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Chapter 6
Delay Effects in Visual Tracking Problems
for an Optronic Sighting System

Alban Quadrat and Arnaud Quadrat

Abstract In this chapter, we study the delay effects in visual tracking problems for
an optronic sighting system. We first describe the physical model and then give a
simplified version defined by an integrator and a time-delay. We then state the visual
tracking problems that are considered. To solve these problems, we first have to
study the stabilization problem for the system defined above. Since this problem is a
particular case of the general problem of parametrizing all the stabilizing controllers
of a stable perturbation of a (infinite-dimensional) stabilizable plant, this problem is
studied in its generality. Within the fractional representation approach to synthesis
problems, we give an elementary proof for the existence of a general parametrization
of all the stabilizing controllers of a stabilizable plant which does not necessarily
admit doubly coprime factorizations. Only the knowledge of a (finite-dimensional)
stabilizing controller is required. If the plant admits doubly coprime factorizations,
then this parametrization yields the Youla-Kučera parametrization. Finally, using the
above results, we study the tracking problems and show numerical simulations in
which our results are compared with a PID and a H∞-controller.

6.1 Automatic Visual Tracker

In practice, a gyrostabilized optronic payload orients its line of sight in the space
[3, 5]. In this chapter, we shall only consider a simplified version, namely the plane
case. A visual tracker is a combination of the following four elements [2, 4]:
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Fig. 6.1 Inertially stabilized boat camera platform

• A gyrostabilized optronic payload is a torque motorized speed controlled platform
using the gyrometer speed.

• The optics consists of a digital video camera or a thermal imager set on the platform.
• Using image processing, an automatic image tracker detects the target and returns

its coordinates in the frame images with a certain delay.
• A tracker controls the inertial speed of the inertially stabilized imager.

Let [i] be the inertial frame with origin (O). See Fig. 6.1.
To each body, we attach a frame at (O): [c] is the frame of the carrier, [s] is the

frame of the line of sight of the video camera and [t] is the frame attached to the
target located at the point (C). The line of sight can rotate from the carrier [c] thanks
to a motorized pivot linkage at (O). Let us now introduce the different angles:

• x is the angle defined by the line of sight of the camera in the inertial frame [i].
• θ is the polar coordinate of the target in the inertial frame [i].
• The angle between [t] and [s] is given by the image obtained by the camera:

ε := θ − x. (6.1)

The angle ε between the target and the line of sight is not directly accessible.
To measure it, one can use an image processing device called the image tracker. See
Fig. 6.2.

The coordinates of the target are determined by means of digit image correlation
techniques or centroid detection methods. The position of the target can be character-
ized in terms of a shift of N pixels from the center of the image. At the focal distance
of the camera Df and the size of the optical sensor D, we have ε # tan ε = D N

Df Nmax
.

The image processing introduces delays and two constraints:
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Fig. 6.2 Image tracker

• The image tracker yields a time-delay T ∈ [0.04 s, 0.2 s] and a distributed delay
τi ∈ [1 ms, 40 ms] (which can be neglected), and is corrupted by a noise u1:

ê1 = û1 − G ε̂, G := e−Ts 1 − e−τis

τi s
# e−Ts. (6.2)

• The image of the target must stay within the image of the video camera, i.e.,
|ε(t)| ≤ C1 for all t, and the signal processing imposes |ε̇(t)| ≤ C2 for all t.

The movement of the target is unknown. Its cartesian coordinates are (L, l) in the
inertial frame [i]. See Fig. 6.1. The trigonometric relation between the polar coordi-
nates and the cartesian ones yield θ = arctan (l/L). If we set θ

(n)
0 := θ (n)(0) ∈ R,

where θ (n) denotes the nth derivative of θ with respect to t, then the following three
scenarios are admissible:

• Scenario 1: Constant position: θ = θ0.
• Scenario 2: Constant angular speed: θ = θ0

(1) t + θ0.
• Scenario 3: Constant angular acceleration: θ = θ0

(2) t2 + θ0
(1) t + θ0.

A gyrometer observes the speed ẋ of the line of sight. The gyrostabilized platform
is modeled by an inner speed loop used by the outer video tracking loop. The transfer
function from the reference speed of the inner loop y1 to the real sight speed ẋ can
be written as s x̂ = F ŷ1, where F is a low-pass filter and lims→0 F(s) = 1. For more
details, [9]. We consider a controller ŷ1 = C′ ê1 from the output signal ê1 of the
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Fig. 6.3 Closed-loop system

tracker to the reference signal ŷ1. If we set û2 := s
F θ̂ ≈ s θ̂ , where û2 is the target

speed, then (6.1), and (6.2) yield:

{
ε̂ = θ̂ − x̂ = F

s (̂u2 − ŷ1),

ê1 = û1 − G ε̂.
(6.3)

The main goal is to design a stabilizing controller C′ such that limt→+∞ ε(t) = 0
for the above scenarios. To do that, let us first review results on stabilizability.

6.2 Parametrizations of all Stabilizing Controllers

Within the fractional representation approach to analysis and synthesis problems
[1, 10], the class of systems that are considered are defined by transfer matrices with
entries in the quotient field Q(A) := {n/d | 0 )= d, n ∈ A} of an integral domain A
of SISO stable plants. Integral domains commonly considered are the Hardy alge-
bra H∞(C+) of bounded holomorphic functions in C+ := {s ∈ C | *(s) > 0},
RH∞ := R(s)∩ H∞(C+), the Wiener algebras Â or W+, the disc algebra A(D), . . .
For more details, see [1, 10]. Let us recall a few standard definitions [1, 10].

Definition 1 Let A be an integral domain of stable SISO plants and K := Q(A).

• A fractional representation of the transfer matrix P ∈ Kq×r is any representation
of the form P = D−1 N = Ñ D̃−1, where D ∈ Aq×q, det D )= 0, N ∈ Aq×r ,
Ñ ∈ Aq×r , D̃ ∈ Ar×r and det D̃ )= 0.

• The plant P ∈ Kq×r is said to be (internally) stabilizable if there exists a stabilizing
controller C ∈ Kr×q of P, namely a controller C ∈ Kr×q such that

H(P, C) :=
(

Iq P
C Ir

)−1

∈ A(q+r)×(q+r),

where, using Fig. 6.3, (eT
1 eT

2 )
T = H(P,C) (uT

1 uT
2 )

T is defined by:
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H(P, C) =
(

(Iq − P C)−1 −(Iq − P C)−1 P
−C (Iq − P C)−1 Ir + C (Iq − P C)−1 P

)

=
(

Iq + P (Ir − C P)−1 C −P (Ir − C P)−1

−(Ir − C P)−1 C (Ir − C P)−1

)
.

(6.4)

• A transfer matrix P ∈ Kq×r admits a left-coprime factorization if there exist
D ∈ Aq×q, det D )= 0, N ∈ Aq×r , X ∈ Aq×q and Y ∈ Ar×q such that P = D−1 N
and D X − N Y = Iq.

• A transfer matrix P ∈ Kq×r admits a right-coprime factorization if there exist
D̃ ∈ Ar×r , det D̃ )= 0, Ñ ∈ Aq×r , Ỹ ∈ Ar×q and X̃ ∈ Ar×r such that P = Ñ D̃−1

and −Ỹ Ñ + X̃ D̃ = Ir .
• A transfer matrix P ∈ Kq×r admits a doubly coprime factorization if P admits a

left- and a right-coprime factorizations P = D−1 N = Ñ D̃−1 such that:

(
D −N

−Ỹ X̃

) (
X Ñ
Y D̃

)
= Iq+r . (6.5)

In what follows, we characterize stabilizablity and give a parametrization of all
stabilizing controllers obtained in [8]. Contrary to [7, 8], which are based on modern
algebraic methods, following [6], we present here elementary proofs of these results.

Proposition 1 ([7]) Let P ∈ Kq×r be a plant, M := (Iq − P) ∈ Kq×(q+r) and
M̃ := (PT IT

r )
T ∈ K(q+r)×r . Then, P ∈ Kq×r is stabilizable iff one of the following

equivalent assertions is satisfied:

1. There exists a matrix L := (ST
o UT )T ∈ A(q+r)×q, So ∈ Aq×q, det So )= 0,

U ∈ Ar×q, such that:

a. L P =
(

So P
U P

)
∈ A(q+r)×r ,

b. M L = So − P U = Iq.

Then C = U S−1
o stabilizes P, So = (Iq−P C)−1 is the output sensitivity transfer

matrix and U = C (Iq − P C)−1.

2. There exists a matrix L̃ := (−Ũ S̃i) ∈ Ar×(q+r), Ũ ∈ Ar×q, S̃i ∈ Ar×r , det S̃i )=
0, such that:

a. P L̃ = (−P Ũ P S̃i) ∈ Aq×(q+r),
b. L̃ M̃ = −Ũ P + S̃i = Ir .

Then C̃ = S̃−1
i Ũ stabilizes P, S̃i = (Ir − C̃ P)−1 is the input sensitivity transfer

matrix and Ũ = (Ir − C̃ P)−1 C̃

With the above notations, we have C̃ = C ⇔ L̃ L = 0.

Proof 1. Let C stabilize P. Using (6.4), we get So := (Iq − P C)−1 ∈ Aq×q and
U := C (Iq − P C)−1 ∈ Ar×q. Using again (6.4), L := (ST

o UT )T ∈ A(q+r)×q

satisfies L P ∈ A(q+r)×r , and thus 1.a. holds. Finally, 1.b. also holds since we have
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So − P U = (Iq − P C)−1 − P C (Iq − P C)−1 = Iq. Let us now suppose that 1.a
and 1.b hold. Since det So )= 0, So − P U = Iq yields Iq − P (U S−1

o ) = S−1
o ,

i.e., with the notation C := U S−1
o , we get So = (Iq − P C)−1. Then, we have

(Iq − P C)−1 ∈ Aq×q and U = C So = C (Iq − P C)−1 ∈ Ar×q. Now, using
L P ∈ A(q+r)×r , we get (Iq − P C)−1 P ∈ Aq×r and C (Iq − P C)−1 P ∈ Ar×r , and
thus H(P,C) ∈ A(q+r)×(q+r), i.e., C stabilizes P. 2 can be proved similarly. Finally,
we have C̃ = C iff −Ũ So + S̃i U = 0, i.e., iff L̃ L = 0. !

Corollary 1 ([7]) P is stabilizable iff there exists U ∈ Ar×q such that:






Ti := −U P ∈ Ar×r,

To := −P U ∈ Aq×q,

R := (Iq + P U)P = P (Ir + U P) ∈ Aq×r,

det(Iq + P U) = det(Ir + U P) )= 0.

(6.6)

Then, C := U (P U + Iq)
−1 = (U P + Ir)

−1 U is a stabilizing controller of P,

Feedback(C,P) := U = C (Iq − P C)−1 = (Ir − C P)−1 C, (6.7)

Ti (resp., To) is the complementary input (resp. output) sensitivity transfer matrix.

Proof By 1 of Proposition 1, P is stabilizable iff there exists U ∈ Ar×q such that
So = Iq + P U ∈ Aq×q, det So )= 0, So P ∈ Aq×r and U P ∈ Ar×r , i.e., iff −To :=
P U ∈ Aq×q, R := (Iq + P U)P = P (Ir + U P) ∈ Aq×r , −Ti := U P ∈ Ar×r and
det(Iq + P U) = det(Ir + U P) )= 0.

If C stabilizes P, then the matrices L and L̃ defined by






So := (Iq − P C)−1,

U = Ũ := C (Iq − P C)−1 = (Ir − C P)−1 C,

Si = S̃i := (Ir − C P)−1,

satisfy 1 and 2 of Proposition 1 and R = So P = P Si, 1.b and 2.b show that

ΠC := L M =
(

So −R
U Ti

)
, ΠP := M̃ L̃ =

(
To R
−U Si

)

are two complementary projectors of A(q+r)×(q+r), i.e., Π2
C = ΠC , Π2

P = ΠP and
ΠC + ΠP = Iq+r . Using (6.4), Fig. 6.3 and Ti = −C R, we can easily check that:

(
e1
y1

)
= ΠC

(
u1
u2

)
,

(
y2
e2

)
= ΠP

(
u1
u2

)
.
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Corollary 2 Let ∆ ∈ Aq×r . The following assertions are equivalent:

1. C ∈ Kr×q stabilizes P ∈ Kq×r .
2. C′ := C (Iq − ∆ C)−1 = (Ir − C ∆)−1 C stabilizes P′ := P − ∆.

Proof By Corollary 1, C stabilizes P iff U := C (Iq − P C)−1 = (Ir − C P)−1 C is
such that U ∈ Ar×q and satisfies (6.6). Now, for any ∆ ∈ Aq×r , U ∈ Ar×q and (6.6)
are equivalent to U ∈ Ar×q and






U (P − ∆) = U P − U ∆ ∈ Ar×r ,

(P − ∆)U = P U − ∆ U ∈ Aq×q,

((P − ∆)U + Iq) (P − ∆) = (P U + Iq)P − (P U + Iq)∆ − ∆ (U P)+ ∆ U ∆ ∈ Aq×r ,

which shows that P ∈ Kq×r is stabilized by C ∈ Kr×q iff P − ∆ is stabilized
by C′ := U ((P − ∆)U + Iq)

−1 = (U (P − ∆) + Ir)
−1 U. Finally, using C =

U (P U + Iq)
−1 = (U P + Ir)

−1 U, we obtain:

C′ = U (P U + Iq − ∆ U)−1 = U ((Iq − ∆ U (P U + Iq)
−1) (P U + Iq))

−1

= U (P U + Iq)
−1 (Iq − ∆ U (P U + Iq)

−1)−1 = C (Iq − ∆ C)−1,

C′ = (U P + Ir − U ∆)−1 U = ((U P + Ir) (Ir − (U P + Ir)
−1 U ∆))−1 U

= (Ir − (U P + Ir)
−1 U ∆))−1 (U P + Ir)

−1 U = (Ir − C ∆)−1 C. !

The next results gives a parametrization of all the stabilizing controllers of a
stabilizable plant. Only the explicit knowledge of a stabilizing controller is assumed.

Theorem 1 ([8]) Let C& ∈ Kr×q be a stabilizing controller of P ∈ Kq×r and:

U := C& (Iq − P C&)
−1 = (Ir − C& P)−1 C& ∈ Ar×q,

Si := (Ir − C& P)−1 ∈ Ar×r, So := (Iq − P C&)
−1 ∈ Aq×q.

Then, all stabilizing controllers of P are given by

C(Λ) = (U + Λ) (So + P Λ)−1 = (Si + Λ P)−1 (U + Λ), (6.8)

where Λ is any matrix which belongs to the following A-module

Ω = {Λ ∈ Ar×q | Λ P ∈ Ar×r, P Λ ∈ Aq×q, P Λ P ∈ Aq×r }, (6.9)

and satisfies:
det(So + P Λ) )= 0, det(Si + Λ P) )= 0. (6.10)

Proof Let C1 and C2 ∈ Kr×q be two stabilizing controllers of P ∈ Kq×r and:

Sik := (Ir − Ck P)−1 ∈ Ar×r, Sok := (Iq − P Ck)
−1 ∈ Aq×q,

Uk := Ck (Iq − P Ck)
−1 = (Ir − Ck P)−1 Ck := Ũk ∈ Ar×q,

k = 1, 2.
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We then have Ck = Uk So
−1
k = Si

−1
k Uk for k = 1, 2. Moreover, the matrices

Lk := (So
T
k UT

k )
T ∈ A(q+r)×q and L̃k := (−Uk Sik) ∈ Ar×(q+r) satisfy 1.a, 1.b,

2.a and 2.b of Proposition 1. Using 1.b and 2.b, we get:

{
So2 − So1 = P U2 + Iq − P U1 − Iq = P (U2 − U1),

Si2 − Si1 = U2 P + Ir − U1 P − Ir = (U2 − U1)P.

Now, using 1.a and 2.a, we obtain:






(U2 − U1)P = Si2 − Si1 ∈ Ar×r,

P (U2 − U1) = So2 − So1 ∈ Aq×q,

P (U2 − U1)P = (So2 − So1)P = P (Si2 − Si1) ∈ Aq×r,

⇒ U2 − U1 ∈ Ω.

Hence, if Λ := U2 − U1 ∈ Ω , then we have U2 = U1 +Λ, So2 = So1 +P Λ and
Si2 = Si1 + Λ P, and if det(So1 + P Λ) )= 0 and det(Si1 + Λ P) )= 0, then we get:

C2 = U2 So
−1
2 = (U1+Λ) (So1+P Λ)−1, C2 = Si

−1
2 U2 = (Si1+Λ P)−1(U1+Λ).

If So := So1, U := U1 and Si := Si1, then we get C2 = C(Λ), where C(Λ)

is defined by (6.8) for a certain Λ ∈ Ω which satisfies (6.10). Finally, let us prove
that for every Λ ∈ Ω which satisfies (6.10), the controller C(Λ) defined by (6.8)
stabilizes P. Let L(Λ) := ((So + P Λ)T (U + Λ)T )T , L̃(Λ) := (−(U + Λ) Si +
Λ P), M := (Iq −P) and M̃ := (PT IT

r )
T . Since Λ ∈ Ω , we have U +Λ ∈ Ar×q,

So + P Λ ∈ Aq×q and

L(Λ)P =
(

So P + P Λ P
U P + Λ P

)
∈ A(q+r)×r, M L(Λ) = So − P U = Iq,

and thus C(Λ) = (U+Λ) (So+P Λ)−1 stabilizes P by 1 of Proposition 1. Similarly,
since Λ ∈ Ω , we get U + Λ ∈ Ar×q, Si + Λ P ∈ Ar×r and

{
P L̃(Λ) = (−(P U + P Λ) P Si + P Λ P) ∈ Aq×(q+r),

L̃(Λ) M̃ = −U P + Si = Ir,

i.e., C(Λ) = (Si + Λ P)−1 (U + Λ) stabilizes P by 2 of of Proposition 1. !

Proposition 2 ([8]) Let C& ∈ Kr×q be a stabilizing controller of P ∈ Kq×r and:





L =

(
(Iq − P C&)

−1

C& (Iq − P C&)
−1

)
∈ A(q+r)×q,

L̃ = (−(Ir − C& P)−1 C& (Ir − C& P)−1) ∈ Ar×(q+r).
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Then, the A-module Ω defined by (6.9) satisfies Ω = L̃ A(q+r)×(q+r) L. Hence,
the A-module Ω is generated by the (q + r)2 matrices L̃•i Lj•, where L̃•i is the ith

column of L̃ and Lj• the jth row of L, i.e., Ω =
{∑q+r

i,j=1 aij L̃•i Lj• | aij ∈ A
}

.

Proof Let Λ ∈ Ω , i.e., Λ ∈ Ar×q is such that Λ P ∈ Ar×r , P Λ ∈ Aq×q and
P Λ P ∈ Aq×r , M := (Iq − P) and M̃ := (PT IT

r )
T . In particular, we have M̃ Λ ∈

A(q+r)×q, Λ M ∈ Ar×(q+r) and P Λ M ∈ Aq×(q+r). Now, using 2.b of Proposition 1,
i.e., L̃ M̃ = Ir , we get Λ = L̃ (M̃ Λ). Using 1.b of Proposition 1, i.e., M L = Iq,
we get Λ = (Λ M)L, and thus P Λ = (P Λ M)L. Substituting Λ = (Λ M)L
and P Λ = (P Λ M)L into M̃ Λ = ((P Λ)T ΛT )T , we get M̃ Λ = Θ L, where
Θ := ((P Λ M)T (Λ M)T )T ∈ A(q+r)×(q+r) and, since Λ = L̃ (M̃ Λ), we finally
obtain Λ = L̃ Θ L, i.e., Ω ⊆ L̃ A(q+r)×(q+r) L.

Now, let Λ ∈ L̃ A(q+r)×(q+r) L, i.e., Λ = L̃ Θ L for Θ ∈ A(q+r)×(q+r) and L
and L̃ satisfy 1 and 2 of Proposition 1. Then, using 1.a and 2.a of Proposition 1, we
obtain Λ ∈ Ar×q, Λ P = L̃ Θ (L P) ∈ Ar×r , P Λ = (P L̃)Θ L ∈ Aq×q, P Λ P =
(P L̃)Θ (L P) ∈ Aq×r , i.e., Λ ∈ Ω , and thus Ω = L̃ A(q+r)×(q+r) L.

Finally, Θ ∈ A(q+r)×(q+r) can be written as Θ = ∑q+r
i,j=1 Θij Eij where Θij ∈ A

and Eij is the matrix defined by 1 in the ith row and the jth column and 0 elsewhere, and
thus every Λ ∈ Ω can be written as Λ = L̃ Θ L = ∑q+r

i,j=1 Θij (̃L Eij L). Therefore,
{̃L Eij L}i,j=1,...,q+r is a family of generators of the A-module Ω and L̃ Eij L is the
product of the ith column L̃•i of L̃ by the jth row Lj• of L. !

Combining Theorem 1 and Proposition 2, we obtain the following result.

Corollary 3 ([8]) With the notations of Theorem 1, if C& ∈ Kr×q is a stabilizing
controller of P ∈ Kq×r , then all the stabilizing controllers of P are of the form (6.8),
where Λ is any matrix which belongs to Ω = ∑q+r

i,j=1 A (̃L•i Lj•) and satisfies (6.10).

In Corollary 3, only the explicit knowledge of a stabilizing controller is assumed.
For many classes of infinite-dimensional systems, (PID, finite-dimensional) stabiliz-
ing controllers are known which is not the case for doubly coprime factorizations.

Corollary 4 1. If P ∈ Kq×r admits a left-coprime factorization P = D−1 N,
D X − N Y = Iq, with (XT YT )T ∈ A(q+r)×q and det X )= 0, then the matrix
L = ((X D)T (Y D)T )T ∈ A(q+r)×q satisfies 1.a and 1.b of Proposition 1, and
C = Y X−1 is a stabilizing controller of P.

2. If P ∈ Kq×r admits a right-coprime factorization P = Ñ D̃−1, −Ỹ Ñ+X̃ D̃ = Ir ,
with (−Ỹ X̃) ∈ Ar×(q+r) and det X̃ )= 0, then the matrix L̃ = (−D̃ Ỹ D̃ X̃) ∈
Ar×(q+r) satisfies 2.a and 2.b of Proposition 1, and C = X̃−1 Ỹ is a stabilizing
controller of P.

Proof Let us prove 1. If P = D−1 N , D X −N Y = Iq, is a left-coprime factorization
of P, then (X D)P = X N ∈ Aq×r , (Y D)P = Y N ∈ Ar×r and D X − N Y = Iq ⇒
X − P Y = D−1 ⇒ (X D)− P (Y D) = Iq, i.e., L = ((X D)T (Y D)T )T ∈ A(q+r)×q

satisfies 1 of Proposition 1, and thus C = (Y D) (X D)−1 = Y X−1 stabilizes P. 2
can be proved similarly. !
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From Corollary 4, the existence of a doubly coprime factorization of P is a suffi-
cient but not a necessary condition for stabilizability.

Proposition 3 ([8]) If P ∈ Kq×r admits the doubly coprime factorization (6.5), then
the A-module Ω defined by (6.9) satisfies Ω = D̃ Ar×q D.

Proof Let Λ ∈ D̃ Ar×q D, i.e., Λ = D̃ Q D for a certain Q ∈ Ar×q. Then, we
have Λ = D̃ Q D ∈ Ar×q, Λ P = D̃ Q N ∈ Ar×r , P Λ = Ñ Q D ∈ Aq×q and
P Λ P = Ñ Q N ∈ Aq×r , which shows that Λ ∈ Ω . Conversely, let Λ ∈ Ω and
Q := D̃−1 Λ D−1 ∈ Kr×q. From (6.5), we get the identities D−1 = X − P Y
and D̃−1 = X̃ − Ỹ P, which yield Q = D̃−1 Λ D−1 = (X̃ − Ỹ P)Λ (X − P Y) =
X̃ Λ X − X̃ (Λ P)Y − Ỹ (P Λ)X + Ỹ (P Λ P)Y ∈ Ar×q since Λ ∈ Ω and the entries
of X, Y , X̃ and Ỹ belong to A. Therefore, we get Λ = D̃ Q D for a certain Q ∈ Ar×q,
i.e., Λ ∈ D̃ Ar×q D, which finally proves that Ω = D̃ Ar×q D. !

The next corollary shows that the parametrization (6.8) gives rise to the Youla-
Kučera parametrization when the plant P admits a doubly coprime factorization.

Corollary 5 ([8]) Let P ∈ Kq×r admit a doubly coprime factorization P = D−1

N = Ñ D̃−1, where (6.5) is satisfied. Then, all the stabilizing controllers of P are of
the form C(Q) = (Y + D̃ Q) (X + Ñ Q)−1 = (X̃ + Q N)−1 (Ỹ + Q D), where Q is
any matrix of Ar×q such that det(X + Ñ Q) )= 0 and det(X̃ + Q N) )= 0.

Proof By Proposition 3, we have Ω = D̃ Ar×q D. Moreover, by 1 of Corollary 4,
C = (Y D) (X D)−1 = Y X−1 is a stabilizing controller of P. Moreover, by 2 of
Corollary 4, C̃ = (D̃ X̃)−1 (D̃ Ỹ) = X̃−1 Ỹ is a stabilizing controller of P. By (6.5),
−Ỹ X + X̃ Y = 0, which shows that C̃ = C. Therefore, by Theorem 1 or Corollary 3,
we obtain that all the stabilizing controllers of P are of the form

C◦(Q) := C(D̃ Q D) = (Y D + D̃ Q D) (X D + P D̃ Q D)−1

= (Y D + D̃ Q D) (X D + Ñ Q D)−1 = (Y + D̃ Q)D D−1 (X + Ñ Q)−1

= (Y + D̃ Q) (X + Ñ Q)−1,

C◦(Q) := C(D̃ Q D) = (D̃ X̃ + D̃ Q D P)−1 (D̃ Ỹ + D̃ Q D)

= (D̃ X̃ + D̃ Q N)−1 (D̃ Ỹ + D̃ Q D) = (X̃ + Q N)−1 D̃−1 D̃ (Ỹ + Q D)

= (X̃ + Q N)−1 (Ỹ + Q D),

where Q ∈ Ar×q is any matrix such that det(X + Ñ Q) )= 0 and det(X̃ +Q N) )= 0. !
The following result is a direct consequence of Corollaries 3 and 2.

Theorem 2 Let ∆ ∈ Aq×r and C& ∈ Kr×q be a stabilizing controller of the plant
P ∈ Kq×r . Then, all the stabilizing controllers C′ of P′ := P − ∆ are of the form

C′(Λ) = C(Λ) (Iq −∆ C(Λ))−1 = (Ir −C(Λ)∆)−1C(Λ) = Feedback (C(Λ),∆) ,

where C(Λ) is the parametrization (6.8) of all the stabilizing controllers of P.
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We have the following straightforward consequence of Theorem 2.

Corollary 6 Let P ∈ Kq×r admits a doubly coprime factorization P = D−1 N =
Ñ D̃−1, where (6.5) is satisfied, and ∆ ∈ Aq×r . Then, P′ := P −∆ admits the doubly
coprime factorization P′ = D−1 (N − D ∆) = (Ñ − ∆ D̃) D̃−1 and:

(
D −(N − D ∆)

−Ỹ X̃ − Ỹ ∆

) (
X − ∆ Y Ñ − ∆ D̃

Y D̃

)

= Iq+r .

Hence, if C(Q) := (Y + D̃ Q) (X + Ñ Q)−1 = (X̃ + Q N)−1 (Ỹ + Q D) is the
Youla-Kučera parametrization of all the stabilizing controllers of P, then Youla-
Kučera parametrization C′(Q) of all the stabilizing controllers of P′ satisfies:

C′(Q) = C(Q) (Iq − ∆ C(Q))−1 = (Ir − C(Q)∆)−1 C(Q) = Feedback (C(Q),∆) .

(6.11)

Theorem 2 and Corollary 6 are particularly interesting when P is a rational trans-
fer matrix for which different techniques can be used to find a particular finite-
dimensional controller or doubly coprime factorization.

Example 1 Let F ∈ A := H∞(C+) be such that F0 := F(0) )= 0, P := F
s ,

∆ := F (1−e−T s)
s ∈ A, and P′ := P − ∆ = F e−T s

s . Clearly, P admits the coprime
factorization P = N

D , D X − N Y = 1, where α ∈ R>0 := {x ∈ R | x > 0},

N = F
s + α

, D = s
s + α

, X = 1 + α
1 − F

F0

s
, Y = − α

F0
.

The only point to check is that X ∈ A, i.e., Z := (X − 1)/α = 1− F
F0

s ∈ A. Clearly,
Z is a holomorphic function in C+, has no poles in the imaginary axis and

∣∣∣∣∣
1 − F(i ω)

F0

i ω

∣∣∣∣∣ ≤
1 +

∣∣∣F(i ω)
F0

∣∣∣

|ω| ≤
1+ ‖ F

F0
‖∞

|ω| ,

which proves that Z ∈ A. By Corollary 5, the Youla-Kučera parametrization of all
the stabilizing controllers of P is then defined by:

∀ Q ∈ A : C(Q) = Y + D Q
X + N Q

=
− α

F0
+ s

s+α Q

1 + α
1− F

F0
s + F

s+α Q
. (6.12)
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By Corollary 6, the Youla-Kučera parametrization of P′ = F e−T s

s is then

C′(Q) := C(Q)

1 − ∆ C(Q)
= Y + D Q

(X − ∆ Y)+ (N − ∆ D)Q
=

− α
F0

+ s
s+α Q

1 + α
1− F

F0
e−T s

s + Q F e−Ts

s+α

,

(6.13)

for the coprime factorization P′ = N−D ∆
D , D (X − ∆ Y) − (N − D ∆)Y = 1.

Example 2 We can apply Corollary 6 to P = 1
2 e

s+1
s−1 and ∆ = 1

2 e
(s+1)−2 e1−√

s

s−1 ∈
A := H∞(C+) to get the Youla-Kučera parametrization of P′ := P − ∆ = e−√

s

s−1 .

6.3 Study of the Tracking Problem and Numerical Simulations

In this section, we study the tracking problems introduced in Sect. 6.1.
Let F ∈ A := H∞(C+) be such that F0 := F(0) )= 0. In many situations, we

have F ∈ RH∞. Using Fig. 6.4 and (6.3), let us introduce the following two systems:

{
ε̂ = P ê2,

ŷ2 = G ε̂,

{
P := F

s ,

G := e−Ts,

{
ê1 = û1 − ŷ2,

ê2 = û2 − ŷ1.

We then have ŷ2 = P′ ê2, where P′ := P G = F e−Ts

s was introduced in Example 1.
Considering the controller ŷ1 = C′ ê1, we then obtain:

(
ε̂

ŷ1

)
= 1

1 − P′ C′

(−P C′ P
C′ −P′ C′

) (
û1
û2

)
. (6.14)

Lemma 1 With the above notations, the following assertions are equivalent:

1. C′
& ∈ Q(A) is such that P C′

&
1−P′ C′

&
, P

1−P′ C′
&
,

C′
&

1−P′ C′
&
,

P′ C′
&

1−P′ C′
&

∈ A.

2. C′
& ∈ Q(A) stabilizes P′, i.e., 1

1−P′ C′
&
,

C′
&

1−P′ C′
&
, P′

1−P′ C′
&

∈ A.

If C(Q) is the Youla-Kučera parametrization (6.12) of P = F
s , then the Youla-

Kučera parametrization of P′ = P − ∆, where ∆ := F (1−e−T s)
s ∈ A, is given by

(6.13).

Proof Let C′
& satisfy 1. Then, we have 1

1−P′ C′
&
= P C′

&
1−P′ C′

&
− 1, C′

&
1−P′ C′

&
∈ A. We

then get P′
1−P′ C′

&
= G P

1−P′ C′
&

∈ A since G = e−Ts ∈ A, which proves 2. Now,
let us suppose that C′

& stabilizes P′, i.e., satisfies 2. We then need to check that
P

1−P′ C′
&
,

P C′
&

1−P′ C′
&

∈ A. Using (6.13), we have C′
& = C′(Q) for a certain Q ∈ A and:
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Fig. 6.4 Closed-loop system with the feedback structure of C′(Q)






P
1−P′ C′

&
= F

s+α

(
1 + α

1− F
F0

e−Ts

s + Q F e−Ts

s+α

)
∈ A,

P C′
&

1−P′ C′
&
= F

s+α

(
− α

F0
+ s

s+α Q
)

∈ A. !

The sensibility transfer function S(Q) := (1 − P′ C′(Q))−1 corresponding to the
Youla-Kučera parametrization C′(Q) of P′ = P − ∆ = F e−T s

s (see (6.13)) is:

S(Q) = s
s + α

(

1 + α
1 − F

F0
e−Ts

s
+ Q F

e−Ts

s + α

)

.

Let us now investigate the asymptotic tracking of the target. In what follows, we
consider the noiseless case, i.e., û1 = 0. Using (6.14), we then get ε̂ = P

1−P′ C′ û2.
Therefore, we have to find a stabilizing controller C′(Q) of P′ which is such that

lim
t→+∞

ε(t) = lim
s→0

s ε̂(s) = lim
s→0

s S(Q)P û2 = 0,

where û2 = s
F θ̂ (see Sect. 6.1). Letting γ = θ

(n)
0 , m = 1 for scenario 2 and

m = 2 for scenario 3, û2 can be decomposed as a sum of terms of the form
û2 = γ

sn F , where γ ∈ R and 0 ≤ n ≤ m. Using s P = F, we get limt→+∞ ε(t) =
lims→0 s S(Q)P γ

sn F = lims→0
S(Q) γ

sn . Hence, if we set

E := (s + α)2 S(Q)

sn =
(s + α)

(
1 + α 1−F/F0 e−T s

s

)
+ Q F e−T s

sn−1 ,

then we have to determine the parameter Q ∈ A such that lims→0 E γ

(s+α)2 = 0.
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Let us consider scenario 3 which corresponds to m = 2. Let us consider power
series expansion of Q, F and e−T s at s = 0, i.e., Q = q0 + q1 s + O(s2),

F = F0 + F1 s + F2

2
s2 + O(s3), e−Ts = 1 − T s + T2

2
s2 + O(s3).

where Fi := F(i)(0). For n = 2, we get E2 := s E = e0 + e1 s + O(s2), where:

{
e0 = q0 F0 + α + α2 T − α2 F1

F0
,

e1 = 1 + q1 F0 + q0 F1 − α F1
F0

− α2 F2
2 F0

+
(
α − q0 F0 + α2 F1

F0

)
T − α2 T2

2 .

Hence, we have E2 = O(s2), i.e., e0 = 0 and e1 = 0, iff:






q0 = − α (1 + α T)
F0

+ α2

F2
0

F1,

q1 = − 1 + 2 α T + α2 T2

2

F0
+ α(2 + α T)F1 + α2 F2

2

F2
0

− α2

F3
0

F2
1 .

For the numerical simulations, we take Q := NQ
DQ

, where NQ := q0 + q′
2 s, DQ :=

1 + q′
1 s, q0, q′

2 ∈ R, q′
1 ∈ R≥0 = {x ∈ R | x ≥ 0}, so that we get Q = q0 + (q′

2 −
q0 q′

1) s + O(s2), and thus we can choose arbitrarily q′
1 ∈ R≥0 and:






q0 = −α (1 + α T)
F0

+ α2

F2
0

F1,

q′
2 = −1 + α q′

1 + (α q′
1 + 2)α T + α2 T2

2

F0
+ ((α q′

1 + 2)α + α2 T)F1 + α2 F2
2

F2
0

− α2

F3
0

F2
1 .

We then have two degrees of freedom: α ∈ R>0 and q′
1 ∈ R≥0. We can check

that we then have lims→0 s S(Q)P γ
sn F = 0 for 0 ≤ n ≤ 1. The form of Q can be

used to study scenario 2, i.e., Q = q0 ∈ R, by considering q′
1 = 0 and q′

2 = 0.
For the visual tracking developed in Sect. 6.1, we have:

F := 1 + τ2 s

(1 + τ1 s) (1 + τ2 s + τ 2
2 s2)

, τ1 = 1
60 π

, τ2 = 1
30 π

, T = 0.18.

In the Matlab simulations, we take α = 0.95 and q′
1 = 1

5 π to get a gain margin of
5.4dB and a phase margin of 42◦ at 0.84Hz. See Black’s diagram of the closed-loop
(the blue plot in Fig. 6.5), the step response (the blue plot in Fig. 6.6) and compare
with the results obtained with a PID controller (the black plots) and a H∞-controller
(the red plots).
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