restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

Let us consider another model of a tank containing a fluid and subjected to a one-dimensional horizontal
move studied in N. Petit, P. Rouchon, “Dynamics and solutions to some control problems for water-tank
systems”, IEEE Trans. Automatic Control, 47 (2002), 595-609. The system matrix is defined by:

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[alphal):

> R:=matrix(2,3,[d,-d*delta"2,alpha*d”2*delta,d*delta”2,-d,alpha*d~2*delta]);
d —dé* ad?*
dé? —d «ad?

Let us consider the A = Q(«)[d, d]-module M = A1*3/(A*2 R) finitely presented by the matrix R and
let us compute the A-module structure of the endomorphism ring E = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A):

The A-module E is finitely generated by the endomorphisms f;’s defined by f;(7()\)) = n(A P;), where
7 A3 — M denotes the projection onto M, A € A'*3 and P; is one of the following matrices:

> Endo[1];
01 0 0 0 0 1 00 0 0 0
[[1 0O O |,|] O O 0 , |0 1 0|, 0 0 01,
0 0 -1 52 -1 «dé 0 0 1 1-62 1-46% 0
0 0 0 0 0 0 0 0 add 0 0 0
1462 146 0|, ad ad 0 |,| 1 -6 0 1 =82 ads |]
0 0 0 6 46 0 0 0 -5-1 0 0 0
The generators f;’s of E satisfy the following A-linear relations
> Endo[2];
[ —d 0 dé* 0 0 0 d 0]
dé> 0 —d 0 0 0 —d 0
0 4 0 00 0 0 0
0 0 0 d o0 0 0 0
0 0 0 6 0 —1+46> 0 0
0 0 0 0 d 0 0 0
. 0 0 0 0 0 0 0 d |

i.e., if we denote by F' = (f; ... fg)T, we then have Endo[2] F = 0.

The multiplication table Endo[3] of the generators f;’s gives us a way to rewrite the composition f;o f; in
terms of A-linear combinations of the fi.’s or, in other words, if we denote by ® the Kronecker product,
namely, FQF = ((fioF)” ... (fsoF)T)T, then the multiplication table T of the generators f;’s satisfies
F®F =TF, where T is the matrix Endo[3] without the first column which corresponds to the indices
(i,7) of the product f; o f;. We do not print here this matrix as it belongs to A%*®. We can use it
for rewriting any polynomial in the f;’s with coefficients in A in terms of a A-linear combination of the
generators f;’s.



Let us now try to compute idempotents of £ defined by idempotent matrices, namely, elements e €
satisfying e = e and defined by matrices P € A%3*3 and Q € A%*? satisfying the relations RP = Q R,
P2=Pand Q> =Q:

> Idem:=IdempotentsMatConstCoeff (R,Endo[1],A,0);

1/2 1/2 0 00 0 100
Idem := || 1/2 1/2 o(,l]00o0},|l0 1 0],

—c51 (=14062) —c51 (-1+6%) 0 000 00 1

0 0 0 1 0 0 1/2 -1/2 0
—6% 1 —add |,| 6 0 add |, —1/2 1/2 0 1],

0 0 0 0 0 1 —c51 (—1+0%) —c51 (—1+62) 1
[Ore_algebra, [“diff ", dual_shift], [t, s], [d, 8], [t, s], [, ¢51],0, (1, [I, [¢, s, [I, [], [diff = [d, t],

dual _shift = [6, s]]]]

Let us consider the first entry P; of Idem[1] where we have set the arbitrary constant ¢51 to 0 and the
matrix Q; € A?*? satisfying RP; = Q1 R:

> P[1] :=subs(c51=0,evalm(Idem[1,1])); Q[1] :=Factorize (Mult(R,P[1],A),R,A);

1/2 1/2 0
/2 —1/2
Po=|1/2 1/2 0| @ :=
~-1/2  1/2
0 0 0

As the entries of the matrices P; and @1 belong to Q, using linear algebraic techniques, we can easily
compute bases of the free A-modules ker4(.P;), ker4(.Q1), ima(.Py) = kera(.(I3 — P1)) and im4(.Q1) =
kera(.(Is — Q1)):

> Ul:=SyzygyModule(P[1],A): U2:=SyzygyModule(evalm(1-P[1]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[1],A): V2:=SyzygyModule (evalm(1-Q[1]),A):
> V:=stackmatrix(V1,V2);

1 -1 0
1 1
U=]10 0 1 V=
1 -1
1 1 0

We can check that J; = U P, U~ ' and J, = V Q1 V! are block-diagonal matrices formed by the matrices
0,, and I,,:

> VERIF1:=Mult(U,P,LeftInverse(U,A),A);
> VERIF2:=Mult(V,Q,LeftInverse(V,A),A);

0 0 0 0 0
VERIFI := | 0 0 O VERIF? := l 01
0 01

Then, the matrix R is equivalent to the following block-diagonal matrix V RU1:

> R_dec:=map(factor,simplify (Mult(V,R,LeftInverse(U,A),A)));
d(6?+1) 2ad?* 0

0 0 —d(0—-1)(6+1)

R_dec :=




This last result can be directly obtained by means of the command HeuristicDecomposition:
> map(factor,HeuristicDecomposition(R,P[1],A) [11);
d(62+1) 2ad%§ 0
0 0 —d(l-1(+1)

We can use another idempotent matrix P, listed in Idem[1] to obtain another decomposition of the
matrix R. Let us consider the fourth one and the corresponding idempotent matrix Qo:

> P[2]:=Idem[1,4]; Q[2] :=Factorize(Mult(R,P[2],A),R,A);

0 0 0
0 62
P=| =62 1 —aéd Q2 =
0 1
0 0 0

As we have P? = P, and Q% = Q», we know that the A-modules ker4(.P), kera(.Q2), ima(.P) =
kera(.(Is — P2)) and ima(.Q2) = kera(.(I2 — Q2)) are projective, and thus, free by the Quillen-Suslin
theorem. Let us compute basis of those free A-modules:

> Ul1l:=SyzygyModule(P[2],A): U21:=SyzygyModule (evalm(1-P[2]),A):
> UU:=stackmatrix(U11,U021);
> V11:=SyzygyModule(Q[2],A): V21:=SyzygyModule (evalm(1-Q[2]),A):
> VV:=stackmatrix(V1i1,V21);

1 0 0
-1 &2
UU = 0 0 1 VV =
0 1
5 -1 add

As previously, we can check that the idempotent matrices P, and Q2 are equivalent to block-diagonal
matrices formed by the matrices 0,, and I,,:

> VERIF1:=Mult(UU,P[1],LeftInverse(UU,A),A);
> VERIF2:=Mult(VV,Q[1],LeftInverse(VV,A),A);

0 0 0
0 0
VERIFI := | 0 0 O VERIF?2 := 01

0 0 1
Then, the matrix R is equivalent to the following block-diagonal matrix:
> R_decl:=map(factor,simplify (Mult(VV,R,LeftInverse(UU,A),A)));

d@—1)(6+1)(62+1) ad?6(6-1)(6+1) 0
0 0 d

R_decl :=

We can check this last result by means of the command HeuristicDecomposition:

> map(factor,HeuristicDecomposition(R,P[2],A) [1]);
d0—-1)(6+1)(6%+1) ad?6(6-1)(6+1) 0
0 0 d

Hence, we obtain another decomposition of the matrix R. If we denote by

T =(d(?+1) 2ad?d), My = AYX2J(ATY),

Ty =d (8% — 1), My = AJ(ATy), "
Ty=(d(6%—1)(62+1) ad?s(s?—1)), My = A2 J(ATy),

Ty =d, My = AJ(ATY),



then we have the following decompositions of the A-module M:
MM &M, MMM, (2)
Let us now study the A-module structure of E defined by A'*8 /(A7 Endo|2]):

> extl:=Exti(Involution(Endo[2],A),A,1): exti[1];

[ dé%>—d 0 0 00 0 0]
0 d 0 0 0 0 0
0 0 dé*—d 0 0 0 0
0 0 0 d 0 0 0
0 0 0 0 d 0 0
0 0 0 0 0 dé?>—d 0
i 0 0 0 00 0 d |
> extl[2];
(10 1 000 0 0]
0 1 0 0 00 0O
0 0 6241 0 0 0 1 0
00 0 100 00
00 0 01 0 0O
0 0 0 0 01 0O
1 00 0 00 0 0 1]
Hence, the following torsion elements of F
tr=fi+fs d(0* = 1)t1 =0,
ta = fo, dty =0,
ty = (8% +1) fs + fr, d(6* —1)t3 =0,
ty = fu, dty =0, (3)
ts = fs, dts =0,
ts = fs, d (6% —1)tg =0,
tr = fs, dt; =0,

generate the A-module t(F) and we have E/t(E) = AY8/(A1*7ext1[2]). As the A-module E/t(E) is
torsion-free, it can be parametrized by means of the matrix ext1[3] defined by

> ext1[3];




i.e., we have E/t(E) =2 A8 ext1[3]. As extl[3] admits a left-inverse over A defined by

> LeftInverse(ext1[3],A);
[00 =1 0000 0]

we obtain that A8 ext1[3] = A, i.e., E/t(E) is a free A-module of rank 1. Using that the short exact
sequence of A-modules 0 — t(E) — E - E/t(E) — 0 ends with a projective A-module, it splits
and we get E =2 {(E) ® E/t(E) 2 t(F) ® A. Let us now study ¢(E).

> L:=Factorize(Endo[2],ext1[2],A);

—-d 0 d 0 0 0 0

dé> 0 —d 0 0 0 0

0 d4 0 0 0 0 0

L = 0 0 0 d O 0 0

0 0 0 6 0 —1+6%2 0

0 0 0 0 d 0 0

0 0 0 00 0 d)
> SyzygyModule(ext1[2],4);
INJ (7)

Lemma 3.1 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional systems”,
Linear Algebra and Its Applications, 428 (2008), 324-381, we obtain that t(E) = A7 /(A" L). From
the structure of the full row rank matrix L, we obtain that

t(E) ~ [A/(Ad)]3 @AIXZ/(AD(Q Sl) 69Al><2/(Al><2 52),
where where N' denotes ! direct sums of N and the matrices S; and Sy are defined by:

> S[1] :=submatrix(L,1..2,[1,3]);

> 8[2] :=submatrix(L,4..5,[4,6]);

d 0
Sy =
§ =142

Let us check whether or not the matrix 57 is equivalent to a block-diagonal matrix:
> E[1] :=MorphismsConstCoeff (S[1],S5[1],A):

> Idem[1] :=IdempotentsMatConstCoeff (S[1],E[1][1],A,0,alpha);

[ c31 —c81+1 [ c31 —c81 lo 0] [1 01

Idem, = || , , , ], [Ore_algebra,
c31 —c81+1 c31 —1 —c81+1 0 0 0 1

[“diff", dual_shift], [t, s],[d, 6], [t, s], [c, ¢31], 0, (1, [], [t, s], [], [}, [diff = [d,?], dual_shift = [d, s]]]]

> X[1] :=subs(c31=0,evalm(Idem[1] [1,1]));

0 1
Xl =
0 1

We obtain that the matrix S; is equivalent to the following block diagonal matrix:



> map(factor,HeuristicDecomposition(S[1],X[1],A)[1]);
—d 0

0 d(6—-1)(6+1)
Hence, we have A1X2/(A%28)) = A/(Ad)® A/(Ad (5% —1)).

Let us check whether or not the matrix Sy is equivalent to a block-diagonal matrix:

> E[2] :=MorphismsConstCoeff (S[2],S[2],A):

> Idem[2] :=IdempotentsMatConstCoeff (S[2],E[2][1],A,0,alpha);
0 0 10
Idemg = [[l ] , [ |, [Ore_algebra, [“diff ", dual_shift],
0 0 0 1
[t, s, [d, 6], [t, s], [], 0, ], ], [t, ], [], ], [diff = [d, t], dual_shift = [6, s]]]]
> X[2]:=Idem[2][1,1]; VY[2]:=diag(0$2); Z:=diag(0$2);

R ER Y

> Lambda:=RiccatiConstCoeff (S[2],X[2],Y[2],Z,A,1,alpha) [1];

LR A
'H[o 0]’[0 1]“

X_bar[2] :=simplify(evalm(X[2]+Mult (Lambdal[2],S[2],A)));

[52 (1+52)5]

\%

X _bary :=
—0 1—6°

We obtain that the matrix S5 is equivalent to the following block-diagonal one:

> map(factor,HeuristicDecomposition(S[2],X_bar[2],A)[1]);
d@o-1)(0+1) 0
0 1

In particular, we have A'*2/(A'*2 Sy) = A/(Ad (6% — 1)), which shows that:
HE) = [A/(Ad))' & [A/(Ad (5 — 1))
Hence, we obtain the following decomposition of the A-module E:
E=[A/(Ad))* D [A/(Ad(5® - 1)) @ A. (4)

We now explicitly describe the previous isomorphism. Let us first compute a generalized inverse of the
matrix extl[2] over A:

> W:=GeneralizedInverse(ext1[2],A);



10 0 00 0O
01 00 0 0O
00 0 0 O0 0O
0 0010 0O
W =
0 00 O0OT1TO0TGO0
000 O0O0OT1TF®O0
001 0000
(000000 1)
We now introduce the matrix H = I — W ext1[2] defined by:
> H:=simplify(evalm(1-Mult(W,ext1[2],A)));
[0 0 -1 00 0 0 0]
0 0 0 00 0 0 O
0 0 1 0 0 0 00O
0 0 0 0 0 0 00O
H —
0 0 0 00 0 0O
0 0 0 0 00 00O
00 —62~1 00 0 0 0
(00 0 0000 O]

Using the fact that extl[2] H = 0, we obtain that the A-morphism o : E/{(E) — E defined by
o(r'(\)) = (A H), where 7 : AY*® — E (resp., ' : AY*® — E/t(E)) denotes the canonical projection
onto E (resp., E/t(E)) and A € A3 satisfies p o ¢ = idg/(p). For more details, see Theorem 4 of
A. Quadrat, D. Robertz, “Parametrizing all solutions of uncontrollable multidimensional linear systems”,
Proceedings of 16" IFAC World Congress, Prague (Czech Republic), 04-08/07/05. If we denote by
{9: = p(fi)}i=1,...s a set of generators of the A-module E/¢(E), then the A-morphism o : E/t(E) — E
is defined by:




Using (3), the A-morphism x :idg — oo p: E — E is then defined by:

x(fi) = fi+ fz =t
X(f2) = fa =ta,
x(f3) = fs — f3 =0,
X(fa) = fa=ta,
X(fs) = fs =t5,
x(fe) = fo = to,
X(fr) = fr +(8° +1) fs = t3,
x(fs) = fs =tz
Hence, if we define the A-morphism k: E — t(E) by
&(f1) =t,
k(f2) = t2,
k(fs) =0,
K(f1) = ta,
k(f5) =t5,
K(fs) = te,
k(f7) =ts,
K(fs) = tr,

then we get the identity idg = 0 o p + ¢ o k. Therefore, we obtain:

Jfi =1t —idp,

fa =1,

f3 =idu,

Ja = ta,

fs =15,

fe = te,

fr=1ts— (6% 4+ 1)idp,

fs =t7.
We find that {t1,...,t7,ida} is the same set of generators of the A-module E as {f;};=1,... s. Hence, the
family of generators {¢1,...,t7,idps} admits the same multiplication table Endo[3].

Let us show how to find again (4) from (2). Using the fact that M = M; & Mo, we get:
E =ends(M) = ends(M1) @ homy (M, Ma) @ homy (Ma, My) @ end 4 (Ms).

Using the fact that My = A/(Ad (6% — 1)), we have ends(Mz) = A/(Ad (6% — 1)). With the notations
(1)
> T[1] :=submatrix(R_dec,1..1,1..2);
Ty :=[d(0°+1) 2ad? |
> T[2] :=submatrix(R_dec,2..2,3..3);
Ty = —=d(0-1)(6+1) ]
we have hom 4 (My, Ma) = A1*3 /(A3 Morph[1][2]), where Morph[1][2] is defined by:

> Morph[1] :=MorphismsConstMorphCoeff (T[1],T[2],A): Morph[1][2];



-14+6* =6 0
0 d 0
0 0 d
Using the structure of the matrix Morph[1][2] and the previous decomposition of Sy, we obtain:
hom 4 (M, My) = A/(d (6> —1)) @ A/(Ad).
Let us now compute hom 4 (Mo, M;):
> Morph[2] :=MorphismsConstCoeff (T[2],T[1],A);
Morphy = [[[ 41 2adé |],[ d ]]

We obtain that hom 4 (Ms, M) is generated by one generator h satisfying the relation dh = 0, i.e., we
have hom 4 (M, My) = A/(Ad).

We now need to characterize the A-module end 4 (M;):
> Morph[3] :=MorphismsConstCoeff (T[1],T[1],A): Morph[3][2];
d 0 0
0 dé*+d d ]
Hence, we obtain enda(M;) = A/(Ad) ® A'*2/(AJ), where J € A'*? is defined by:

> J:=submatrix(Morph[3][2],2..2,2..3);
J = [ dé*+d d ]
Let us study the A-module N = A2 /(A J):
> Extensionl:= Exti(Involution(J,A),A,1);
-1
6 +1

We get that t(N) = (A((62+1) 1))/(AJ) = A/(Ad) and N/t(N) = A>2/(A((6> + 1) 1)). The
A-module N/t(N) is free as its parametrization Eztensionl[3] admits a left-inverse over A:

Eaxtensionl := [[ d |,[ *+1 1], ]

> LeftInverse(Extension1[3],A);
[ -1 0]
Therefore, the short exact sequence 0 — ¢(N) — N — N/t(N) — 0 splits and we obtain that
N 2 t(N)® N/t(N) = A/(Ad) ® A, a fact proving that end4(M;) = [A/(Ad)]?> ® A and:
E end 4 (M1) ® homa (M, M) @ hom 4 (Mo, M1) @ end 4(Ma)
[A/(Ad))P D A® AJ(Ad (%> — 1)) A/(Ad) D AJ/(Ad) D AJ/(Ad (6% — 1))
[A/(Ad)* @ [A/(Ad (62 —1)))? @ A.

1R

1%

We can also use the second decomposition M = M3 @& M, obtained in (2) to find again the previous
result. Indeed, we have:

E =ends(M) = ends(Ms) @ homy (Ms, My) @ hom 4 (My, M3) @ end 4 (My).
Using similar techniques as the previous ones, we can prove that
endy(Ms3) = [A/(Ad (62 —1))]* @ A,
hom 4 (M3, My) = [A/(Ad)]?,
hom 4 (My, M3) =2 A/(Ad),
end(My) = A/(Ad),
which finally shows again that E = [A/(Ad)]* @ [4/(Ad (6% - 1))]? @ A.



