restart:
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We consider the system of differential time-delay equations defining the wind tunnel model studied in
A. Manitius, “Feedback controllers for a wind tunnel model involving a delay: analytical design and
numerical simulations”, IEEE Trans. Autom. Contr., 29 (1984), 1058-1068. The system matrix is
defined by

> A:=DefineQOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[a,k,omega,xi]):

> R:=matrix(3,4, [d+a,k*a*delta,0,0,0,d,-1,0,0,omega"2,d+2*xi*omega,-omega~2]);
d+a kad 0 0
R = 0 d -1 0
0 w2 d+2¢w —w?

where a, k, w and ( are real parameters of the system. We introduce the A = Q(a, k, w, ¢)[d, §]-module
M = A1 /(A3 R). Let us compute the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A,mult_table);

1 000 [0 —kaod 0 0
100 0 a 1 0
Endo = |l 0010 |0 - a-2w w? hld+a 1],
000T1] [0 O 0 d+a
[[1,1] 1 0
1,2] 0 1
2,1 0 1 ]
2,2] 0 d+a

Hence, the A-module structure of F is defined by two generators idy; and f; defined by fi(7()\)) =
7(A Py), where 7 : A1** — M denotes the canonical projection onto M, A € A'*4 and P; is the second
matrix of Endo[l]. The second matrix Endo[2] of Endo corresponds to the relation between the two
generators {idps, f1} of E, i.e., we have f; = (d+ a)idp;. Hence, we obtain that E is a free A-module of
rank 1 generated by idps. The matrix formed by Endo[3] but the first column is the trivial multiplication
of the generators idy; and f; of E, namely:

idMOidMZidjw, idM0f1:f10idM:f17 floflz(d+a)f1'

As the A-module F is generated by id s, we obtain that an endomorphism f of M has the form f = aidy,,
with a € A. Hence, the relation f2 = f implies that a?idy; = aidys, and thus, « = 0 or a = 1, i.e.,
f=0and f =idps are the only two idempotents of E. In particular, we deduce that the A-module M
is irreducible (see, e.g., Corollary 3.1 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of
linear functional systems”, Linear Algebra and Its Applications, 428 (2008), 324-381).

In particular, let us check that E does not have non-trivial constant idempotents:

> Idem:=IdempotentsConstCoeff (R,Endo[1],A,0,alpha);



1 0 0 O 0 0 0 O
01 00 0 0 0 O
Idem := || |, [Ore_algebra, [“diff ", dual_shift],
0010 0 0 0 0
00 01 0 0 0 O
i, 5], 4,81 [, 1, [0, k0, €1, 0, 1, 1, [t ), 1 [, [diff = [d, #], duad_shift = [5, ]

Even if the only two idempotent endomorphisms of M are the trivial ones, namely, idy; and 0, we can
search for homotopies of idy; or 0 which allow us to find a block-diagonal matrix equivalent to R with a
block equals to I,,. If so, then we can reduce the number of equations defining the differential time-delay
linear system kerz(R.), where F denotes an A-module (e.g., F = C*°(R)). Let us first denote by P, = Iy,

Ql :Is and Zl =0:

> P[1]:=Endo[1,1]; Q[1]:=diag(1$3); Z[1]:=Factorize(diag(0$3),R,A);

1 0 0

01 0
P1 =

0 0 1

0 0 O

0

= o O

Q1 :

1
0
0

oS = O

= o O

0
0
0
0

0 0
0 0
0 0
0 0

Let us compute the constant solutions of the algebraic Riccati equation A RA + A = 0 (for more details,
see Section 4 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional systems”,

Linear Algebra and Its Applications, 428 (2008), 324-381):

> Mu:=RiccatiConstCoeff (R,P[1],Q[1],Z[1],A,0,alpha);



Mu

00 0 1331 (b311 ab331—2b331 b311b§;;1tb331 w?b411—b311)b331 B bbgggllf
0 00 0 0 0
{ 0 0 0 ’ b311 _ b311 ab331—2b331 b3éé1C1w+b331 w2b411—-b311 991 ’
0 0 O b1  b4l1 (b311 ab331-2 bsgzbzslqlz?cwwssz w2b411—b311) b41bé’1b1331 |
0 b131w?bj21 131 0 0 b131 0 b121 O
0 0 0 0 0 =lresbdst 0 0 0
0 0 o |'lo o 0 o 1 0]
0 b421 w2 0 0 b4 31 0 b421 0
0 N s b131
0 —b351 b231
0 S b331 ’
0 — (b331°+2 231 b33:§b2—;-;u22b2312+b231)b331 b331242 b231 b?21b2;1+WZb231 24 231
0 0 0 0  —3q02 O
0 0 0 0 0 0
o 0 0 || o 1 o |
bj11  b421 w2 bj11 -9 -2
[Ore_algebra, [“diff ", dual_shift], [t, s], [d, 3], [t, 5], [a, k,w, C, D231, b431,b421,b411,
b331,b311,b131,b121],0,(], (1, [t, 8], [I, I, [diff = [d, ], dual_shift = [4, s]]]]

We find 8 constant solutions of the previous algebraic Riccati equation. Let us take the last one where
we set the arbitrary constant b411 to 1:

> Lambda:=subs(b411=1,Mul[1,8]);

0 —w? 0

0 0 0
A =

0 1 0

1 _a722Cw O.)_2

w

We can consider the homotopy of id,; defined by the pair of matrices P, = P+ AR and Q2 = Q1 + RA
defined by:

> P[2]:=simplify(evalm(P[1]+Mult(Lambda,R,A)));
> Q[2]:=simplify(evalm(Q[1]+Mult (R,Lambda,A)));
1 —4 w2 0

¢ 1 4

0 1 0 0 “
2 0 d 0o o @

, . —w? d+a 0

d4+a —=% —kadw 2+Ul(172dCu} diza 0

w w

We can now check that we have RP, = Q2 R, P? = P, and Q3 = Qa:



> VERIF1:=simplify(evalm(Mult(R,P[2],A)-Mult(Q[2],R,A)));
> VERIF2:=simplify(evalm(Mult(P[2],P[2],A)-P[2]));
> VERIF3:=simplify(evalm(Mult(Q[2],Q[2],4)-Q[2]));

0 0 0 O
0 0 0 O 0 00
0 0 0
VERIFI := | 0 0 0 O VERIF? := VERIF3 = | 0 0 O
0 0 0 O
0 0 0 O 0 00
0 0 0 O

In particular, the endomorphism e € E defined by e(m(\)) = m(A Py), where A € A4 satisfies €? =
e, i.e., defines an idempotent of E. As e was obtained from idy; by means of a homotopy, we have
e = idy;. However, as we have P = P and Q3 = ., we know that the A-modules ker4(.P),
ima(.Py) =kera(.(Is — P2)), kera(.Q2) and im4(.Q2) = kera(.(I3 — QQ2)) are projective, and thus, free
by the Quillen-Suslin theorem. Let us compute bases of those free A-modules:

> Ul:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]) ,A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[2],A); V2:=SyzygyModule (evalm(1-Q[2]),4):
> V:=stackmatrix(V1,V2);
dw?+w?a wW?+kadw? d+2¢w —w?
w? 0 1
0 d -1 0
U .= V= 0 1 0
w? 0 1 0
—w? d+a 0
0 1 0 0

The matrices U € GL4(A) and V' € GL3(A) are such that U P, U~! and V Q5 V! are two block-diagonal
matrices formed by the diagonal matrices 0,, and I,,:

> VERIF1:=Mult(U,P[2],LeftInverse(U,A),A);
>  VERIF2:=Mult(V,Q[2],LeftInverse(V,A),A);

00 00
0 0 0
00 0O
VERIF1 = VERIF2 := | 0 0 O
00 10
0 01
00 01

Hence, the matrix R is equivalent to the block-diagonal matrix S = V RU ! defined by:
> S:=Mult(V,R,LeftInverse(U,A),A);
10 0 0
S=101 0 0
0 0 —d—a d*—kadw?+da

Hence, we have M = A2 /(A(—(d+a) d*+ad—kaw?d)). This result can be obtained by means of
the command HeuristicDecomposition:

> HeuristicDecomposition(R,P[1],4) [1];
1 0 0 0
0 1 0 0
0 0 -d—a d*—kadw?+da
We note that we can simplify again the last row of S by means of elementary column operations:

> X:=diag(diag(1$2),evalm([[-1,d],[0,1]11));



10 0 O
01 0 O
X =
0 0 -1 d
00 0 1
The new matrix S X has then the simple form:
> Mult(S,X,A);
10 0 0
0 1 0 0

0 0 d+a —kadw?
Hence, if we denote by Y = X1 U € GL4(A)

>  Y:=Mult(LeftInverse(X,A),U,A);
dw? +w?a Ww?+kadw? d+2¢w —w?

0 d -1 0

Y =
—w? d -1 0
0 1 0 0

then we obtain that R is equivalent to the block-diagonal matrix 7=V RY ~! defined by:
> T:=Mult(V,R,LeftInverse(Y,A),A);
10 0 0
T:=]0 1 0 0
0 0 d+a —kadw?

If F denotes an A-module (e.g., F = C*°(R)), then the linear differential time-delay system kerz(R.) is
equivalent to the linear system kerz(S.) defined by the sole first order equation:

y(t) +ay(t) — kaw?v(t —h) = 0.



