are the differential (resp., evaluation) oper-
ators defined in Lemma 4.5 (resp., Proposition 4.7). In particular, the
left ideal annI1 (.𝑎) of I1 is finitely generated.

Proof. Let us consider 𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖
and 𝑃 ∈ annI1 (.𝑎). From

Lemma 4.1, there is 𝑁 ∈ N such that 𝜕𝑁 𝑃 ∈ A1. Then, (𝜕𝑁 𝑃) 𝑎 =

𝜕𝑁 (𝑃 𝑎) = 0, i.e.,

∑𝑟
𝑖=0 (𝜕𝑁 𝑃) (𝑎𝑖 ) 𝑒 𝜕𝑖 = 0, and thus, according to

Lemma 2.4, (𝜕𝑁 𝑃) (𝑎𝑖 ) = 0, for 𝑖 = 0, . . . , 𝑟 . Therefore 𝜕𝑁 𝑃 ∈⋂𝑟
𝑖=0KA1

(𝑎𝑖 ) =
∑𝑢

𝑗=1 A1 𝑓𝑗 (see Lemma 4.5). Using Lemma 4.2, 𝑃

can be written as 𝑃 = 𝑇𝑁−1 𝑃 + 𝑆 , where 𝑆 = 𝐼𝑁 𝜕𝑁 𝑃 ∈ ∑𝑢
𝑗=1 I1 𝑓𝑗 .

Now, note that 𝑇𝑁−1 𝑃 ∈ annI1 (.𝑎)
⋂⟨𝑒⟩. Thus, by Proposition 4.7,

𝑇𝑁−1 𝑃 ∈ ∑𝑣
𝑘=1
I1 𝑔𝑘 , which shows that 𝑃 ∈ ∑𝑢

𝑗=1 I1 𝑓𝑗 +
∑𝑣
𝑘=1
I1 𝑔𝑘 ,

and annI1 (.𝑎) ⊆
∑𝑢

𝑗=1 I1 𝑓𝑗 +
∑𝑣
𝑘=1
I1 𝑔𝑘 . Finally, by construction,

we have

∑𝑢
𝑗=1 I1 𝑓𝑗 +

∑𝑣
𝑘=1
I1 𝑔𝑘 ⊆ annI1 (.𝑎), which ends the proof.

□

Example 4.10. Applying Theorem 4.9 to 𝑎 ∈ ⟨𝑒⟩ defined in Ex-

ample 4.8 and using the results obtained in Examples 4.6 and 4.8,

we obtain annI1 (.𝑎) = I1 𝑓1 + I1 𝑓2 + I1 𝑔1 + I1 𝑔2, where 𝑓1, 𝑓2, 𝑔1,

and 𝑔2 are defined in Examples 4.6 and 4.8.

In the case 𝑟 = 0, Proposition 4.4 shows that annI1 (.𝑎) can
be generated by two differential operators. Thus, we can won-

der if the same result holds for the general case, i.e., for all 𝑟 ∈
N. Comparing the exact sequences (10) and (12), we note that

kerk[𝑡 ] (.𝐶) = imk[𝑡 ] (.𝐷) and kerk[𝑡 ] (.𝑒 (𝐶)) = imk[𝑡 ] (.𝐸), where
𝐷 ∈ k[𝑡]𝑢×(𝑚+2)

and 𝐸 ∈ k𝑣×(𝑚+2)
are full row rank matrices.

Therefore, we can wonder if we can take 𝐸 = 𝑒 (𝐷) in Proposi-

tion 4.7.

Example 4.11. Considering again Example 4.10, we can check

that 𝑔1 = −𝑒 𝑓1/3 and 𝑔2 = 𝑒 𝑓2, which shows that annI1 (.𝑎) =

I1 𝑓1 + I1 𝑓2.

Proposition 4.12. Let 𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖 ∈ ⟨𝑒⟩, 𝑎𝑖 ∈ k[𝑡], for
𝑘 = 0, . . . , 𝑟 , 𝑚 = max𝑖∈J0, 𝑟K{deg𝑡 (𝑎𝑖 )}, and 𝐶 and 𝐽𝑚+1 be the
matrices defined by (9). Let N = cokerk[𝑡 ] (.𝐶) denote the k[𝑡]-
module finitely presented by 𝐶 . If N = 0, then, in Proposition 4.7, we
can always choose 𝐸 to be 𝑒 (𝐷), a fact which implies

𝑣 = 𝑢,
(
𝑔1 . . . 𝑔𝑢

)𝑇
= 𝑒 𝐷 𝐽𝑚+1 = 𝑒

(
𝑓1 . . . 𝑓𝑢

)𝑇
,

and thus

annI1 (.𝑎)
⋂

⟨𝑒⟩ =
𝑢∑︁
𝑗=1

I1 𝑒 𝑓𝑗 , annI1 (.𝑎) =
𝑢∑︁
𝑗=1

I1 𝑓𝑗 .

Proof. According to the proof of Lemma 4.5 (see (10)) and by

definition of N = cokerk[𝑡 ] (.𝐶), we have the following exact se-

quence

0
// k[𝑡]1×𝑢 .𝐷 // k[𝑡]1×(𝑚+2) .𝐶 // k[𝑡]1×(𝑟+1) 𝜋 // N //

0,

where 𝜋 denotes the standard projection of k[𝑡]1×(𝑟+1)
onto N .

Now, if N = 0, then we deduce the short exact sequence

0
// k[𝑡]1×𝑢 .𝐷 // k[𝑡]1×(𝑚+2) .𝐶 // k[𝑡]1×(𝑟+1) //

0,

which ends with the free k[𝑡]-module k[𝑡]1×(𝑟+1)
. Hence, the

above exact sequence splits (see, e.g., [18]). Thus, the application of

the functor k[𝑡]/⟨𝑡⟩ ⊗k[𝑡 ] · to this split exact sequence yields the

following exact sequence of k-vector spaces (see, e.g., [18]):

0
// k1×𝑢

.𝑒 (𝐷 ) // k1×(𝑚+2) .𝑒 (𝐶 ) // k1×(𝑟+1) //
0, (13)

which yields kerk (.𝑒 (𝐶)) = imk (.𝑒 (𝐷)), i.e., we can take 𝐸 = 𝑒 (𝐷).
□

Proposition 4.12 shows that, under the hypothesis N = 0, the

left ideal annI1 (.𝑎) of I1 can be generated by differential operators.

In the following, we shall prove (see Proposition 4.16 below) that

the conditionN = 0 can always be assumed to be fulfilled. To do so,

let us first introduce the concept of the Fitting ideals of a module.

Definition 4.13 ([7], Section 20.2). Let R be a commutative ring,

M a finitely presented left R-module, and𝐶 ∈ R𝑞×𝑝
a presentation

matrix of M, i.e., M � cokerk[𝑡 ] (.𝐶). The 𝑖𝑡ℎ Fitting ideal of M is

Fitt𝑖 (M) :=


R if 𝑝 − 𝑖 ≤ 0,

F𝑝−𝑖 if 0 < 𝑝 − 𝑖 ≤ min(𝑝, 𝑞),
⟨0⟩ if 𝑝 − 𝑖 > min(𝑝, 𝑞),

where F𝑗 stands for the ideal of R generated by all the minors

(determinants of submatrices) of size 𝑗 of the matrix 𝐶 .

We recall that a finitely generated R-module M is said to be

projective if there are a R-module P and 𝑠 ∈ N such that we have

M⊕P � R𝑠
. If R is an integral domain, the rank of a R-moduleM

is the dimension of the 𝑄 (R)-vector space 𝑄 (R) ⊗R M obtained

by extending the coefficients of M from R to its quotient field
𝑄 (R) = {𝑟1/𝑟2 | 0 ≠ 𝑟2, 𝑟1 ∈ R}. See [7, 18]. Let us now state a

standard result on Fitting ideals.

Theorem 4.14 ([7], Prop. 20.8, p. 495). Let R be a commuta-
tive ring, M a finitely presented left R-module, and 𝐶 ∈ R𝑞×𝑝 a
presentation matrix ofM. The following assertions are equivalent:

(1) M is a projective module of rank 𝑟 .
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(2) Fitt𝑖 (M) = ⟨0⟩, for 𝑖 = 0, . . . , 𝑟 − 1, and Fitt𝑟 (M) = R.

Note that ifM is a projective R-module of rank 0, then M = 0.

Also, while considering the annihilator annI1 (.𝑎) of an element

𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖 ∈ ⟨𝑒⟩, we can always suppose that the 𝑎𝑖 ’s are

k-linearly independent. Indeed, if we have

∑𝑟
𝑖=0 𝑐𝑖 𝑎𝑖 = 0, where

𝑐𝑖 ∈ k, for 𝑖 = 0, . . . , 𝑟 and 𝑐𝑘 ≠ 0, then 𝑎𝑘 = −∑
0≤𝑖≠𝑘≤𝑟 (𝑐𝑖/𝑐𝑘 ) 𝑎𝑖 ,

which yields

⋂𝑟
𝑖=0KA1

(𝑎𝑖 ) =
⋂

0≤𝑖≠𝑘≤𝑟 KA1
(𝑎𝑖 ). Consequently,

for our purpose, the matrix𝐶 defined by (9) can always be assumed

to have k-linearly independent columns.

Lemma 4.15. Let 𝑎0, . . . , 𝑎𝑟 ∈ k[𝑡] be k-linearly independent poly-
nomials and𝑚 = max𝑖∈J0, 𝑟K{deg𝑡 (𝑎𝑖 )}. If 𝐶 ∈ k[𝑡] (𝑚+2)×(𝑟+1) is
the matrix defined by (9), then we have 𝑟 + 1 ≤ 𝑚 + 2 and, for all
ℎ ∈ k, rankk𝐶 (ℎ) = 𝑟 + 1, i.e., the columns of 𝐶 (ℎ) are k-linearly
independent.

Proof. Let us fix ℎ ∈ k. Considering the Taylor expansion of

the polynomial 𝑎𝑖 at ℎ, we have

𝑎𝑖 (𝑡) =
𝑚+1∑︁
𝑗=0

𝑎𝑖, 𝑗 𝑡
𝑗 =

𝑚+1∑︁
𝑗=0

𝑎
( 𝑗 )
𝑖

(ℎ)
𝑗 !

(𝑡 − ℎ) 𝑗 .

Expanding the latter expression yields

𝑚+1∑︁
𝑗=0

𝑎
( 𝑗 )
𝑖

(ℎ)
𝑗 !

(𝑡 − ℎ) 𝑗 =
𝑚+1∑︁
𝑗=0

𝑗∑︁
𝑘=0

(
𝑗

𝑘

)
𝑎
( 𝑗 )
𝑖

(ℎ)
𝑗 !

(−ℎ) 𝑗−𝑘 𝑡𝑘 ,

=

𝑚+1∑︁
𝑘=0

©«
𝑚+1∑︁
𝑗=𝑘

(
𝑗

𝑘

)
(−ℎ) 𝑗−𝑘

𝑗 !
𝑎
( 𝑗 )
𝑖

(ℎ)ª®¬ 𝑡𝑘 .

Hence, we obtain the linear system

𝑚+1∑︁
𝑗=𝑘

(−ℎ) 𝑗−𝑘
𝑘! ( 𝑗 − 𝑘)! 𝑎

( 𝑗 )
𝑖

(ℎ) = 𝑎𝑖,𝑘 , 𝑖 = 0, . . . , 𝑟 , 𝑘 = 0, . . . ,𝑚 + 1,

which can be written as

©«

1 −ℎ ℎ2

2
. . . . . .

(−ℎ)𝑚+1

0!(𝑚+1)!

0 1 −ℎ ℎ2

2
. . .

(−ℎ)𝑚
1!𝑚!

0 0
1

2
−ℎ
2

. . .
(−ℎ)𝑚−1

2!(𝑚−1)!
.
.
.

.

.

.
. . .

.

.

.

.

.

.
.
.
.

. . .
.
.
.

0 0 . . . . . . 0
1

(𝑚+1)!0!

ª®®®®®®®®®®®®®¬︸                                            ︷︷                                            ︸
𝐺

𝐶 (ℎ) =
©«
𝑎0,0 . . . 𝑎𝑟,0
𝑎0,1 . . . 𝑎𝑟,1
.
.
.

.

.

.

𝑎0,𝑚+1 . . . 𝑎𝑟,𝑚+1

ª®®®®¬︸                         ︷︷                         ︸
𝐻

,

where𝐶 (ℎ) denotes the value of the matrix𝐶 defined by (9) atℎ ∈ k.
Now, the fact that 𝑎0, . . . , 𝑎𝑟 are k-linearly independent means that∑𝑟
𝑖=0 𝑎𝑖 𝑐𝑖 = 0, i.e.,

∑𝑟
𝑖=0 𝑎𝑖,𝑙 𝑐𝑖 = 0, for 𝑙 = 0, . . . ,𝑚 + 1, implies

𝑐𝑖 = 0, for 𝑖 = 0, . . . , 𝑟 . Consequently, considering the linear map

𝐻. : k(𝑟+1)×1 −→ k(𝑚+2)×1
, we have kerk (𝐻.) = 0, which shows

that rankk (𝐻 ) = dimkimk (𝐻.) = 𝑟 + 1 ≤ 𝑚 + 2. The fact that

det(𝐺) ≠ 0 finally yields rankk (𝐶 (ℎ)) = 𝑟 + 1. □

Proposition 4.16. Let𝑎0, . . . , 𝑎𝑟 ∈ k[𝑡] be k-linearly independent
polynomials,𝑚 = max𝑖∈J0, 𝑟K{deg𝑡 (𝑎𝑖 )}, and 𝐶 ∈ k[𝑡] (𝑚+2)×(𝑟+1)

the matrix defined by (9). Then, we have N = cokerk[𝑡 ] (.𝐶) = 0.

Proof. First, from Lemma 4.15, we have 𝑟 + 1 ≤ 𝑚 + 2. Then,

Fitt0 (N) is the ideal of k[𝑡] formed by all the 𝑟 +1minors of the ma-

trix 𝐶 . Moreover, Lemma 4.15 also implies that the affine algebraic

set 𝑉 (Fitt0 (N)) = {𝑡 ∈ k | ∀ 𝐹 ∈ Fitt0 (N), 𝐹 (𝑡) = 0} is empty,

which, by the Nullstellensatz, shows that Fitt0 (N) = k[𝑡]. Thus,
Theorem 4.14 implies N = 0. □

The proof of Proposition 4.12 shows that N = 0 yields the

existence of a left inverse 𝑈 of 𝐶 , i.e., 𝑈 𝐶 = 𝐼𝑟+1. The converse

result also holds. If𝑈 𝐶 = 𝐼𝑟+1, then imk[𝑡 ] (.𝐶) = k[𝑡]1×(𝑟+1)
, i.e.,

N = 0. Thus, for k-linearly independent 𝑎𝑖 ’s, Proposition 4.16 states
the existence of a left inverse of 𝐶 .

Corollary 4.17. Let 𝑎 =
∑𝑟
𝑖=0 𝑎𝑖 𝑒 𝜕

𝑖 ∈ ⟨𝑒⟩, where 𝑎𝑖 ∈ k[𝑡],
for 𝑖 = 0, . . . , 𝑟 . Moreover, we assume that the 𝑎𝑖 ’s are k-linearly
independent. Then, we have annI1 (.𝑎) =

∑𝑢
𝑗=1 I1 𝑓𝑗 , where the 𝑓𝑗 ’s

are the differential operators defined in Lemma 4.5 and 𝑢 =𝑚 − 𝑟 + 1.

Proof. Theorem 4.9, Proposition 4.12, and Proposition 4.16 im-

ply the first part of the result. Using the fact that𝐶 has a left inverse,

i.e., .𝐶 is surjective, we have the following standard exact sequence

0
//
kerk[𝑡 ] (.𝐶) // k[𝑡]1×(𝑚+2) .𝐶 // k[𝑡]1×(𝑟+1) //

0,

which yields rankk[𝑡 ] kerk[𝑡 ] (.𝐶) = 𝑚 + 2 − (𝑟 + 1) = 𝑚 − 𝑟 + 1

[18]. Since kerk[𝑡 ] (.𝐶) is a k[𝑡]-submodule of a free k[𝑡]-module

and k[𝑡] is a principal ideal domain, kerk[𝑡 ] (.𝐶) is then a free k[𝑡]-
module of rank𝑚 − 𝑟 + 1 [18], i.e., kerk[𝑡 ] (.𝐶) � k[𝑡]1×(𝑚−𝑟+1)

.

Thus, we can take 𝑢 = 𝑚 − 𝑟 + 1 in Lemma 4.5, which completes

the result. □

Example 4.18. Let us consider again Examples 4.6 and 4.8. Using,

e.g., Maple, we can see that the matrix 𝐶 admits the left inverse

𝑈 =
©«
0 1 −𝑡 1

2
𝑡2 + 1

3
0

0 0
1

2
− 1

2
𝑡 0

0 0 0
1

6
0

ª®®¬ .
This yields N = cokerk[𝑡 ] (.𝐶) = 0 and we can use the result of

Proposition 4.12. In Examples 4.6 and 4.8, we found that 𝑒 (𝐷) ≠ 𝐸.

But the matrices 𝐸 and 𝑒 (𝐷) generate the same k-vector space since

we have 𝐸 = 𝑉 𝑒 (𝐷), where 𝑉 =

(
− 1

3
0

0 1

)
. Proposition 4.12 then

implies that we can choose 𝐸 to be 𝑒 (𝐷) so that 𝑔1 = 𝑒 𝑓1 and

𝑔2 = 𝑒 𝑓2. Finally, Corollary 4.17 yields annI1 (.𝑎) = I1 𝑓1 + I1 𝑓2,
where 𝑓1 and 𝑓2 are defined in Example 4.6.

Note that Proposition 4.4 is a direct consequence of Corollary 4.17.

Indeed, in the case 𝑎 = 𝑝 𝑒 , we have 𝐶 = (𝑝 . . . 𝑝 (𝑚)
0)𝑇 , where

𝑝 (𝑚) =𝑚! lc(𝑝) ∈ k\{0}, and thus,N = k[𝑡]/⟨𝑝, . . . , 𝑝 (𝑚) ⟩ = 0. In

this case, 𝑟 = 0 yields𝑢 =𝑚+1 = deg𝑡 (𝑝) +1, i.e., annI1 (.𝑝 𝑒) can be
generated by𝑚 + 1 elements. However Proposition 4.4 shows that

annI1 (.𝑝 𝑒) can be generated by two elements. Indeed, this result

comes from Stafford’s theorem [19] stating that every left ideal of

A1 can be generated by two elements and the fact that [5, Proposi-

tion 3.2] gives two explicit generators for KA1
(𝑝). An extension of

Stafford’s theorem, namely, that every finitely generated left/right

ideal of I1 (e.g., annI1 (.𝑎) for 𝑎 ∈ I1) can be generated by two ele-

ments of I1, was proved in [1]. Reducing the set of generators of

annI1 (.𝑎) obtained in Proposition 4.4 to two elements is out of the

189
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scope of the present paper. For the case of A1, see [16] and the

references therein.
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