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Abstract— Motivated by an application of vibration analysis
to gearbox fault surveillance, a new demodulation approach for
gearbox vibration signals has recently been developed. Within
this approach, the demodulation problem yields the study of a
rank factorization problem for centrohermitian matrices. In this
paper, using the properties of centrohermitian matrices, we first
show that the rank factorization problem for centrohermitian
matrices can be transformed into a rank factorization problem
for real matrices. Based on previous works, we then show how
to parametrize a class of centrohermitian solutions of the rank
factorization problem that is important in practice.

Notation. In what follows, let k denote a field (e.g., k = Q,
R, C), kn×m the k-vector space formed by all the n × m
matrices with entries in k and In the identity matrix of kn×n.
We also denote by Jn the n × n exchange matrix, namely,
the matrix formed by 1 on the second diagonal (i.e., the anti-
diagonal) and 0 elsewhere. If k = C, then M (resp., M?)
denotes the conjugate matrix (resp., the adjoint, namely, the
conjugate transpose) of M . Finally, if M ∈ kn×m, then we
can consider the following k-linear maps

M. : km×1 −→ kn×1

η 7−→ M η,
.M : k1×n −→ k1×m

λ 7−→ λM,

and denote their kernels (resp., images) respectively by
kerk(M.) and kerk(.M) (resp., imk(M.) and imk(.M)).

I. STATEMENT OF THE PROBLEM

We first introduce the concept of a centrohermitian matrix.
Definition 1 ([12], [5]): A matrix M ∈ Cn×m is called

centrohermitian if JnM Jm = M . The set of all the
centrohermitian matrices of Cn×m is denoted by CHn,m.

Using J1 = 1, a vector u ∈ Cn×1 (resp., v ∈ C1×m) is
centrohermitian if Jn u = u (resp., v Jm = v).

The next examples show that centrohermitian vectors and
matrices naturally appear while considering Fourier analysis
of real signals (e.g., gearbox vibration signals) [6], [7].

Example 1: If s : R → R is a T -periodic integrable
function, then s can be expressed by its Fourier series [13]

∀ t ∈ R, s(t) =
∑
j∈Z

cj(s) e
2πijt
T ,

whose Fourier coefficients are defined by:

∀ j ∈ Z, cj(s) =
1

T

∫ T

0

s(t) e−
2πijt
T dt. (1)
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If r ∈ Z \ {0}, then we can define the column vector

c = (cr(s) . . . c0(s) . . . c−r(s))
T ∈ C(2 r+1)×1

formed with the first Fourier coefficients cj(s) of s centered
around 0. Since s is supposed to be real, using (1), we have

∀ j ∈ Z, cj(s) = c−j(s) = c−j(s), (2)

which shows that c is a centrohermitian column vector.
By Definition 1, a matrix M is centrohermitian if M

is equal to the matrix obtained by reversing the rows and
columns of M . For instance, the following matrix

M =

 a b c

d e d

c b a

 ,

where a, b, c, d ∈ C and e ∈ R, is centrohermitian.
Example 2: We consider again Example 1. If we simply

denote by cj the jth Fourier coefficient cj(s) of s and fix
p, q ∈ Z>0, then we can form the following complex matrix

M =



cq (2 p+1)+p . . . cp . . . c−q (2 p+1)+p

...
...

...
cq (2 p+1) . . . c0 . . . c−q (2 p+1)

...
...

...
cq (2 p+1)−p . . . c−p . . . c−q (2 p+1)−p


with the Fourier coefficients cj for 0 ≤ |j| ≤ q (2 p+ 1) +p.
Using (2), we can check that M is a centrohermitian matrix.

In [6], [7], it was shown that the gearbox spectrum can
be represented by a centrohermitian matrix M and the
problem of separating the time vibration signal into its main
components amounts to estimating centrohermitian vectors
u and v1, . . . , vr that solve the following problem.

The centrohermitian rank factorization problem:
Let D1, . . . , Dr ∈ CHn,n \ {0} and M ∈ CHn,m \ {0}.
Determine − when they exist − vectors u ∈ CHn,1 and
v1, . . . , vr ∈ CH1,m satisfying:

M =

r∑
i=1

Di u vi. (3)

Remark 1: If a solution of (3) exists, then we have M w =∑r
i=1Di u (vi w) for all w ∈ km×1, which implies that

imk(M.) ⊆ spank{D1 u, . . . ,Dr u}, and thus, we get:

rankk(M) ≤ dimk(spank{D1 u, . . . ,Dr u}) ≤ min{r, n}.



The centrohermitian rank factorization problem can be
generalized by considering general matrices M, D1, . . . , Dr

and general vectors u and v1, . . . , vr as follows.

The rank factorization problem:
Let D1, . . . , Dr ∈ kn×n \ {0} and M ∈ kn×m \ {0}.
Determine − when they exist − vectors u ∈ kn×1 and
v1, . . . , vr ∈ k1×m satisfying (3).

The rank factorization problem was solved for r = 1 and
D1 = In in [7], and for r = 2 and D1 = In in [8]. In [9],
the problem was solved with the assumption that the row
vectors vi’s are k-linearly independent, i.e., that the matrix
v := (vT1 . . . vTr )T has full row rank. In our application,
the vector vi ∈ k1×n contains the first (n/2)th harmonics
of a time signal (see Example 1). Hence, the assumption
that v has full row rank means that the truncation of the
underlying time signals at their first (n/2)th harmonics are
k-linear independent. Based on module theory and computer
algebra, local closed-form solutions were obtained in [10].

The goal of this paper is to show that the centrohermi-
tian rank factorization problem can be reduced to the rank
factorization for real matrices and real vectors. Hence, using
the results obtained in [7], [9], [10], we can effectively solve
the centrohermitian rank factorization problem when the row
vectors vi’s are supposed to be C-linearly independent.

II. CENTROHERMITIAN MATRICES

If M1, M2 ∈ Ct×s, m1 ∈ Ct×1, m2 ∈ C1×s and m3 ∈ R,
then we can check that a centrohermitian matrix M ∈ Cn×m

has one of the following 4 forms [12]:
1) If n = 2 t and m = 2 s, then:

M =

(
M1 M2 Js

JtM2 JtM1 Js

)
.

2) If n = 2 t and m = 2 s+ 1, then:

M =

(
M1 m1 M2 Js

JtM2 Jtm1 JtM1 Js

)
.

3) If n = 2 t+ 1 and m = 2 s, then:

M =

 M1 M2 Js

m2 m2 Js

JtM2 JtM1 Js

 .

4) If n = 2 t+ 1 and m = 2 s+ 1, then:

M =

 M1 m1 M2 Js

m2 m3 m2 Js

JtM2 Jtm1 JsM1 Js

 .

We state again a few results on centrohermitian matrices.
Clearly, if M ∈ Cn×m is a centrohermitian matrix, so are:

M, MT , M?, JnM, M Jm.

Using J2
m = Im, the product of two centrohermitian matrices

A ∈ Cn×m and B ∈ Cm×p is then also centrohermitian:

AB = JnAJ
2
mB Jp = JnAB Jp.

Hence, the set CHn,n of all the centrohermitian matrices
of Cn×n is stable under addition, multiplication by reals
and multiplication, i.e., CHn,n has an R-algebra structure.
Finally, if M ∈ CHn,n is non-singular, then M−1 ∈ CHn,n.

Theorem 1 ([5], [12]): If M is a centrohermitian, then so
is its Moore-Penrose inverse M+.

In what follows, we state Lee’s theorem [12] which
explicitly characterizes CHn,m. To do that, we first introduce
a few more definitions and simple results.

Definition 2 ([12]): The matrix Q ∈ Cn×m is called J-
real if we have:

JnQ = Q.
Hence, Q is J-real iff its columns are centrohermitian.
Example 3: The following complex matrices are J-real:

Q2t =
1√
2

(
It i It

Jt −i Jt

)
∈ C2t×2t, Q1 = 1,

Q2t+1 =
1√
2

 It 0 i It

0
√

2 0

Jt 0 −i Jt

 ∈ C(2t+1)×(2t+1).

We note that both matrices Q2t and Q2t+1 are also unitary:

Q?2tQ2t = Q2tQ
?
2t = I2t,

Q?2t+1Q2t+1 = Q2t+1Q
?
2t+1 = I2t+1.

Let U ∈ Cm×m and V ∈ Cn×n be two non-singular J-real
matrices. Using J2

m = Im, then we have:

U = Jm (Jm U) = Jm U,

Jn V = V ⇔ V −1 Jn V = In ⇔ V −1 = V
−1

= V −1 Jn.

If M ∈ CHn,m and ϕ(M) := V −1M U , then we have

ϕ(M) = V −1M U = (V −1 Jn) (JnM Jm) (Jm U)

= V −1M U = ϕ(M),

which shows that ϕ(M) ∈ Rn×m, i.e., ϕ(M) is a real matrix.
Now, if N ∈ Rn×m, then we have

Jn (V N U−1) Jm = Jn V N U
−1
Jm = V N U−1,

which shows that V N U−1 is a centrohermitian matrix.
These two results show the following important result.
Theorem 2 ([12]): Let U ∈ Cm×m and V ∈ Cn×n be two

non-singular J-real matrices. Then, the R-linear application

ϕ : Cn×m −→ Cn×m

M 7−→ V −1M U,
(4)

bijectively maps CHn,m onto Rn×m, i.e.:
• ϕ(CHn,m) = Rn×m,
• ∀ N ∈ Rn×m, ∃!M ∈ CHn,m(C) : N = V −1M U .

Hence, CHn,m = ϕ−1(Rn×m), i.e., M ∈ CHn,m iff there
exists a unique N ∈ Rn×m such that N = V −1M U .

Finally, if m = n, then ϕ isomorphically maps the ring
CHn,n onto the ring Rn×n and ϕ is a ring automorphism.

Example 4: Let Qn (resp., Qm) be defined as in Exam-
ple 3. Then, Q−1n = Q?n since Qn is unitary. If u ∈ Cn×1 is
a centrohermitian column vector, i.e., u ∈ CHn,1, then, by



Theorem 2, uϕ := Q?n u is a real vector, i.e., uϕ ∈ Rn×1.
Similarly, if vi ∈ CH1,m, then vi,ϕ := viQm ∈ R1×m.

Example 5: Let us consider the following matrix:

M =
45

2
+ 5 i 10− 15 i 15 i

45

2
+ 10 i

5

2

√
2− 15

2

√
2 i 10

√
2 10

√
2

5

2

√
2 +

15

2

√
2 i

45

2
− 10 i −15 i 10 + 15 i

45

2
− 5 i

 .

Clearly, M ∈ CH3,4. With the notations of Example 3, i.e.,

Q3 =
1√
2

 1 0 i

0
√

2 0

1 0 −i

 ,

Q4 =
1√
2

(
I2 i I2

J2 −i J2

)
,

we then have Q−13 = Q?3 and:

ϕ(M) = Q?3M Q4 =

 45 10 5 30

5 20 15 0

15 0 0 10

 ∈ R3×4.

Note that Theorem 2 yields dimR(CHn,m) = nm.
If λ is an eigenvalue of M ∈ CHn,n with as x an

associated eigenvector, then M x = λx yields M x = λx,
and thus, M (Jn x) = λ (Jn x), which shows that λ is also
an eigenvalue of M with Jn x as an associated eigenvector.

Theorem 2 shows that a centrohermitian matrix is similar
to a real matrix. Hence, the spectral theory of centrohermitian
matrices corresponds to the one of real matrices.

Theorem 3 ([12]): If M is centrohermitian and λ is an
eigenvalue of M of algebraic multiplicity k, then λ is an
eigenvalue of M of algebraic multiplicity k. In particular,
if M ∈ CHn,n with n odd, then M always has a real
eigenvalue. The characteristic polynomial of M ∈ CHn,n

has thus all real coefficients, and thus, det(M) ∈ R.
Example 6: Let us consider the centrohermitian matrix:

M =

 9 + 18 i −225 9 + 198 i

0 0 0

9− 198 i −225 9− 18 i

 ∈ C3×3.

Let us consider the J-real matrix Q3 defined in Example 5.
Then, we have Q−13 = Q?3 and:

ϕ(M) = Q?3M Q3 =

 18 −225
√

2 180

0 0 0

216 0 0

 ∈ R3×3.

The characteristic polynomial p(λ) = λ (λ2− 18λ− 38880)
of M has real coefficients and det(M) = 0 ∈ R.

Using Theorem 2, we obtain the following consequence.
Proposition 1 ([4]): Let M ∈ CHn,m, Qm ∈ Cm×m and

Qn ∈ Cn×n be two J-real and unitary matrices (e.g., as
defined in Example 3), and Mϕ := Q?nM Qm ∈ Rn×m.
Let Mϕ = Uϕ ΣV Tϕ be a Singular Value Decomposition

(SVD) of Mϕ, where Uϕ ∈ Rn×n and Vϕ ∈ Rm×m are two
orthogonal matrices and Σ is the diagonal matrix formed by
the singular values of Mϕ. Then, a SVD of M is given by:

M = (Qn Uϕ) Σ (Qm Vϕ)?.

Hence, the singular values of M are equal to those of Mϕ and
the left and right singular vectors of M are centrohermitian.

III. TRANSFORMING THE CENTROHERMITIAN RANK
FACTORIZATION PROBLEM INTO A REAL RANK

FACTORIZATION PROBLEM

In this section, we use Theorem 2 to study the centroher-
mitian rank factorization problem stated in Section I.

Let Qm ∈ Cm×m and Qn ∈ Cn×n be two J-real and
unitary matrices (e.g., as defined in Example 3). Since M and
D1, . . . , Dr are centrohermitian matrices, using Theorem 2,
we can define the following real matrices:{

Mϕ := Q?nM Qm ∈ Rn×m,

Diϕ := Q?nDiQn ∈ Rn×n, i = 1, . . . , r.

Note that we have:

rankC(M) = rankC(Mϕ) = rankR(Mϕ).

Let us suppose that the centrohermitian rank factorization
problem (3) admits a centrohermitian solution u, v1, . . . , vr.
Again, by Theorem 2, we have the following real vectors:{

uϕ := Q?n u ∈ Rn×1,

viϕ := viQm ∈ R1×m, i = 1, . . . , r.

See also Example 4. Substituting M = QnMϕQ
?
m and

Di = QnDiϕQ
?
n for i = 1, . . . , r into (3), we then obtain

QnMϕQ
?
m =

∑r
i=1QnDiϕQ

?
n u vi

⇔ Mϕ =
∑r
i=1Diϕ (Q?n u) (viQm)

⇔ Mϕ =
∑r
i=1Diϕ uϕ viϕ,

which shows that the rank factorization problem for the real
matrices Mϕ and Diϕ, i = 1, . . . , r, then admits a real
solution (uϕ, v1ϕ, . . . , vrϕ).

Conversely, if there exists a real solution uϕ ∈ Rn×1,
viϕ ∈ R1×m, i = 1, . . . , r, of the rank factorization problem

Mϕ =

r∑
i=1

Diϕ uϕ viϕ, (5)

then, by Theorem 2 (see also Example 4), the vectors{
u := Qn uϕ ∈ CHn,1,

vi := viϕQ
?
m ∈ CH1,m, i = 1, . . . , r,

satisfy (3), i.e., they define a centrohermitian solution of the
centrohermitian rank factorization problem (3).

The above results prove the following new result.
Theorem 4: Let M ∈ CHn,m, Di ∈ CHn,n, i = 1, . . . , r,

Qm ∈ Cm×m and Qn ∈ Cn×n be two J-real and unitary
matrices (e.g., as defined in Example 3), and:{

Mϕ := Q?nM Qm ∈ Rn×m,

Diϕ := Q?nDiQn ∈ Rn×n, i = 1, . . . , r.
(6)



Then, the centrohermitian rank factorization problem (3)
admits a solution (u, v1, . . . , vr) ∈ CHn,1 × CHr

1,m if and
only if the rank factorization problem (5) admits a solution
(uϕ, v1ϕ, . . . , vrϕ) ∈ Rn×1×(R1×m)r. Finally, the bijections
between the two sets of solutions is given by:

CHn,1 × CHr
1,m 7−→ Rn×1 ×

(
R1×m)r

(u, v1, . . . , vr) 7−→ (Q?n u, v1Qm, . . . , vr Qm),

Rn×1 ×
(
R1×m)r 7−→ CHn,1 × CHr

1,m

(uϕ, v1ϕ, . . . , vrϕ) 7−→ (Qn uϕ, v1ϕQ
?
m, . . . , vrϕQ

?
m) .

IV. A CLASS OF SOLUTIONS OF THE CENTROHERMITIAN
RANK FACTORIZATION PROBLEM

Theorem 4 shows that centrohermitian solutions of the
centrohermitian rank factorization problem are in a one-to-
one correspondence with real solutions of the rank factor-
ization problem (i.e., k = R). As stated in Section I, a class
of solutions of the rank factorization problem (namely, the
solutions such that v = (vT1 . . . vTr )T has full row rank) −
important in practice − can be explicitly parametrized [9],
[10]. Hence, we can parametrize the class of centrohermitian
solutions of the centrohermitian rank factorization problem
for which v has full row rank. Let us explain how to do it.

Let us state again results on the rank factorization problem
(see Section I) obtained in [9], [10]. Let k be a field (e.g.,
k = Q, R, C), M ∈ kn×m and l := rankk(M). Stacking a
basis of im(M.) := M km×1 into a full column rank matrix
X ∈ kn×l, there exists a unique Y ∈ kl×m such that:

M = X Y. (7)

Denoting {
A(u) := (D1 u . . . Dr u) ∈ kn×r,

v := (vT1 . . . vTr )T ∈ kr×m,

then (3) can be rewritten as follows:

A(u) v = M. (8)

The bilinear structure of (8) implies that (λu, λ−1 v) is a
solution for all solutions (u, v) and for all λ ∈ k\{0}. Hence,
if a solution exists for the rank factorization problem, then it
is not unique. Moreover, we note that (8) is equivalent to the
existence of u ∈ kn×1 such that imk(M.) ⊆ imK(A(u).).

In what follows, we shall investigate the class of solutions
(u, v) of (8) defined by a full row rank matrix v. If such
a solution of (8) exists, then v admits a right inverse since
v has full row rank, i.e., there exists t ∈ km×r such that
v t = Ir. Hence, (8) yields A(u) = M t, which shows that
imK(A(u).) ⊆ imk(M.), and thus, we obtain:

imk(A(u).) = imk(M.). (9)

Thus, the existence of a solution (u, v) of (8), where v has
full row rank, yields (9). Hence, let us focus on the existence
of u ∈ kn×1 satisfying (9). We note that (9) is equivalent to:

∃ u ∈ kn×1
{

Di u ∈ imk(M.), i = 1, . . . , r,

rankk(D1 u . . . Dr u) = rankk(M) = l.
(10)

We note that v has been eliminated, i.e., we have transformed
the polynomial problem (8) into a pure linear algebra prob-
lem (10). This last problem can easily be solved as follows.

If imk(M.) = kn×1, then we let L := 0. Else let L ∈ kp×n

be such that kerk(L.) = imk(M.). The first condition of (10)
is equivalent to the following linear system on u:

(LD1)u = 0,
...

(LDr)u = 0.

(11)

If the only solution of (11) is u = 0, then (9) has no solution
since A(0) = 0 and M 6= 0. Hence, let Z ∈ kn×d be a full
column matrix whose columns form a basis of the k-vector
space (11). Note that if imk(M.) = kn×1, and thus, L = 0,
then we get Z = In. Hence, the vectors u = Z ψ satisfy
the first condition of (10) for all ψ ∈ kd×1. Now, we note
that Di Z ψ ∈ imk(M.) = imk(X.) for all ψ ∈ kd×1 and
i = 1, . . . , r, which shows the existence of unique matrices
Wi ∈ kl×d satisfying the following identities:

Di Z = XWi, i = 1, . . . , r.

Let us note:

∀ ψ ∈ kd×1, B(ψ) := (W1 ψ . . . Wr ψ) ∈ kl×r.

By assumption, l := rankk(M) ≤ r (see Remark 1), which
shows that B is a wide matrix. The second condition of (10)
then becomes A(Z ψ) = (D1 Z ψ . . . Dr Z ψ) = X B(ψ)
for all ψ ∈ kd×1. Since X has full column rank, we get:

rankkA(Z ψ) = rankkB(ψ).

The second condition of (10) is equivalent to ψ ∈ P , where:

P := {ψ ∈ kd×1 | rankkB(ψ) = l}. (12)

If ψ ∈ P , then using (7) and the fact that X has full column
rank, then we obtain:

A(Z ψ) v = M ⇔ X B(ψ) v = X Y ⇔ B(ψ) v = Y.
(13)

Moreover, since rankkB(ψ) = l, B(ψ) ∈ kl×r and l ≤ r,
B(ψ) has full row rank, which shows that B(ψ) admits
a right inverse Eψ ∈ kr×l, i.e., B(ψ)Eψ = Il. Hence,
v = Eψ Y is a particular solution of (13). If Cψ ∈ kr×(r−l)

is a full column matrix whose columns form a basis of
kerk(B(ψ).), then the general solution of (13) is given by:

∀ Y ′ ∈ k(r−l)×m, v = (Eψ Cψ)

(
Y
Y ′

)
.

Finally, we note that (Eψ Cψ) is invertible, i.e., is a non-
singular matrix, which shows that v has full row rank iff so
has the matrix (Y T Y ′

T
)T ∈ kr×m. We get the theorem.

Theorem 5 ([9]): With the above notations, (9) holds iff
(12) is not empty. If so, then for every ψ ∈ P ,

∀ Y ′ ∈ k(r−l)×m,


u = Z ψ,

v = (Eψ Cψ)

(
Y
Y ′

)
,



are solutions of (8), and thus, solutions of (3). Finally, v has
full row rank iff so has (Y T Y ′

T
)T ∈ kr×m.

Set Clr := r!/(l! (r− l)!) and let {mk(ψ)}k=1,...,Clr
denote

the set of all l × l-minors of B(ψ). Note that the mk’s are
either 0 or homogeneous polynomials of degree l, namely:

∀ λ ∈ k \ {0}, mk(λx) = λl mk(x), k = 1, . . . , Clr.

Hence, we clearly have:

P = kd×1 \
{
ψ ∈ kd×1 | mk(ψ) = 0, k = 1, . . . , Clr

}
.

Since Clr grows exponentially with r, a more efficient
characterization of P was obtained in [10] based on module
theory and computer algebra (Gröbner bases [3], [10]).

According to Theorem 4, a particular class of solutions
of the centrohermitian rank factorization problem can be
obtained by applying Theorem 5 to (6) with k = R. Hence,
we obtain the following new result.

Corollary 1: Let Qn and Qm be two J-real unitary ma-
trices (e.g., as defined in Example 3), M ∈ CHn,m and
Di ∈ CHn,n for i = 1, . . . , r, and Mϕ ∈ Rn×m and
Diϕ ∈ Rn×n, i = 1, . . . , r, defined by (6). Moreover, if uϕ = Zϕ ψ,

vϕ = (Eϕψ Cϕψ)

(
Y
Y ′

)
,

denotes the solutions of the rank factorization problem (5)
for k = R − defined by Theorem 5 − where Y ′ ∈ R(r−l)×m

and ψ ∈ P := {ψ ∈ Rd×1 | rankRBϕ(ψ) = l}, then{
u = Qn uϕ,

v = vϕQ
?
m,

(14)

is a centrohermitian solution of (3). Finally, v has full row
rank iff so has (Y T Y ′

T
)T ∈ Rr×m.

The last point of Corollary 1 comes from the fact that
λ v = λ vϕQ

?
m = 0 iff λ vϕ = 0, and thus, we get λ = 0 iff

vϕ has full row rank, which is characterized in Theorem 5.
Example 7: We consider again the matrix M ∈ CH3,4

defined in Example 5. Let us consider the following matrices:

D1 =
1

2

 −i 0 i

0 0 0

−i 0 i

 ∈ CH3,3,

D2 =
3 i√

2

 0 1 0

0 0 0

0 −1 0

 ∈ CH3,3,

D3 =
i√
2

 0 0 0

−1 0 1

0 0 0

 ∈ CH3,3,

D4 =
1

2

 1− 3 i 0 −1 + 3 i

0 0 0

−1− 3 i 0 1 + 3 i

 ∈ CH3,3.

Using (6), we have:

D1ϕ = Q?3D1Q3 =

 0 0 1

0 0 0

0 0 0

 ∈ R3×3,

D2ϕ = Q?3D2Q3 =

 0 0 0

0 0 0

0 3 0

 ∈ R3×3,

D3ϕ = Q?3D3Q3 =

 0 0 0

0 0 1

0 0 0

 ∈ R3×3,

D4ϕ = Q?3D4Q3 =

 0 0 3

0 0 0

0 0 1

 ∈ R3×3.

Let Mϕ denote the matrix ϕ(M) defined in Example 5. Then,
we can solve (5) using Theorem 5. We can easily check that
l := rankR(Mϕ) = rankC(M) = 3 < r = 4. We then get:

Xϕ =

 45 10 5

5 20 15

15 0 0

 ∈ R3×3,

Yϕ =
1

3

 3 0 0 2

0 3 0 1

0 0 3 −2

 ∈ R3×4,

Lϕ = 0, Zϕ = I3, dϕ = 3, ψ =

 ψ1

ψ2

ψ3

 ∈ R3×1,

W1ϕ =
1

10

 0 0 0

0 0 3

0 0 −4

 ,W2ϕ =
1

5

 0 1 0

0 −13 0

0 17 0

 ,

W3ϕ =
1

10

 0 0 0

0 0 −1

0 0 2

 ,W4ϕ =
1

30

 0 0 2

0 0 1

0 0 −2

 ,

Bϕ(ψ) =
1

30

 0 6 ψ2 0 2ψ3

9ψ3 −78ψ2 −3ψ3 ψ3

−12ψ3 102ψ2 6ψ3 −2ψ3

 ,

P = R3×1 \ {(ψ1 ψ2 ψ3)T ∈ R3×1 | ψ3 = 0}
= R× R× (R \ {0}) ,

Eψ3
=

1

ψ3


0 10 5

0 0 0

5 20 15

15 0 0

 , C =


9ψ2

ψ3

0

−3ψ2

 .



Real solutions of Mϕ =
∑4
i=1Diϕ uϕ viϕ are then given by:

∀ ψ ∈ P, ∀ Y ′ = (y′1 y′2 y′3 y′4) ∈ R1×4,

uϕ = Zϕ ψ = ψ,

vϕ = Eψ3 Y + C Y ′ =

9ψ2 y
′
1

10

ψ3
+ 9ψ2 y

′
2

5

ψ3
+ 9ψ2 y

′
3 9ψ2 y

′
4

ψ3 y
′
1 ψ3 y

′
2 ψ3 y

′
3 ψ3 y

′
4

5

ψ3

20

ψ3

15

ψ3
0

15

ψ3
− 3ψ2 y

′
1 −3ψ2 y

′
2 −3ψ2 y

′
3

10

ψ3
− 3ψ2 y

′
4


.

Moreover, vϕ has full row rank iff det
(
Y T Y ′

T
)
6= 0,

i.e., iff Y ′ = (y′1 y′2 y′3 y′4) ∈ R1×4 is chosen such that:

2 y′1 + y′2 − 2 y′3 − 3 y′4 6= 0. (15)

Now, using (14) (see Corollary 1), centrohermitian solutions
of M =

∑4
i=1Di u vi are then defined by

∀ ψ ∈ P, ∀ Y ′ = (y′1 y′2 y′3 y′4) ∈ R1×4,

u = Q3 ψ =


√

2

2
ψ1 +

√
2

2
i ψ3

ψ2√
2

2
ψ1 −

√
2

2
i ψ3

 ,

v =


v1

v2

v3

v4

 = vϕQ
?
4,

v1 =
1√
2ψ3

(9ψ2 ψ3 y
′
1 − 9ψ2 ψ3 y

′
3 i− 5 i 10 + 9ψ2 ψ3 y

′
2 − 9ψ2 ψ3 y

′
4 i

10 + 9ψ2 ψ3 y
′
2 + 9ψ2 ψ3 y

′
4 i 9ψ2 ψ3 y

′
1 + 9ψ2 ψ3 y

′
3 i+ 5 i),

v2 =
1

2
ψ3 (y′1

√
2− y′3

√
2 i y′2

√
2− y′4

√
2 i

y′2
√

2 + y4
√

2 i y′1
√

2 + y′3
√

2 i),

v3 =
5

2ψ3

(
(1− 3 i)

√
2 4

√
2 4

√
2 (1 + 3 i)

√
2
)
,

v4 =
1√
2ψ3

(15− 3ψ2 ψ3 y
′
1 + 3ψ2 ψ3 y

′
3 i

−3ψ2 ψ3 y
′
2 + 3ψ2 ψ3 y

′
4 i− 10 i

−3ψ2 ψ3 y
′
2 − 3ψ2 ψ3 y

′
4 i+ 10 i

15− 3ψ2 ψ3 y
′
1 − 3ψ2 ψ3 y

′
3 i).

Finally, the matrix v has full row rank iff the row vector
Y ′ = (y′1 y′2 y′3 y′4) ∈ R1×4 satisfies (15).

All the results developed in this paper can be easily
implemented using, e.g., the OREMODULES package [3].

V. CONCLUSION

In this paper, using the structure of centrohermitian matri-
ces and Lee’s theorem [12], we proved that the centrohermi-
tian rank factorization problem can be reduced to a real rank

factorization one. Using results of [9], [10], we then show
how to parametrize a class of solutions which are important
in practice. In [11], we develop an alternative approach to
Lee’s transformation based on the so-called coinvolutory
matrices. This alternative approach brings new insights.

An important issue that will be investigated in a future
publication is the following minimization problem

min
u∈CHn,1(C), vi∈CH1,m(C)

∥∥∥∥∥
r∑
i=1

Di u vi −M

∥∥∥∥∥
Frob

, (16)

where ‖A‖Frob =
√

trace(A?A) stands for the standard
Frobenius norm. If U and V are two unitary matrices, using
the cyclic property of the trace, then we have:

‖U AV ‖Frob =
√

trace(V ?A? U? U AV )

=
√

trace(V ?A?AV )

=
√

trace(V V ?A?A)

=
√

trace(A?A) = ‖A‖Frob .

Hence, using the fact that the matrices Qn and Qm in
Theorem 4 are unitary, we then obtain

(16)⇔ minuϕ∈Rn×1, viϕ∈R1×m ‖
∑r
i=1Diϕ uϕ viϕ −Mϕ‖Frob ,

which shows that (16) can be reduced to the search for real
solutions to a polynomial optimization problem.
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