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Abstract— In [13], we showed that the structure of centro-
hermitian matrices and Lee’s transformation can be used to
transform the search for centrohermitian solutions of a rank
factorization problem − at the core of a new demodulation
approach arising in gearbox vibration analysis − into the
search for real solutions of a polynomial system. Hence, in
[13], we parametrized a class of centrohermitian solutions of
the rank factorization problem that is interesting in practice.
Despite its effectiveness, Lee’s transformation can be seen as a
black box hiding information on the resolution of the rank
factorization problem for centrohermitian solutions. To get
more insight, in this paper, we develop an alternative approach
to the centrohermitian rank factorization problem.

I. INTRODUCTION

In [13], we studied the centrohermitian solutions of a rank
factorization problem defined by centrohermitian matrices
[14], [5]. Recall that a matrix with complex entries is
centrohermitian when it is equal to the matrix obtained by
exchanging the rows and the columns of its conjugate. See
Definition 1 below. Centrohermitian vectors and matrices
usually appear in signal processing. For instance, the vectors

n ∈ N, Cn := (c−n(s) . . . c−1(s) c0(s) c1(s) . . . cn(s))T

formed by the n first Fourier coefficients centered around 0
of a real signal s are centrohermitian since Jn Cn = Cn,
where Jn denotes the n×n exchange matrix, i.e., the matrix
formed by 1 on the second diagonal and 0 elsewhere.

The rank factorization problem studied in [13] is at the
core of demodulation problems arising in gearbox vibration
analysis [8], [9]. Indeed, the static transmission error of
toothed gearing vibration can be expressed as a finite sum
of products of time functions [15], [1], [2], [8]. If we
study this error within the frequency domain using Fourier
analysis, transforming products into convolutions, under non
overlapping hypotheses on the supports of the corresponding
signals, we are then led to the rank factorization problem
studied in [8], [9], [10], [11], [12], [13]. The standard
amplitude and amplitude and phase demodulation problems
can be reformulated within this framework [8], [9].

In [13], using the centrohermitian structure and the so-
called Lee’s transformation [14], [5], the search of centro-
hermitian solutions of the rank factorization problem was
transformed into the search of real solutions of an associated
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rank factorization problem for real matrices. Then, using
results obtained in [11], [12], an explicit characterization of
a class of centrohermitian solutions (important in practice)
of the rank factorization problem was obtained in [13].

Despite its effectiveness, Lee’s transformation can be seen
as a black box which hides information on the resolution
of the rank factorization problem. Hence, in this paper, we
shall directly study the existence and the characterization of
a class of centrohermitian solutions of the rank factorization
problem by adapting the method developed in [10], [11],
[12], [13]. Doing so, we shall obtain more insight.

II. THE CENTROHERMITIAN RANK FACTORIZATION
PROBLEM

In what follows, k denotes a field (e.g., Q, R, C), kn×m

the k-vector space of the n×m matrices with entries in k,
and In the identity matrix of kn×n. Moreover, M ∈ Cn×m

(resp., M? ∈ Cm×n) denotes the conjugate matrix (resp.,
the adjoint, i.e., the conjugate transpose) of M ∈ Cn×m

and Jn stands for the n×n exchange matrix, i.e., the matrix
formed by 1 on the second diagonal (anti-diagonal) and 0
elsewhere. If M ∈ kn×m, then we can consider the k-linear
maps M. : km×1 −→ kn×1 and .M : k1×n −→ k1×m

respectively defined by (M.)(η) := M η for all η ∈ km×1

and (.M)(λ) := λM for all λ ∈ k1×n, and denote
their kernels (resp., images) respectively by kerk(M.) and
kerk(.M) (resp., imk(M.) and imk(.M)). If {fj}j=1,...,r is
a set of vectors, then spank{fj}j=1,...,r denotes the k-vector
generated by the fj’s. Finally, we set:

r ≥ l, Clr :=
r!

l! (r − l)!
.

We can now state the main problem studied in this paper.
The rank factorization problem:

Let D1, . . . , Dr ∈ kn×n \ {0} and M ∈ kn×m \ {0}.
Determine − when they exist − a column vector u ∈ kn×1

and row vectors vi ∈ k1×m, i = 1, . . . , r, satisfying:

M =

r∑
i=1

Di u vi. (1)

If (1) has a solution, then M w =
∑r
i=1Di u (vi w) for

all w ∈ km×1 and imk(M.) ⊆ spank{D1 u, . . . ,Dr u} ⊆
kn×1, which yields the following rank condition:

l := rankk(M) ≤ rankk(D1 u . . . Dr u) ≤ min{r, n}.
(2)

Hence, (2) is a necessary condition for the solvability of (1).
Let us state again the concept of a centrohermitian matrix.



Definition 1 ([14], [5]): A matrix M ∈ Cn×m is called
centrohermitian if JnM Jm = M . The set of all the
centrohermitian matrices of Cn×m is denoted by CHn,m.

Example 1: Using J1 = 1, a column vector u ∈ Cn×1

and a row vector vi ∈ C1×m are centrohermitian if we have:

Jn u = u, vi Jm = vi.
The centrohermitian rank factorization problem is a rank

factorization problem for centrohermitian matrices M and
D1, . . . , Dr and centrohermitian solutions u and v1, . . . , vr.

The centrohermitian rank factorization problem:
Let D1, . . . , Dr ∈ CHn,n \ {0} and M ∈ CHn,m \ {0}.
Determine − when they exist − u ∈ CHn,1 and vi ∈ CH1,m,
i = 1, . . . , r, satisfying (1).

In [13], we showed that the centrohermitian rank factoriza-
tion problem can be reduced to a rank factorization problem
over k = R. Let us state again this important result.

Definition 2: A matrix Q ∈ Cn×m is called J-real if:

JnQ = Q.
According to Example 1, the columns of a J-real matrix

are centrohermitian vectors. Let us give explicit examples.
Example 2: For t ∈ N, the following matrices

Q2t =
1√
2

(
It i It

Jt −i Jt

)
∈ C2t×2t, Q1 = 1,

Q2t+1 =
1√
2

 It 0 i It

0
√

2 0

Jt 0 −i Jt

 ∈ C(2t+1)×(2t+1)

are J-real. They are also unitary, namely, they satisfy:

Q?2tQ2t = Q2tQ
?
2t = I2t,

Q?2t+1Q2t+1 = Q2t+1Q
?
2t+1 = I2t+1.

If U ∈ Cm×m and V ∈ Cn×n are two non-singular J-real
matrices, then we can define Lee’s transformation [14]:

ϕ : CHn,m −→ Rn×m

M 7−→ V −1M U.

In [14], it is shown that ϕ is a bijection, and thus, that the R-
vector space CHn,m = ϕ−1(Rn×m) is isomorphic to Rn×m.

We state again the equivalence between the two problems.
Theorem 1 ([13]): Let Di ∈ CHn,n for i = 1, . . . , r,

M ∈ CHn,m, Qm ∈ Cm×m and Qn ∈ Cn×n be two J-
real and unitary matrices (see, e.g., Example 2), and:{

Diϕ := Q?nDiQn ∈ Rn×n, i = 1, . . . , r,

Mϕ := Q?nM Qm ∈ Rn×m.
(3)

Then, the centrohermitian rank factorization problem (1)
admits a solution (u, v1, . . . , vr) ∈ CHn,1 × CHr

1,m iff the
following rank factorization problem

Mϕ =

r∑
i=1

Diϕ uϕ viϕ, (4)

admits a solution (uϕ, v1ϕ, . . . , vrϕ) ∈ Rn×1×(R1×m)r. The
bijection between the sets of solutions is then defined by:

CHn,1 × CHr
1,m 7−→ Rn×1 ×

(
R1×m)r

(u, v1, . . . , vr) 7−→ (Q?n u, v1Qm, . . . , vr Qm),

Rn×1 ×
(
R1×m)r 7−→ CHn,1 × CHr

1,m

(uϕ, v1ϕ, . . . , vrϕ) 7−→ (Qn uϕ, v1ϕQ
?
m, . . . , vrϕQ

?
m) .

III. A FEW INTRODUCING REMARKS

Based on results of [10], [11], [12], all the centrohermitian
solutions of the centrohermitian rank factorization problem
which are such that v1, . . . , vr are C-linearly independent
were parametrized in [13]. This class is important in practice.

Lee’s transformation can be seen as a black box hiding
interesting information on the resolution of the centrohermi-
tian rank factorization problem. Hence, we shall adapt the
approach developed in [10], [11], [12] to directly handle the
centrohermitian rank factorization problem.

If we note

A(u) := (D1 u . . . Dr u) ∈ kn×r, v :=

 v1

...
vr

 ∈ kr×m,

then (1) can be written as follows

A(u) v = M, (5)

which emphasizes the bilinear structure of the system (1)
which is polynomial in the entries of u and of the vi’s.

Note that (5) and (2) explain the choice of the terminology
for the problem (1), namely, a rank factorization problem.

If (u, v) is a solution of (5), then so is (λu, λ−1 v) for
all λ ∈ k \ {0}, which shows that the solution space S of
(5) is closed under the following transformation:

∀ λ ∈ k \ {0}, λ • (u, v) :=
(
λu, λ−1 v

)
. (6)

Since k× := k \ {0} is an abelian group for the multiplica-
tion, (6) then defines a group action of k× on S, namely:

∀ (u, v) ∈ S, 1 • (u, v) = (u, v),

∀ λ1, λ2 ∈ k×, λ2 • (λ1 • (u, v)) = (λ2 λ1) • (u, v).

The action (6) of the multiplicative group k× on the solution
space S of (5) yields the following equivalence relation:

∀ (u′, v′), (u, v) ∈ S : (u′, v′) ∼ (u, v)

⇔ ∃ λ ∈ k× : (u′, v′) = λ • (u, v) =
(
uλ, λ−1 v

)
.

The quotient of the action S/k×, defined by the orbits

∀ (u, v) ∈ S : O(u, v) := {
(
uλ, λ−1 v

)
| λ ∈ k×},

defines a partition of the solution space S of (5). Hence, the
study of S can be restricted to the study of S/k×.

In what follows, we shall suppose that k = C.
Let us first suppose that a centrohermitian solution (u, v)

exists for (1), i.e., (u, v) satisfies (5) and:

u = Jn u, vi = vi Jm, i = 1, . . . , r,

⇔ u = Jn u, v = v Jm.
(7)

Let us suppose that the matrices Di’s are also centroher-
mitian. Then, we can first check that we have:

A(u) = (D1 u . . . Dr u)

= (JnD1 Jn u . . . JnDr Jn u)

= JnA(Jn u). (8)



Using (7) and (8), A(u) v = M yields JnA(u) v Jm = M .
Then, we obtain A(u) v = JnM Jm, i.e., JnM Jm = M .
Hence, M is necessarily a centrohermitian matrix.

Let M,D1, . . . , Dr be centrohermitian matrices. Let us
study when a complex solution (u, v) of (5) is a cen-
trohermitian solution, i.e., satisfies (7). Using (5), we get
A(u) v = M = JnM Jm, and thus, using (8), we have
JnA(u) v Jm = A(Jn u) (v Jm) = M . The set S of com-
plex solutions of (5) is then closed under the transformation:

T : (u, v) ∈ S 7−→ (Jn u, v Jm) ∈ S. (9)

The transformation T satisfies T 2 = id, where id is the
identity transformation. Moreover, using (6), we obtain:

∀ λ ∈ k×, T (λ • (u, v)) = T (uλ, λ−1 v)

= (Jn uλ, λ
−1
v Jm)

= λ • T (u, v).

Hence, we can restrict T to the quotient S/k× to obtain:

T : S/k× −→ S/k×

O(u, v) 7−→ OT (u, v).
(10)

The centrohermitian solutions of (5) , i.e., the solutions
satisfying (7), are the fixed-points of T , i.e., those that satisfy:

(u, v) ∈ S : T (u, v) = (u, v).

Lemma 1: The centrohermitian solutions of (5) are in a
1-1 correspondence with the orbits O(u, v) of S/k× that are
fixed by the involution T defined by (10).

Proof: If (u, v) is a centrohermitian solution of (5),
i.e., if (u, v) is a fixed point of T , then, using (10), we have
T (O(u, v)) = OT (u, v) = O(u, v), which shows that the orbit
O(u, v) is fixed by T . Conversely, let us suppose that O(u, v)

is a fixed point of T , then OT (u, v) = O(u, v). By definition,
there exists z ∈ k× such that T (u, v) = (z u, z−1 v), i.e.,
(Jn u, v Jm) = (z u, z−1 v). The equation Jn u = z u yields
u = Jn z u = z Jn u = z z u. Since u 6= 0 (u = 0 yields
A(u) = 0, and thus, M = 0), we obtain z z = |z|2 = 1. Let
us first suppose that z = −1 and let u′ = i u and v′ = −i v.
Then, we have O(u′, v′) = O(u, v),{

Jn u′ = −i Jn u = i u = u′,

v′ Jm = i v Jm = −i v = v′,

which shows that (u′, v′) is a centrohermitian solution. Now,
let us suppose that z 6= −1 and let λ := (1 + z)/2 ∈ k×,
u′ := λu and v′ := λ−1 v. Then, we haveO(u′, v′) = O(u, v),
λ z = λ, and thus, λ

−1
z−1 = λ−1 and{

Jn u′ = λJn u = λ z u = λu = u′,

v′ Jm = λ
−1
v Jm = λ

−1
z−1 v = λ−1 v = v′,

which shows that (u′, v′) is a centrohermitian solution.
Remark 1: If (uJ , v) satisfies (5), where uJ is centro-

hermitian, i.e., Jn uJ = uJ , then, using (9), we have
A(uJ) (v Jm) = M , which, with the following notation

vJ :=
1

2
(v + v Jm),

yields A(uJ) vJ = M and vJ Jm = vJ , and shows that
(uJ , vJ) is a centrohermitian solution of (5). Hence, the
problem of the existence of fixed-points of T is reduced
to the problem of the existence of solutions (u, v) of (5)
satisfying Jn u = u, i.e., of solutions with u centrohermitian.

IV. CHARACTERIZATION OF A CLASS OF SOLUTIONS

In Section IV-A below, we shall review the parametrization
of all the solutions (u, v) of (5) which are such that v are
full row rank matrices which is obtained in [10], [11], [12].
These solutions are important in practice [8]. In this paper,
we shall focus on this important class of solutions. See [3] for
the general solutions. In Section IV-B, we shall extend this
parametrization for the centrohermitian rank factorization
problem without using Lee’s transformations (see Section II).

A. Full row rank solutions v

(5) is equivalent to the existence of u ∈ kn×1 satisfying:

imk(M.) ⊆ imk(A(u).) ⊆ kn×1. (11)

Thus, we find again (2), i.e.:

l := rankk(M) ≤ rankk(A(u).) ≤ min{r, n}. (12)

Hence, u ∈ kn×1 is such that not all the l× l-minors of the
matrix A(u) vanish simultaneously.

A class of solutions of (5), important in practice, is defined
by the solutions (u, v) with full row rank matrices v, i.e.,
such that the vi’s are k-linearly independent. Note that v
then admits a right inverse t ∈ km×r, i.e., v t = Ir. Hence,
A(u) v = M yields A(u) = M t, which shows the inclusion
imk(A(u).) ⊆ imk(M.) and with (11) yields:

imk(A(u).) = imk(D1 u . . . Dr u) = imk(M.). (13)

Remark 2: Alternatively, this result is a consequence of
the fact that rankk(M) = rankk(A(u) v) = rankk(A(u))
since rankk(v) = r, i.e., of the fact that v has full row rank.
Equivalently, it is also a straightforward consequence of (12)
and of Sylvester’s rank inequality asserting that:

rankk(A(u)) + rankk(v) ≤ l + r.

Indeed, rankk(v) = r and (12) yield l ≤ rankk(A(u)) ≤ l.
In what follows, we shall recall how to parametrize all the

u’s satisfying the equality (13). Note (13) is equivalent to:
1) Di u ∈ imk(M.) = kerk(L.) for i = 1, . . . , r, where

L ∈ kp×n is a full row rank matrix whose rows
define a basis of kerk(.M) and p := n − l, i.e.,
kerk(.M) = imk(L.) (with the convention that L = 0
if kerk(.M) = 0), i.e., u satisfies the linear system:

N u = 0, N :=

 LD1

...
LDr

 ∈ kp r×n. (14)

2) rankk(A(u).) = rankk(M) = l.
These above two conditions can be solved as follows. If (14)
is reduced to {0}, then no solution exists since A(0) = 0 and
M 6= 0. Hence, let us suppose that the dimension d of the



k-vector space (14), i.e., of kerk(N.), is larger than or equal
to 1 and let Z ∈ kn×d be a full column rank matrix whose
columns define a basis of (14). Thus, u = Z ψ satisfies (14)
for all ψ ∈ kd×1, i.e., satisfies the first above condition.
Substituting this expression into the second condition, we
are led to the characterization of the following set:

P := {ψ ∈ kd×1 | rankk(A(Z ψ)) = l}.

To do that, let X ∈ kn×l be a full column rank matrix
whose columns define a basis of imk(M.). Therefore, we
have imk(M.) = imk(X.) and there exists a unique matrix
Y ∈ kl×m such that M = X Y . Now, using the fact that
Di Z ψ ∈ imk(M.) = imk(X.) for all ψ ∈ kd×1, there
exists a unique Wi ∈ kl×d such that Di Z = XWi for
i = 1, . . . , r, which yields A(Z ψ) = X (W1 ψ . . . Wr ψ)
for all ψ ∈ kd×1. Let B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r

for ψ ∈ kd×1. Since X has full column rank, we then get:

P = {ψ ∈ kd×1 | rankk(B(ψ)) = l}. (15)

Let {mi}i=1,...,Cl
r

denote the set of all the l × l-minors
of the matrix B(ψ) ∈ kl×r. Note that mi is either 0 or a
homogeneous polynomial of degree l. Let 〈m1, . . . ,mCl

r
〉 be

the ideal of the polynomial ring k[ψ1, . . . , ψd] and let us
consider the following affine algebraic set [4]:

Vk(〈m1, . . . ,mCl
r
〉) :=

{ψ = (ψ1 . . . ψr)
T ∈ kd×1 | mi(ψ) = 0, i = 1, . . . , Clr}.

Then, (15) is clearly equivalent to:

P = kd×1 \ Vk(〈m1, . . . ,mCl
r
〉).

For a more efficient method to compute P , see [12].
For every ψ ∈ P , B(ψ) has full row rank, and thus, there

exists a right inverse Eψ ∈ kr×l, i.e., B(ψ)Eψ = Ir. Using
X B(ψ) v = A(Z ψ) v = M = X Y and the fact that X has
full column rank, we obtain B(ψ) v = Y , which yields v =
Eψ Y + Cψ Y

′, where Cψ ∈ kr×(r−l) is a full column rank
matrix whose columns define a basis of the k-vector space
kerk(B(ψ).), i.e., kerk(B(ψ).) = imk(Cψ), and Y ′ is any
matrix of k(r−l)×m. Finally, noticing that (Eψ Cψ) ∈ kr×r

is not singular, v has full row rank iff so has (Y T Y ′
T

).
Theorem 2 ([11]): With the above notations, we have:

∀ ψ ∈ P, ∀ Y ′ ∈ k(r−l)×m,

(
u = Z ψ

v = Eψ Y + Cψ Y
′

)
∈ S.

(16)
Moreover, v = Eψ Y + Cψ Y

′ has full row rank iff so has

(Y T Y ′
T

).
See [3], [12] for the study of the (regularity of the) maps:

ψ ∈ P 7−→ Eψ, ψ ∈ P 7−→ Cψ.

Note that the multiplicative group k× acts on P as follows:

k× × P −→ P
(λ, ψ) 7−→ λψ.

Hence, the study of P can be reduced to the study of the
quotient of the action P/k× and of the orbits Oψ for ψ ∈ P .

Moreover, we note that B(λψ) = λB(ψ) for all
λ ∈ k×. Hence, we get that Cλψ = Cψ . If we denote
by Eλψ a right inverse of B(λψ) for ψ ∈ P , i.e.,
B(λψ)Eλψ = Ir, then we get B(ψ) (λEλψ) = Ir, and
thus, B(ψ) (Eψ − λEλψ) = 0, which shows that each
column of Eψ−λEλψ belongs to kerk(B(ψ).) = imk(Cψ.),
and thus, there exists a unique matrix Y ′′ψ ∈ k(r−l)×l such
that Eψ − λEλψ = Cψ Y

′′
ψ . Hence, we have:

λ−1Eψ = Eλψ − λ−1 Cψ Y
′′
ψ = Eλψ − λ−1 Cλψ Y

′′
ψ .

Finally, if (u, v) ∈ S is of the form of (16), then we have:

∀ λ ∈ k×, λ • (u, v) =
(
λu, λ−1 v

)
=
(
Z λψ, Eλψ Y + Cλψ λ

−1 (Y ′ − Y ′′ψ Y )
)
∈ S.

For examples, see [3], [8], [9], [10], [11], [12], [13].

B. An approach based on coninvolutory matrices

We consider the extension of the approach for the rank
factorization problem of Section IV-A to the centrohermitian
rank factorization problem, i.e., to centrohermitian matrices
M,D1, . . . , Dr and centrohermitian solutions u, v1, . . . , vr.

Let k = C, M ∈ CHn,m and Di ∈ CHn,n, i = 1, . . . , r.
By definition of the full row rank matrix L ∈ kp×n intro-

duced in Section IV-A, it satisfies the following properties:
1) LM = 0.
2) If L′ ∈ kp

′×n is a matrix satisfying L′M = 0, then
there exists L′′ ∈ kp

′×p such that L′ = L′′ L.
The first condition, i.e., LM = 0 yields LM = 0, i.e.,

LJnM Jm = 0 since M = JnM Jm, and thus, we get
(LJn)M = 0. Using the second point, there exists a matrix
L′′ ∈ kp×p such that LJn = L′′ L, i.e.:

L = L′′ LJn. (17)

Using (17), Jn ∈ Rn×n and J2
n = In, we obtain

L = L′′ LJn = L′′ L′′ LJ2
n = L′′ L′′ L,

and using the fact that L has full row rank, we finally obtain:

L′′ L′′ = Ip, L′′ L′′ = Ip. (18)

A matrix L′′ ∈ kp×p satisfying (18) is called coninvolutory
[6], [7]. Clearly, a coninvolutory matrix is non-singular.

Remark 3: If Θ ∈ Rn×n, then eiΘ is clearly coninvo-
lutory. Theorem 14 of [7] proves the converse result, i.e.,
every coninvolutory matrix E is of the form of E = eiΘ

for a certain Θ ∈ Rn×n. In particular, Θ can be chosen to
be a polynomial in E. Finally, there exists a unique matrix
Θ ∈ Rn×n satisfying E = eiΘ with all its eigenvalues in the
half-open strip {z ∈ C | − π/2 < =(z) < π/2}.

Let us now consider a solution u ∈ kn×1 of (14), i.e.,
satisfying LDi u = 0 for i = 1, . . . , r. Then, we have
LDi u = 0. Using L = L′′ LJn, Di = JnDi Jn, J2

n = In
and L′′ is a non-singular matrix, we then obtain

L′′ LJ2
nDi Jn u = 0 ⇔ LDi (Jn u) = 0,



which shows that the solution space kerk(N.) of (14) is
closed under the following transformation:

J : kerk(N.) −→ kerk(N.),

u 7−→ Jn u.
(19)

Using the k-vector space structure of kerk(N.) coming from
the linear system (14), we then have:

uJ :=
1

2
(u+ J (u)) =

1

2
(u+ Jn u) ∈ kerk(N.).

Moreover, uJ satisfies J (uJ) = uJ , i.e., u ∈ CHn,1, which
shows (14) always admits centrohermitian solutions.

If (u, v) ∈ S, then we have just proved that uJ ∈ CHn,1

satisfies (14). But as explained in Section IV-A, (14) is only
a necessary condition on u for the existence of a solution
(u, v) of (5). Hence, we now need to investigate when there
exists vJ ∈ kr×m satisfying vJ Jm = vJ (i.e., the rows of
vJ are centrohermitian vectors) such that (uJ , vJ) ∈ S.

Recall that u = Z ψ is a solution of (14) for all ψ ∈ kd×1.
Hence, using (19), we get that Jn u = Jn Z ψ is also a
solution of (14) for all ψ ∈ kd×1. Hence, there exists
a unique φ ∈ kd×1 such that Jn u = Jn Z ψ = Z φ.
Considering R := (φ1 . . . φn) ∈ kd×d, where φi is such
that Jn Z ψi = Z φi and ψi is the ith vector of the standard
basis of kn×1, i.e., ψi is the vector formed by 1 at the ith

position and 0 elsewhere, then we have Jn Z = Z R, i.e.:

Z = Jn Z R. (20)

Then, we get Z = Jn Z R, which implies that Z = Z RR,
and thus, RR = Id since Z has full column rank, and also

RR = RR = Id, (21)

i.e., R is coninvolutory. Using u = Z ψ and (20), we have:

Jn u = Jn Z ψ = Z (Rψ) ∈ kerk(N.). (22)

Now, using (20) and the fact that Z has full row rank,
u = Z ψ is centrohermitian iff Jn u = u, i.e., iff:

Jn Z ψ = Z ψ ⇔ Z (Rψ − ψ) = 0 ⇔ ψ = Rψ. (23)

A vector ψ ∈ kd×1 satisfying (23) will be called R-
conjugate. Let R be the R-linear vector space formed by
all the R-conjugate vectors of kd×1, i.e.:

R :=
{
ψ ∈ kd×1 | Rψ = ψ

}
. (24)

Hence, u ∈ kn×1 belongs to kerk(N.) and is centrohermitian
iff there exists ψ ∈ R such that u = Z ψ.

Let ψ = ψr + i ψi, where ψr, ψi ∈ Rd×1, R = Rr + i Ri,
where Rr, Ri ∈ Rd×d. Using (21), Rr and Ri satisfy:

R2
r +R2

i = Id, Rr Ri = RiRr.

Let us note:

H :=

(
Rr Ri

Ri −Rr

)
∈ R2d×2d. (25)

The matrix H is involutory [6], namely:

H2 =

(
Rr Ri

Ri −Rr

) (
Rr Ri

Ri −Rr

)
= I2d.

Since H2 = I2d, the characteristic polynomial of H is either
λ2 − 1 or one of its two factors, i.e., λ− 1, λ+ 1. The last
two correspond to H = I2d and H = −I2d, which are not of
the form of (25). Hence, the characteristic polynomial of H
is λ2 − 1, which shows that the eigenvalues of H are 1 and
−1 associated with the respective eigenvectors of the form:

η+ := η +H η, η− := η −H η, η ∈ k2d×1.

Now, ψ = Rψ is equivalent to the following linear system(
Rr Ri

Ri −Rr

) (
ψr

ψi

)
=

(
ψr

ψi

)
,

which shows that (ψTr ψTi )T ∈ R2d×1 is an eigenvector of
H associated with its eigenvalue 1. Hence, we have R 6= 0.

Computing a basis of the eigenspace kerR((H − I2d).) of
H , there exists a full column rank matrix G ∈ R2d×e such
that kerR((H−I2d).) = imR(G.), where e is the multiplicity
of the eigenvalue 1 of H , i.e., e = dimR(kerR((H − I2d).)).
Hence, using ψ = ψr + i ψi, we have:

ψ = Rψ ⇔ ∃ γ ∈ Re×1,

(
ψr

ψi

)
= Gγ.

Now, let G = (GT1 GT2 )T , where Gk ∈ Rd×e for k = 1, 2,
and let set 0 6= Z ′ := G1 + iG2 ∈ kd×e. We then have:

R = Z ′ Re×1 = {Z ′ γ | γ ∈ Re×1}. (26)

Note that, by construction, we have RZ ′ = Z. This
identity can easily be checked again as follows:

H G = G ⇔

{
Rr G1 +RiG2 = G1,

RiG1 −Rr G2 = G2,
⇔ RZ ′ = Z ′.

Using Remark 1 and Theorem 2, we obtain that a solution
of the centrohermitian rank factorization problem exists iff
there exists γ ∈ Re×1 such that the following matrix

K(γ) := B(Z ′ γ) = (W1 Z
′ γ . . . Wr Z

′ γ) ∈ kl×r

is such that rankk(K(γ)) = l, i.e., such that K(γ) has full
row rank, i.e., admits a right inverse.

We can now state the main result of the paper.
Theorem 3: With the above notations, the centrohermitian

rank factorization problem admits a solution iff:

C := {γ ∈ Re×1 | rankR(K(γ)) = l} 6= ∅.

If so, then centrohermitian solutions are defined by

∀ γ ∈ C,

uJ = (Z Z ′) γ,

vJ =
v + v Jm

2
,

with the following notations:
• v = Eγ Y + Cγ Y

′ for all Y ′ ∈ k(r−l)×1,
• Eγ ∈ kr×l is a right inverse of the matrix K(γ) ∈ kl×r,



• Cγ ∈ kr×(r−l) is a full column rank matrix satisfying:

kerk(K(γ).) = imk(Cγ .).

For computational issues, we refer to [3], [12].
Example 3: We consider the centrohermitian matrices:

M =

 9 + 18 i −225 9 + 198 i

0 0 0

9− 198 i −225 9− 18 i

 ,

D1 = I3, D2 =

 −i 0 0

0 0 0

0 0 i

 .

Then, we have m = n = 3, r = l = 2 and:

p = 1, L = (0 1 0) , L′′ = 1,

d = 2, Z =

 0 1

0 0

1 0

 , R =

(
0 1

1 0

)
.

We have R = {ψ ∈ k2×1 | Rψ = ψ}. Hence, if we note

H =


0 1 0 0

1 0 0 0

0 0 0 −1

0 0 −1 0

 ∈ R4×4,

then the eigenvalues of H are −1 and 1, and the eigenspace
associated with 1 is defined by G = (GT1 GT2 )T , where:

G1 =

(
0 1

0 1

)
, G2 =

(
−1 0

1 0

)
.

Hence, we obtain:

Z ′ = G1 + iG2 =

(
−i 1

i 1

)
, R = Z ′ R2×1.

Since l = rankk(M) = 2, we can now consider

X =

 9 + 18 i −225

0 0

9− 198 i −225

 , Y =

 1 0 1

0 1 −4

5
i

 ,

which yields:

W1 =


i

216
− i

216

− 1

2700
+

i

5400
− 11

2700
− i

5400

 ,

W2 =

 − 1

216
− 1

216

− 1

5400
− i

2700
− 1

5400
+

11 i

2700

 .

For γ ∈ R2×1, up to constant, the determinant of the matrix

K(γ) = (W1 Z
′ γ W2 Z

′ γ) ∈ k2×2

is γ2
1 + γ2

2 . Hence, if γ1 6= 0 or γ2 6= 0, then the
centrohermitian rank factorization problem admits solutions.
For γ ∈ R2×1 \ {0}, solutions (uJ , vJ) are then defined by:

uJ = Z Z ′ γ =

 i γ1 + γ2

0

−i γ1 + γ2

 ,

v = K(γ)−1 Y = 9 (γ2
1 + γ2

2)−1(
12 γ1 + (1− 10 i) γ2 −25 γ2 12 γ1 + (1− 10 i) γ2 + 20 i γ2

−12 γ2 + (1− 10 i) γ1 −25 γ1 −12 γ2 + (1− 10 i) γ2 + 20 i γ1

)
,

vJ =
v + v J3

2
= 9 (γ2

1 + γ2
2)−1(

12 γ1 + (1− 10 i) γ2 −25 γ2 12 γ1 + (1 + 10 i) γ2

−12 γ2 + (1− 10 i) γ1 −25 γ1 −12 γ2 + (1 + 10 i) γ1

)
.

Finally, if d = 1 and P 6= ∅, then we can easily prove that
the centrohermitian rank factorization problem is solvable.
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