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Abstract: The purpose of this paper is to explicitly characterize H1 controllers for single-
input single-output (SISO) systems of order 1, 2 and 3 in terms of their coe�cients considered
as unknown parameters. In the SISO case, computing H1 controllers requires to find the
real positive definite solution of an algebraic Riccati equation. Due to the system parameters,
no purely numerical method can be used to find such a solution, and thus parametric H1
controllers. Using elimination techniques of zero-dimensional polynomial systems, we first give
a parametrization of all the solutions of the algebraic Riccati equation associated with the H1
control problem. Since the problem reduces to solving an univariate polynomial of degree less
than or equal to 4, closed-form solutions are then obtained for the solutions of the algebraic
Riccati equation by means of radicals. Using the concept of discriminant variety, we show that
the maximal real root of this polynomial is always defined by the same closed-form expression,
which yields the positive definite solution of the algebraic Riccati equation. Finally, we use the
above results to explicitly compute the H1 criteria �opt and H1 controllers in terms of the
system parameters and study them with respect to parameter variations.

Keywords: Robust control theory, parametric control, linear systems, algebraic systems theory,
symbolic computation, polynomial methods.

1. INTRODUCTION

H1 control theory aims at designing stabilizing controllers
which satisfy robustness constraints defined in the fre-
quency domain (e.g., stability margins). These controllers
are usually computed numerically for a given system using,
e.g., �-iteration via Algebraic Riccati Equations (ARE) or
Linear Matrix Inequalities (LMI), see, e.g., Zhou et al.
(1996) and the references therein.

An alternative approach to this numerical approach is
to solve the problem symbolically for a set of systems
depicted by some parameters to obtain a robust controller
that depends on the system parameters (Rance et al.
(2016); Kanno et al. (2007, 2012)). Once such a closed-
form controller is known, only an evaluation is required
to obtain a controller for a particular value of the system
parameters.

We foresee many practical applications of this symbolic
approach which motivate the present paper. For instance,
while designing a project, the designer is interested in
testing if his model can reach the desired specifications
and this check has to be done quickly. The knowledge

of a parametric controller and of its performance and
robustness margins with respect to its parameters can be a
very e�cient method for a design perspective. Parametric
controllers can be used to determine the values of the
parameters so that the controller achieves desired perfor-
mances, or to analytically prove that these specifications
cannot be obtained for certain values of the parameters.

The symbolic approach can also be used for the design of
robust adaptive controllers which adjust themselves while
coupling with parameter estimation methods. Since only
evaluations of closed-form solutions are required, these
controllers could easily be embedded. Finally, the explicit
formulas for the robust controllers can easily be used
without any knowledge of the H1 control theory.

In this paper, based on Rance et al. (2016), we present the
explicit forms of H1 controllers for SISO systems of order
1 to 3. These controllers are obtained by means of the
computation of the positive definite solution of an ARE,
which can be reduced to the finding of the maximal real
root of a univariate polynomial P. Since this polynomial P
is of order less than or equal to 4 for the class of systems
under study, its roots can be found by radicals and the
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maximal real solution can be explicitly determined over
the entire space of the parameters, which yields a closed-
form solution for the positive definite solution of the ARE.
Then, the computation of the H1 criterion �opt is reduced
to the finding of the maximal real root of a characteristic
polynomial H of degree less or equal to 3. Again, we can
express this root by radicals since the degrees of H are less
or equal to 3 and we can prove that this maximal real root
is defined by the same expression over the entire parameter
space. Hence, �opt has always the same closed-form. We
can then explicitly compute H1 controllers that have the
same expression in the whole space of the parameters for
SISO systems of order 1 to 3. Finally, the closed-form
solution of �opt can be used to study its dependence upon
the system parameters and can determine them so that
some performances and robustness criteria are achieved.

The paper is organized as follows. Section 2 reviews key
results of H1 loop-shaping theory. In Section 3 we give a
parametrization of all the solutions of an ARE which has to
be solved for theH1 control problem. Section 4 shows how
to explicitly compute the positive definite solution of the
ARE. Then, we explicitly compute the H1 criterion �opt
and the stabilizing (sub)-optimal H1 controllers. Finally,
the results are illustrated on (two) mass-spring examples.

2. THE STANDARD H1-CONTROL PROBLEM

In this paper, we shall consider 1st to 3rd SISO finite-
dimensional linear systems (Figure 1) given by y1 = Ge1,
where the strictly proper transfer function G is defined by

G :=
c
n�1 s

n�1 + . . .+ c1 s+ c0
sn + a

n�1 sn�1 + . . .+ a1 s+ a0
, (1)

where n is the order of G which satisfies 1  n  3, and
a
i

, c
i

2 R for i = 0, . . . , n�1. We note a := (a0, . . . , an�1)
and c := (c0, . . . , cn�1) the system parameters of (1).

Let us consider its controllable canonical form defined by
the following state-space representation:

ẋ = Ax+B e1, y1 = C x, (2)

A :=

0
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CCCCCCCA

2 Rn⇥n,

B := (0 . . . 0 1)T 2 Rn⇥1,

C := (c0 . . . c
n�1) 2 R1⇥n.

(3)

Let K be a rational controller, i.e., an element of the field
of rational functions with real coe�cients R(s). Let us also
consider the closed-loop system defined in Figure 1. Then,
we have:✓

e1
y1

◆
=

✓
S K S
GS GK S

◆✓
u1

u2

◆
, S := (1 +GK)�1

.

Let us consider the following standard control problem.

Robust Control Problem (RCP): Given � > 0, find a
controller K which stabilizes G (i.e., such that the rational

u1 +

+

e1
G

e2 u2+
�y2

y1

K

Fig. 1. Control scheme

transfer functions S, K S and GS are proper and stable)
and is such that:����

✓
S K S
GS GK S

◆����
1

< �. (4)

For more details, the reader is referred to Glover et al.
(1989); Zhou et al. (1996); Vinnicombe et al. (2001) and
the references therein. The RCP yields a compromise
between the performance of the closed-loop system and
the robustness with respect to the perturbations u1 and
u2.

We briefly state a standard result of H1-control theory .

Theorem 1. (Glover et al., 1989, Cor. 5.1), (Zhou et al.,
1996, Ch. 18) Let (A,B,C) be an observable state-space
representation (2) of the transfer function G defined by
(1). Then, the minimal value of � of (4) is given by

�opt =
p

1 + �max (Y X),

where X is the unique real positive definite solution of the
following Algebraic Riccati Equation (ARE)

R := X A+AT X �X BBT X + CT C = 0, (5)

and Y := QX Q, where Q = QT is the Hankel matrix
defined by

Q�1 := P = (P1 · · · P
n

) , (6)

P
i

T :=C
n�iX

j=0

a
n�j

An�i�j , i = 1, . . . , n,

and �max is the greatest eigenvalue of Y X (which one has
only real positive eigenvalues). For � > �opt, a controller
K

�

satisfying the RCP is defined by

ż = A
�

z +B
�

e2, y2 = C
�

z, (7)

with the following notations:
8
>>><

>>>:

Z
�

:=
�
I + Y X � �2 I

��1
,

A
�

:= A�BBT X + �2 Z
�

Y CT C,

B
�

:= ��2 Z
�

Y CT ,

C
�

:= BT X.

(8)

Remark 1. Q is related to Kalman’s observability matrix

O :=
�
C,CA, . . . , CAn�1

�
T

since, with the notation

�
o

:= det(O),

it only exists when the system is observable due to:(
n = 1, det(Q) = ��1

o

,

n 2 {2, 3}, det(Q) = ���1
o

.

In what follows, we shall suppose that (2) is observable.

In this paper, for systems of order 1 to 3 for which the a
i

’s
and c

j

’s are unknown parameters and not fixed numerical
values, we focus on the symbolic computation of X and



�max(Y X). In this case, numerical algorithms for the com-
putation of the positive definite solutions of ARE cannot
be used. Our approach is based on Algorithm. 1 of Rance
et al. (2016), which develops a symbolic-numeric method
for solving the RCP. Since we work with small order
systems, this symbolic-numeric algorithm yields a purely
symbolic one for the computation of H1 controllers.

3. PARAMETRIZATION OF ALL THE SOLUTIONS
OF THE ARE R = 0

For 1  n  3, let us introduce the following notations8
><

>:

b
k

:= 0, k < 0,
b
k

:= x
k+1,n + a

k

, 0  k  n� 1,
b
k

:= 1, k = n,
b
k

:= 0, k > n,

(9)

and b = (b0, . . . , bn�1). According to Proposition 2 of
Rance et al. (2016), the entries x

i,j

of a solution X = XT

of R = 0 can be expressed using a, b and c as shown in
Table 1. Moreover the b

k

’s satisfy the polynomial systems
B defined in Table 2, where the d2 k

’s are defined in Table 3.

Table 1: Solutions X of R = 0
n x

i,j

= f(a, b, c)

1 x

1,1

= b

0

� a

0

2
x

1,2

= b

0

� a

0

x

2,2

= b

1

� a

1

x

1,1

= b

0

b

1

� (a
0

a

1

+ c

0

c

1

)

3

x

1,3

= b

0

� a

0

x

2,3

= b

1

� a

1

x

3,3

= b

2

� a

2

x

1,1

= b

0

b

1

� a

0

a

1

� c

0

c

1

x

1,2

= b

0

b

2

� a

0

a

2

� c

0

c

2

x

2,2

= b

1

b

2

� b

0

� a

1

a

2

� c

1

c

2

+ a

0

Table 2: Polynomial system B satisfied by the b
k

’s
n Polynomial system B
1 B

0

:= b

2

0

� d

0

= 0

2
B
0

:= b

2

0

� d

0

= 0

B
1

:= b

2

1

� 2 b
0

� d

2

= 0

3

B
0

:= b

2

0

�d

0

= 0

B
1

:= b

2

1

� 2 b
0

b

2

�d

2

= 0

B
2

:= b

2

2

� 2 b
1

�d

4

= 0

Table 3: Definition of the d2k’s
n Variables d

2k

1 d

0

:= a

2

0

+ c

2

0

2
d

0

:= a

2

0

+ c

2

0

d

2

:=
�
a

2

1

+ c

2

1

�
� 2 a

0

3

d

0

:= a

2

0

+ c

2

0

d

2

:=
�
a

2

1

+ c

2

1

�
� 2 (a

0

a

2

+ c

0

c

2

)

d

4

:=
�
a

2

2

+ c

2

2

�
� 2 a

1

Remark 2. Note that b0 = ±p
d0. Hence, for first order

systems, we get all the solutions of R = 0.

As explained in (Rance et al., 2016, Section IV), we can
find a rational parametrization of the solutions of B in
the variable b

n�1, where b
n�1 is a root of a univariate

polynomial P. For second order systems, since b0 is known,

we have P := B1, where P is a univariate polynomial
in b1. For third order systems, using B2 = 0, one can
find b1 in terms of b2, and substituting it into B1 = 0
to obtain a univariate polynomial P in b2. The di↵erent
parametrizations are given in Table 4. For more details
on (rational) parametrizations of polynomial systems, we
refer to Rouillier et al. (1999); Cox et al. (2015).

Table 4: Parametrization of all the solutions of B
n Polynomial system in b

1 ;

2
b

1

= b

1

P := b

2

1

� 2 b
0

� d

2

= 0

3

b

1

= 1/2
�
b

2

2

� d

4

�

b

2

= b

2

P := b

4

2

� 2 d
4

b

2

2

� 8 b
0

b

2

+ d

2

4

� 4 d
2

= 0

The computation of the solutions of R = 0 is then
reduced to the computation of the roots of the univariate
polynomial P. Since the degree of P is less than or equal
to 4, Cardano’s and Ferrari’s closed-form solutions can be
used to express the roots of P by radicals (Tignol (2002)).

4. POSITIVE DEFINITE SOLUTIONS OF R = 0

According to Kanno et al. (2009), Theorem 4 of Rance
et al. (2016), the real positive definite solution of R = 0
is obtained by means of the maximal real root � of P.
Furthermore, X > 0 solution of R = 0 verifies the
following property.
Proposition 1. (Rance et al. (2016), Proposition 5).
X > 0 verifies b0 =

p
d0, where d0 := a20 + c20.

4.1 First order systems

For first order systems, the ARE R = 0 is a single
quadratic polynomial equation, which solutions are known
(see Remark 2). According to Proposition 1, we have:

X := x1,1 = � � a0 =
q
a20 + c20 � a0. (10)

4.2 Second order systems

The univariate polynomial P is of degree 2 in b1, where
b0 =

p
a20 + c20 � |a0|. Since b0 � a0 � 0, P has always 2

real roots which greatest real one is defined by:

� :=
p
2 b0 + d2 =

q
2 (b0 � a0) + a21 + c21. (11)

4.3 Third order systems

If p := �2 d4, q := �8 b0, r := d24 � 4 d2, then we have:

P(b2) := b42 + p b22 + q b2 + r.

To obtain the solutions of P by radicals, we first introduce
the following notations (see Tignol (2002)):8
>>>>>>>>><

>>>>>>>>>:

"1 := ±1, "2 := ±1, " := ("1, "2),

p2 := 4 d2 � 4

3
d24, q2 :=

8

3
d2 d4 � 16

27
d34 � 8 b20,

↵ :=

✓
1

2

✓
�27 q2 +

q
27 (4 p32 + 27 q22)

◆◆1/3

,

u :=
1

3

✓
↵� 3 p2

↵
+ 2 d4

◆
, �2 := 2 d4 + "1

8 b0p
2u

� u.



Since we can suppose that q = �8 b0 6= 0 (b0 = 0 is
equivalent to a0 = c0 = 0, i.e., G is then of order 2, which
case has already been studied in Section 4.2), the roots of
P can be expressed as follows:

b2(") =

p
2

2

⇣
"1

p
u+ "2

p
�2

⌘
.

To determine which one of the b2’s is the maximal real one,
we compute the discriminant variety of P (Lazard et al.
(2007)), i.e., the discriminant of P in b2 as P is monic in
b2. Given an open connected set in the space of parameters
which does not encounter the discriminant variety of P, for
any values of the parameters in this set, P has a constant
number of real roots. Over the discriminant variety, some
roots are crossing, i.e., 2 closed-form solutions can define
the same maximal real root. For instance, the Maple

command CellDecomposition applied to P computes, as
in Corvez et al. (2003), a partition of the ambient space
made of P itself and of the cells of maximal dimension of
the Cylindrical Algebraic Decomposition adapted to P (see
Collins et al. (1976)) where all the polynomials defining
P have all a non null constant sign. In each cell, we can
choose a particular value of the parameters and find which
root is the greatest real one. Ignoring cells where there are
no real solutions (as we assume that (2) is observable and
thus that the RCP has always a solution), we show that

� = b2(1, 1) =

p
2

2

 
p
u+

s

2 d4 +
8 b0p
2u

� u

!

is the maximal real root of P in each cell, so it is for any
values of the parameters.

5. CHARACTERISTIC POLYNOMIAL OF Y X

Now that the solution X > 0 of R = 0 is determined,
we have to compute the eigenvalues of Y X = QXQX.
In Table 5, we give the explicit form of Q defined by
(6). Then, in Table 6, the matrix Y is shown. Finally, in
Table 7, the characteristic polynomial H(�, a, c) of Y X is
computed.

Table 5: Matrices Q
n Hankel matrix Q

1
Q := ��1

o

= c

�1

0

2
Q :=

1

�
o

⇣
q

1

q

2

q

2

q

3

⌘

q

1

:= �c

1

, q

2

:= c

0

, q

3

:= c

1

a

0

� a

1

c

0

3

Q :=
1

�
o

0

B@
q

1

q

2

q

3

q

2

q

3

q

4

q

3

q

4

q

5

1

CA

q

1

:= a

1

c

2

2

� (a
2

c

1

+ c

0

) c
2

+ c

2

1

q

2

:= �a

0

c

2

2

+ a

2

c

0

c

2

� c

0

c

1

q

3

:= a

0

c

1

c

2

� a

1

c

0

c

2

+ c

2

0

q

4

:= a

0

c

0

c

2

� a

0

c

2

1

+ a

1

c

0

c

1

� a

2

c

2

0

q

5

:= (a
0

c

2

� a

2

c

0

)2 � a

0

a

1

c

1

c

2

+ a

0

a

2

c

2

1

+a

2

1

c

0

c

2

� a

1

a

2

c

0

c

1

+ a

0

c

0

c

1

� a

1

c

2

0

Table 6: Matrices Y

n Matrix Y

1 Y :=

⇣p
a

2

0

+ c

2

0

� a

0

⌘
c

�2

0

2

Y :=
1

�2

o

✓
z

1,1

z

1,2

z

1,2

z

2,2

◆

z

1,1

:= q

2

1

x

1,1

+ 2 q
1

q

2

x

1,2

+ q

2

2

x

2,2

z

1,2

:= (q
2

x

1,1

+ q

3

x

1,2

) q
1

+ (q
2

x

1,2

+ q

3

x

2,2

) q
2

z

2,2

:= q

2

2

x

1,1

+ 2 q
2

q

3

x

1,2

+ q

2

3

x

2,2

3

Y :=
1

�2

o

0

B@
z

1,1

z

1,2

z

1,3

z

1,2

z

2,2

z

2,3

z

1,3

z

2,3

z

3,3

1

CA

z

1,1

:= q

2

1

x

1,1

+ q

2

2

x

2,2

+ q

2

3

x

3,3

+2 (x
1,2

q

1

q

2

+ x

1,3

q

1

q

3

+ x

2,3

q

2

q

3

)

z

1,2

:= q

2

2

x

1,2

+ q

2

3

x

2,3

+ (q
1

x

1,2

+ q

4

x

3,3

) q
3

+((x
1,3

+ x

2,2

) q
3

+ q

1

x

1,1

+ q

4

x

2,3

) q
2

+ q

1

q

4

x

1,3

z

1,3

:= q

2

3

x

1,3

+ q

1

(q
4

x

1,2

+ q

5

x

1,3

) + q

2

(q
4

x

2,2

+ q

5

x

2,3

)

+ (q
1

x

1,1

+ q

2

x

1,2

+ q

4

x

2,3

+ q

5

x

3,3

) q
3

z

2,2

:= q

2

2

x

1,1

+ q

2

3

x

2,2

+ q

2

4

x

3,3

+2 (q
2

x

1,3

+ q

3

x

2,3

) q
4

+ 2 q
2

q

3

x

1,2

z

2,3

:= q

2

3

x

1,2

+ q

2

4

x

2,3

+ (q
2

x

1,2

+ q

5

x

3,3

) q
4

+((x
1,3

+ x

2,2

) q
4

+ q

2

x

1,1

+ q

5

x

2,3

) q
3

+ q

2

q

5

x

1,3

z

3,3

:= q

2

3

x

1,1

+ q

2

4

x

2,2

+ q

2

5

x

3,3

+ 2 q
3

q

4

x

1,2

+2 (q
3

x

1,3

+ q

4

x

2,3

) q
5

Table 7: Characteristic polynomial H of Y X

n Polynomial H(�, a, c)

1 H(�, a, c) := �� Y X = ��
⇣p

a

2

0

+ c

2

0

� a

0

⌘
2

c

�2

0

2

H(�, a, c) := �

2 + ⌫

1

(a, c)�+ ⌫

0

(a, c) = 0

⌫

1

(a, c) := �

1

(a, c, b)��2

o

⌫

0

(a, c) := �

0

(a, c, b)��4

o

=
�
det(X)��1

o

�
2

�

1

(a, c, b) := � (z
1,1

x

1,1

+ z

2,2

x

2,2

+ 2 z
1,2

x

1,2

)

�

0

(a, c, b) := (�
o

det(X))2

3

H(�, a, c) := �

3 + ⌫

2

�

2 + ⌫

1

�+ ⌫

0

= 0

⌫

k

:= �

k

�
2(k�n)

o

, 0  k  2
�

2

:= � (x
1,1

z

1,1

+ x

2,2

z

2,2

+ x

3,3

z

3,3

+2 (x
1,2

z

1,2

+ x

1,3

z

1,3

+ x

2,3

z

2,3

))

�

1

:=
�
z

2

1,2

� z

1,1

z
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6. EXPLICIT �OPT AND H1 CONTROLLERS

As X > 0 and Y > 0, all the roots of H are real positive.
Since H is of degree less than or equal to 4 in �, it is
possible to compute its roots by means of radicals (Tignol
(2002)). We detail below the computation of its maximal
real root at each order. Then, given this maximal root, one
can deduce �opt :=

p
1 + �max and thus (sub)-optimal H1

controllers using (7), (8) and Tables 1 and 6.



6.1 First order systems

According to Table 7, �opt is trivial. We also note that �opt
only involves ⌧ := 1/G(0) = a0/c0 and the sign of c0.
Theorem 2. For n = 1, the optimal H1 criterion �opt is:

�opt :=
p
1 + y1,1 x1,1 =

r
1 +

⇣
sgn(c0)

p
1 + ⌧2 � ⌧

⌘2
.

Figure 2 represents �opt(⌧) depending on sgn(c0).

If ⌧ = 0, i.e., G = c0/s, then �opt =
p
2 for all c0 (see also

Kanno et al. (2007)). Moreover, we have:

lim
⌧!+1

�opt =

⇢
1 c0 > 0,

+1 c0 < 0,
lim

⌧!�1
�opt =

⇢
+1 c0 > 0,

1 c0 < 0.

In both cases, �opt diverges for a0 < 0, i.e., when the pole
of G is unstable. On the contrary, �opt converges to 1 for
a0 > 0, i.e., when the pole of G is stable.

Fig. 2. �opt = �2(⌧) for a first order SISO system

For n = 1, as BBT = 1 and Y CTC = x1,1, (8) yields8
>>>>>>>>><

>>>>>>>>>:

Z
�

=
�
�2
opt � �2

��1
,

A
�

= �a0 � |c0|
q
�2
opt � 1

�2
opt � 2�2

�2
opt � �2

,

B
�

= � sgn(c0) �2

�2
opt � �2

q
�2
opt � 1,

C
�

= |c0|
q
�2
opt � 1,

and we get the following (sub)-optimal H1 controller:

K
�

(s) =
�c0 �

2
�
�2
opt � 1

�

(s+ a0)(�2
opt � �2) + |c0| (�2

opt � 2 �2)
q
�2
opt � 1

.

(12)

Remark 3. We have K
�

opt

= sgn(c0)
q
�2
opt � 1.

6.2 Second order systems

According to Table 7, the characteristic polynomial H of
Y X is of the form

H(�, a, c) = �2 + ⌫1(a, c)�+ ⌫0(a, c) = 0,
which leads to the following theorem.
Theorem 3. For n = 2, the optimal H1 criterion �opt is:

�opt :=

s

1 +
��1 +

p
�2
1 � 4�0

2�2
o

,

where �1 and �0 are given in Table 7.

Proof. Since H is of degree 2, its roots are given by:8
>>><

>>>:

�1 :=
��1 +

p
�2
1 � 4�0

2�2
o

> 0,

�2 :=
��1 �

p
�2
1 � 4�0

2�2
o

> 0.

As X > 0 and Y > 0, both of these roots are real positive,
which means

p
�2
1 � 4�0 > 0, so that the maximal one is:

�max := �1 =
��1 +

p
�2
1 � 4�0

2�2
o

.

Then, we deduce �opt :=
p
1 + �max.

6.3 Third order systems

To find the roots of H(�) = �3 + ⌫2 �2 + ⌫1 � + ⌫0, as in
Tignol (2002), we introduce the following notations :
8
>>>>><

>>>>>:

µ1 :=� 1

3
⌫22 + ⌫1,

µ0 :=
2

27
⌫32 + ⌫0

� 1

3
⌫1 ⌫2,

8
>>>>>><

>>>>>>:

↵ :=

 
�27µ0 +

p
�

2

! 1

3

,

� = 27
�
4µ3

1 + 27µ2
0

�
,

j := �1

2
+ i

p
3

2
.

(13)

Theorem 4. For n = 3, the optimal H1 criterion �opt is

�opt :=

s

1 +
1

3

✓
↵� 3µ1

↵
� ⌫2

◆
,

where ↵ and µ1 are given in (13) and ⌫2 in Table 7.

Proof. The roots of H are given by (Tignol (2002)):8
>>>>>>><

>>>>>>>:

�1 =
1

3

✓
↵� 3µ1

↵
� ⌫2

◆
,

�2 =
1

3

✓
↵ j2 � 3µ1

↵ j
� ⌫2

◆
,

�3 =
1

3

✓
j ↵� 3µ1

↵ j2
� ⌫2

◆
.

Since X > 0 and Y > 0, H is a polynomial of degree 3
with 3 real roots. Using the concept of discriminant variety
as in Section 4.3, we can show that its maximal root is
�max = �1. Then, we deduce �opt :=

p
1 + �max.

7. A MASS-SPRING-DAMPER SYSTEM

We consider a mass-spring-damper system (Zhou et al.,
1996, §10.2) (Figure 3). A mass m is linked to a motion-
less support by a spring of sti↵ness k and a damper of
magnitude ⇠. Referring to the notations of Figure 1, we
study the displacement of m, denoted by y1, while m is
excited by a force e1.

Fig. 3. Mass-spring-damper system



We consider the transfer function G of the plant:

G :=
y1
e1

=
c0

s2 + a1 s+ a0
, c0 :=

1

m
, a1 :=

⇠

m
, a0 :=

k

m
.

Since the parameter c1 := 0, the expressions are a bit
simpler than in the general case. Also, we can notice that
�opt only depends on ⌧�1 := G(0) = c0/a0 = 1/k and
⇢ := a1/

p
a0 = ⇠/

p
km. See Figure 4 for the plot of �opt

in function of ⌧ and ⇢. We denote by �
G

(resp., ��)
the gain (resp., phase) margin. Given � > �opt, we can
compute a parametric H1 controller satisfying the RCP
which guarantees the following gain and phase margins:8

<

:
�G(G,K

�

) � �G(�) :=
1 + ��1

1� ��1
,

��(G,K
�

) � ��(�) := 2 arcsin
�
��1

�
.

For more details, see Vinnicombe et al. (2001). For in-
stance, for m = 1, k = 1, ⇠ 2 {0, 1/2, 1}, the margins
are given in Table 8 (evaluations of symbolic expressions),
the Bode diagrams of the optimal controllers in Figure 5,
and the Black-Nichols diagrams of the open-loop with the
same optimal controllers in Figure 6.
Remark 4. Practically, in order to follow a target refer-
ence, the controller K should contain one integrator. This
can be obtained by first using the weight W := cc+s

s

, then
defining the new plant G0 := GW , and finally computing
a controller K 0 stabilizing G0 by means of 3rd order for-
mulas. Then, as detailed in Vinnicombe et al. (2001), the
controller K = W K 0 stabilizes G and satisfies:

kSk1 < �, kGKSk1 < �.

Table 8: �opt for ⇠ 2 {0, 1/2, 1}
⇠ 0 1/2 1

�

opt

' 1.80 ' 1.37 ' 1.22

�

�

(�
opt

) (�) ' 67.5 ' 93.9 ' 110

�
�

(G,K

�

opt

) (�) ' 68.9 1 1
�

G

(�
opt

) (dB) ' 10.9 ' 16.1 ' 20.2

�
G

(G,K

�

opt

) (dB) ' 99.1 ' 96.7 ' 95.7

Fig. 4. �opt of a mass-spring-damper system.
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