restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

Let us consider the model of a fluid in a tank satisfying Saint-Venant’s equations and subjected to a one-
dimensional horizontal move studied in F. Dubois, N. Petit, P. Rouchon, “Motion planning and nonlinear
simulations for a tank containing a fluid”, in the proceedings of the 5 European Control Conference,
Karlsruhe (Germany), 1999, and defined by the following system matrix:

> A:=DefineQOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[s,t]):
R:=matrix (2,3, [delta~2,1,-2*d*delta,1,delta"2,-2*d*deltal);

52 1 -2d¢6
R =
1 6% —2d6
Let us compute the endomorphism ring £ = enda (M) of the A-module M = A'*3/(A'*2 R), where
A = Q[d, 4] is the commutative polynomial ring of differential time-delay operators:

> Endo:=MorphismsConstCoeff (R,R,A,mult_table):

The A-module E is generated by the fi’s defined by fi(w(\)) = (A P;), where 7 : A¥3 — M denotes
the projection onto M, A € A'*3 and the matrix P; € A3*3 is one of the following matrices:

> Endo[1];
0 0 2d 1 00 0 0 0 010
[0 0 2d5 |,]0 1 0|,[2d —2d 0,1 0 0[]
0 0 6%2+1 0 0 1 5§ =5 0 0 0 1

The generators {f;}i=1,...4 of the A-module E satisfy the relations Endo[2] F' = 0, with the notation
F=(f1 ... f0)T, and Endo[2] is the matrix defined by:

> Endo[2];
-1 1 0 52
-1 6 0 1
0 0 &-1 0

The multiplication table T of the generators {f;}i=1,....4 is defined by F® F = T F', where ® denotes the
Kronecker product, namely, F @ F = ((fi o F)T ... (fs0 F)1)T, and T is the matrix Endo[3] without
the first column which corresponds to the indices (4, 7) of the product f; o f;:

> Endo[3];



[1,1] 6241 0 0 0
1,27 1 0 0 0
1,3y 0 2d 2 -2d
1,4 1 0 0 0
2,1 1 0 0 0
22 0 1 0 0
23 0 0 1 0
24 0 0 0 1
3,1 0 0 0 0
3,2 0 0 1 0
3,3 0 0 —-2d 0
3,4 0 0 -1 0
41 1 0 0 0
42 0 0 0 1
[4,3) 0 2d 1 -2d
| 44 o 1 0o 0 |

Let us compute idempotents of £, namely, elements e € E satisfying e? = e:

> Idem:=IdempotentsConstCoeff(R,Endo[1],4,0);

00 0 100 1/2 1/2 0 /2 —-1/2 0
Idem :=[[|0 0 0|, 0 1 0|,|1/2 1/2 0|,| -1/2 1/2 0],
00 0 00 1 0 0 1 0 0 0

[Ore_algebra, [“diff”, dual _shift], [t, s], [d, 0], [s, ], [], 0, 1, I, [£, s], I, I,
[diff = [d,t], dual_shift = [d, s]]]]

We obtain the two trivial idempotents 0 and idy; of E but also two other non-trivial idempotents e and
f satisfying the relation e + f = idys. Let us consider the first non-trivial idempotent e of E defined by
e(m(A\)) = (A P), for all A\ € A3*3, where P is the third matrix of Idem[1] and Q € A%?*? is a matrix
satisfying R P = Q R:

> P:=Idem[1,3]; Q:=Factorize(Mult(R,P,A),R,A);

1/2 1/2 0
12 1/2
P:=11/2 1/2 0 Q =
12 1/2
0 0 1

As the entries of the matrices P and @ belong to QQ, we can compute their Jordan normal forms:

> J[1]:=jordan(P,’W’); evalm(W);

00 0 /2 1/2 0
Ji=10 10 ~1/2 1/2 0
001 0o 1 1

> J[2]:=jordan(Q,’Z’); evalm(Z);



; 0 0 12 1/2
o —1/2 12
Hence, we have J; = W' PW and J; = Z~' Q Z, and thus, the matrix R is equivalent to the block-
matrix Z~! RW defined by:
> R_dec:=simplify(Mult(inverse(Z),R,W,A));
2 -1 0 0
R_dec :=
0 146%2—-4ds —4dé

We can simplify the previous matrix by post-multiplying it by the following unimodular matrix

> Y:=evalm(diag(l,evalm([[1,0],[-1,111)));

1 0 0
Y:=]0 1 0
0 -1 1

in order to obtain the following simple block-diagonal matrix:
> R_final:=Mult(R_dec,Y,A);
% -1 0 0
R_final =
0 2 +1 —4do

Hence, we obtain that the A-module can be decomposed as M = M; & M,, with the notations M; =
AJ(A(6%-1)) and My = A2 /(A(62+1 —4d4)). Hence, if F denotes an A-module (e.g., F = C=(R)),
then we have kerz(R.) 2 kerz((62 — 1).) @ kerg((62 + 1 —4dJ).). We note that kerz((62 — 1).) is
formed by the 2-periodic functions of F.

Let us study the A-module structure A***/(A*3 Endo[2]) of the endomorphism ring E:

> extl:=Exti(Involution(Endo[2],A),A,1);

2 +1
-1 0 0 -1 0 0 §+1 .
extl] = | 0 4-1 0 /010 -1 |, . ]
0 0 5 -1 0 0 1 0
1
Hence, we obtain that the following torsion elements of F

tr=—fi+(0*+1) fa,
t2:f2—f47 (62_1)t220, i:1’273’

t3 = f31

generate the A-module t(E). Moreover, we have E/t(E) = A4 /(A1*3 ext1[2]) = A4 ext1[3], where
extl[2] (resp., ext1[3]) denotes the second (resp., third) matrix of extl. As the matrix ext1[3] admits the
following left-inverse over A

> LeftInverse(ext1[3],A);
[0 00 1]

the A-module E/t(E) is a free A-module of rank 1. The short exact sequence of A-modules

0 — t(E) — E 2 E/t(E) — 0,



ending with a projective A-module, splits, a fact implying:
Ex¢E)®E/t(E)2t(E)® A.
Let us now study the A-module ¢t(E) = (A% ext1[2])/(A**2 Endo[2)):

> L:=Factorize(Endo[2],ext1[2],A);

1 1 0
L= |1 & 0
0 0 -1
>  SyzygyModule (ext1[2],A);
INJ (3)

By Lemma 3.1 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional
systems”, Linear Algebra and Its Applications, 428 (2008), 324-381, we obtain

t(E) o A1><3/(Al><3 L) o~ A1><2/(Al><2 Q) @A/(A ((52 _ 1))7
where the matrix Q € A2%2 is defined by:

> Q:=submatrix(L,1..2,1..2);

11
Q= 1 52

The matrix @) admits an equivalent diagonal matrix which can be computed as follows:

> Endo_Q:=MorphismsConstCoeff (Q,Q,A):
> Idem_Q:=IdempotentsMatConstCoeff (Q,Endo_Q[1],A,0,alpha);

0 -1 0 0
Idem_Q = [[[ 1 , [ 0 ]], [Ore_algebra, [“diff”, dual_shift],

0 1 0
[t,s],1d, 6], [s, 2], [, 0, [), [, [£, ], [, [}, [diff = [d, t], dual_shaft = 3, s]]]]
> F:=Idem_Q[1,1];
0 -1 1
F =
0 1
> HeuristicDecomposition(Q,F,A) [1];
1 0
0 1-—62

Hence, we obtain that A1*2/(AY2Q) = A/(A1)DA/(A(62—1)) =2 A/(A (6% —1)), a fact finally proving
that the A-module E satisfies
E=[A/(A(8* - 1)) @ 4,

where N' denotes [ direct sums of the A-module N.

Let us explicitly describe the previous isomorphism. In order to do that, let us first compute a generalized
inverse of the matrix ext1[2] over A:

> U:=GeneralizedInverse(ext1[2],A);

-1 0 0

0 1 0
U :=

0 0 1

0 0 O



Let us now introduce the matrix V' = I — U ext1[2]:

> V:=simplify(evalm(1-Mult(U,ext1[2],A)));

0
0
0
0

0

0
0
0

0 &+1
0 1
0 0
0 1

Using the fact that ext1[2] V = 0, we obtain that the A-morphism o : E/t(E) — E defined by o(7'(\)) =
7(AV), where 7 : A% — E (resp., ' : AY** — E/t(E)) denotes the canonical projection onto E
(resp., E/t(E)) and X\ € A1*4  satisfies poo = idg /(). For more details, see Theorem 4 of A. Quadrat,
D. Robertz, “Parametrizing all solutions of uncontrollable multidimensional linear systems”, Proceedings
of 16" IFAC World Congress, Prague (Czech Republic), 04-08/07/05. If we denote by {g; = p(fi)}iz1... 4
a set of generators of the A-module E/t(E), then the A-morphism o : E/t(E) — E is defined by:

o(g1) = (62 +1) fu,
o(g92) = fa,
o(g3) =0,
o(94) = fa.

Using the relations Endo[2] F' = 0 between the generators f;’s of the A-module E, we obtain that the
A-morphism y :idg —oop: E — E is defined by:

X(f1) = fr = (8% +1) fa= —t1 = ta,
X(f2) = f2 — fa = ta,

X(f3) = fz =ts,

X(fa) =fa—fa=0

Hence, if we define the A-morphism k : E — t(F) by

K(f1) = ta,
k(f2) = ta,
Kk(f3) = ts,
K(f1) =0,

then we get that idg = 0 0 p 4+ ¢ o k. Therefore, we obtain

fi=ta+ (82 +1) f4,

Ja =12+ fa, 1)
f3 = t37
f4 = f4a

which shows that the generators f;’s of E' can be expressed in terms of the elements to = fo — fy = —t1,

ts = f3 and fy, a fact proving that {ts,ts, f4} is also a family of generators of the A-module E. Using
the multiplication table Endo[3] and (1), we can easily obtain the following multiplication table for the



new family of generators {¢o,t3, f4} of E:

ty oty = 21,
tooty = —2dts,

ta o f4 = —ta,

ts oty = 213,
tgoty = —2dts,

t3o fq = —t3,
faoty = —ty,
Jaots =2dts +t3,
Jao fa=1t2+ fa.

We have previously shown that M = M; & M,. Hence, we have:
E =ends(M) = ends(M;) @ homy(Mq, Ma) @ hom s (Ms, M) @ end 4 (Ms).

Using the fact that M; = A/(A (6% — 1)), we have enda(M;) = A/(A (62 —1)). The fact that M; is
a torsion A-module and M> is torsion-free implies that hom 4 (M7, M3) = 0. We now need to study
hom 4 (Mz, M) and end 4(Mz). Let us denote by S = (62 —1) and T = (62 +1 —4dJ):

> S:=submatrix(R_final,1..1,1..1);
S = [ 2 —1 ]
> T:=submatrix(R_final,2..2,2..3);
To=[+1 —4d5 ]
Then, hom 4 (Ms, M;) is defined by:
> Morph:=MorphismsConstCoeff(T,S,A);
2d

Morph := [[l 5

]1,[62—1]1

In particular, hom4(Ms, M;) is defined by only one generator h which satisfies (62 — 1)h = 0, i.e.,
hOIHA(MQ, M1) = A/(A (52 — 1))
Finally, let us compute end 4 (M3):

> Endo_T:=MorphismsConstCoeff (T,T,A):

> Endo_TI[1];
[ 1 0 0 4dé
0 1] ]0 &6+1

We obtain that the A-module end 4 (M>) is defined by two generators k; and kg which satisfy the following
A-linear relation:

> Endo_T[2];
[024+1 —1 ]

As we have the following relation ky = (6% + 1) k1, the A-module end4(M,) is generated by k; which

does not satisfy any other relation. Hence, we get end(Ms) =2 A. Hence, we finally find again that
E~[A/(A(8% 1)) o A.



