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We consider the model of a string with an interior mass studied in H. Mounier, J. Rudolph, M. Fliess,
P. Rouchon, “Tracking control of a vibrating string with an interior mass viewed as delay system”, ESAIM
COoCYV, 3 (1998), 315-321,
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¢1(t —2h1) +1(t) —ult —h1) =0,

¢2(t)+w2(t 2 hy) — v(t — ) = 0,

Pi(t
¢1

(1)

where 71, 12 are constant parameters and hi, ho € Ry are such that Qhy + Q he is a 2-dimensional Q-
vector space. Let us denote by A = Q(n1,72) [d, 01, 03] the commutative polynomial algebra of differential
incommensurable time-delay operators in d, o; and oo, where:

df(t) = f(t), o1f(t)=f(t—h1), o2f(t) = f(t—ha).
The system matrix R € A%*6 of (1) is defined by:
> A:=DefinelreAlgebra(diff=[d,t],dual_shift=[sigmal1],x[1]],

> dual_shift=[sigma[2],x[2]],polynom=[t,x[1],x[2]],
> comm=[eta[1],etal2]]):

> R:=matrix(4,6,[1,1, ,0,0,d+etal[1] ,d-etal1],-etal2],
> eta[2] 0,0, 31gma[1] ,1,0,0,-sigmal1],0,0,0,1,sigma[2] "2,
> —s:Lgma[Q]])
1 1 -1 -1 0 0
R d+n; d—ni —nz 12 0 0
' o2 1 0 0 -0, O
0 0 1 0‘22 0 —02

Factorization problem We show how to use OREMORPHISMS for computing a factorization of R
of the form R = LS. We first need to compute the endomorphism ring end (M) of the A-module
M = AY*6 /(A4 R) finitely presented by the matrix R.

> Endo:=MorphismsConstCoeff (R,R,A):

Then, we choose a particular morphism f by selecting the first element P; of Endo[1] and compute a
matrix @ satisfying R P; = @1 R. The latter operation can be performed by means of the Factorize
procedure of OREMODULES.

> P[1]:=Endo[1,1]; Q[1]:=Factorize(Mult(R,P[1],A),R,A);

0 0 MNe 02 N2 02 0 0
0 0 0 0 0 0
0 o211 N2 02 0 0 0
P o=
0 —0211 0 N2 02 0 0
0 0 N2 02 01 N2 02 0y 0 0
| 0 n — o2y 0 0 0 mgoz |



0 0 0

Q=
0 0 0

0
—Nzo2n; —nzozd mgoz 0 0
0

0 0 0

N202

By Theorem 3.1 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear functional
systems”, Linear Algebra and Its Applications, 428 (2008), 324-381, the matrix S that we are searching
for is the one defining the coimage of the endomorphism f of M defined by the previous matrices P; and
Q1. So, we compute it using the CoimMorphism procedure.

> §:=CoimMorphism(R,R,P[1],Q[1],4) [1];

10 -1 -1 0 0
0 1 0 0 0 0
S =100 o1 o1 -1 0
0 0 1 022 0 —o2
| 0 0 —d+me—m1 —d—mz—ns O 0 |

The matrix L such that R = LS can be obtained by right factoring R by S.

> L:=Factorize(R,S,A);

| 10 00 0
d+n, d—=nmi 0 1 0 0
b=, 1 o, 00 0
0 0 0 010

We note that choosing another endomorphism of M, i.e., another element of Endo[l], would lead to
another factorization of the matrix R.

Reduction problem We use the package OREMORPHISMS to reduce the matrix R, i.e., to find an
equivalent matrix with a block-triangular form. Theorem 3.2 of T. Cluzeau, A. Quadrat, “Factoring and
decomposing a class of linear functional systems”, Linear Algebra and Its Applications, 428 (2008), 324-
381, this can be done using an endomorphism of M defined by a pair of matrices P and @ provided that
the A-modules ker 4 (.P), coim 4 (.P), ker 4(.Q) and coim4(.Q) are free. We use the library OREMODULES
to check that these properties are fulfilled and use a heuristic method to compute bases of those free
A-modules. We then form the matrices U and V as defined in Theorem 3.2 of T. Cluzeau, A. Quadrat,
“Factoring and decomposing a class of linear functional systems”, Linear Algebra and Its Applications,
428 (2008), 324-381. We note that we generally need to use the package QUILLENSUSLIN to compute
bases of free modules over a commutative polynomial ring (see A. Fabiariska, A. Quadrat, “Applications
of the Quillen-Suslin theorem in multidimensional systems theory”, chapter of the book Grobner Bases in
Control Theory and Signal Processing, H. Park and G. Regensburger (Eds.), Radon Series on Computation
and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106).

Ul:=SyzygyModule(P[1],A): EU:=Exti(Involution(U1l,A),A,1):
U2:=LeftInverse(EU[3],A): U:=stackmatrix(U1,U2);
V1:=SyzygyModule(Q[1],A): EV:=Exti(Involution(V1,A),A,1):
V2:=LeftInverse(EV[3],A): V:=stackmatrix(V1,V2);

V V V V



(10 -1 -1 0 0]
01 0 0 0 O 1 0 00
0 0 o oo -1 0 0 01 0
U .= Vo=
00 -1 -1 0 O 01 00
00 1 0 0 O 0 0 01
100 0 0 0 1]
Then, we can compute the reduction V RU~! of the matrix R:
> R_red:=Mult(V,R,LeftInverse(U,A),A);
1 1 0 0 0 0
o1 1 o 0 0 0

R_red :=
d+771 d*ﬂl 0 77717772761 72772 O

0 0 0 —(722 1-— 0'22 —09
This reduction can be obtained using the HeuristicReduction procedure.

> HeuristicReduction(R,P[1],A) [1];
1 1 0 0 0 0

012 1 o1 0 0 0
d+m d—m 0 —-nm—n—d —2n 0

0 0 0 —022 1 —0’22 —09

Decomposition problem We now show how to use the package OREMORPHISMS to decompose the
differential time-delay linear system (1), i.e., to find an equivalent system defined by a block-diagonal
matrix. To achieve this decomposition, we first need to compute idempotent endomorphisms of M that
are defined by idempotent matrices P and Q i.e., RP = QR, P2 = P and Q% = Q. A way to do that is
to use the procedure IdempotentsMatConstCoeff of OREMORPHISMS. We need to specify the total order
in d, o1 and o5 of the idempotent matrix P, a piece of information which is specified by the fourth entry
of the procedure. We first start by searching for idempotents of M defined by constant matrices.

> Idem_order0:=IdempotentsMatConstCoeff (R,Endo[1],A,0) [1];

00000071 [O -=11100
000 0O00 0 1 0000
000000 0 0 1 000
Idem_orderQ := | , ]
000000 0 0 01 00
0000 0O 0 0 001 0
|00 0O00O0O] [0 O 0O0O0 1]

We choose the non-trivial idempotent, i.e., the second entry of Idem _order0:

> P[2] :=Idem_order0[2]; Q[2]:=Factorize(Mult(R,P[2],A),R,A);



0 -1 1.1 00

0 1 00 0O 0 0 00

0 0 1 0 0O —-d—-n; 1 0 0
Pg = QQ =

0 0 01 0O —0;2 0 1 0

0 0 0 0 10 0 0 01

(0 0 00 0 1|

The fact that P? = P, and Q3 = @ imply that the A-modules kera(.P), kera(.Q2), ima(.Py) =
kera(.(Ig — P2)) and im4(.Q2) = kera(.(Is — Q)2)) are projective, and thus, free by the Quillen-Suslin
theorem. We need to compute bases of those free A-modules. We then form the matrices U and V
as explained in Theorem 4.2 of T. Cluzeau, A. Quadrat, “Factoring and decomposing a class of linear
functional systems”, Linear Algebra and Its Applications, 428 (2008), 324-381.

> Ul:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]),A):
> U:=stackmatrix(U1,U2);
> V1:=SyzygyModule(Q[2],A): V2:=SyzygyModule(evalm(1-Q[2]),A):
> V:=stackmatrix(V1,submatrix(V2,[1, 2, 4],1..4));
(11 -1 -1 0 0]
01 0 0 00 1 0 0 O
00 1 0 00 d+n; -1 0 O
U = V =
00 0 1 00 o2 0 -1 0
00 0 0 10 0 0o 0 1
L0 0 0 0 0 1]

Now, we can compute the corresponding decomposition V RU! of R:

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

1 0 0 0 0 0

0 2n; —d+me—m; —d-me—m; 0 0
R_dec :=

O 0'1271 70’12 70’12 g1 O

0 0 1 022 0 —o2

We can now try to decompose the second diagonal block matrix S of R_dec:
> S:=submatrix(R_dec,2..4,2..6):

We apply the same technique as above: compute the endomorphism ring of the A-module N = A1X?/(A1%3 §)
finitely presented by S, find one idempotent defined by idempotent matrices, compute bases of the free
A-modules defined by their kernels and images, form the corresponding unimodular matrices and deduce
the decomposition of S.

> Endol:=MorphismsConstCoeff (S,S,A):
> Ideml_orderO:=IdempotentsMatConstCoeff (S,Endo1[1],A,0) [1];

00 00O 10000
000 O0O 01 000

Ideml_order0 :=[| 0 0 0 0 0 |,| 0 O 1 0 O |]
000 0O 00010

L0000 O] [0O0O0O0 1]




We do not obtain a non-trivial idempotent of order 0 by means of the IdempotentsMatConstCoeff pro-
cedure. Hence, we can try another technique which searches for idempotents which are obtained by
homotopies from the trivial idempotent idy defined by P3 =I5 and Q3 = I3, i.e., S P3 = Q3 S.

> P[3]:=diag(1$5): Q[3]:=diag(1$3): Z[3]:=matrix(5,3,[0$15]):
We then need to solve the algebraic Riccati equation ASA+ A =0:

> Mu:=RiccatiConstCoeff (S,P[3],Q[3],Z[3],A,0,alpha):
We choose one solution A; of the previous algebraic Riccati equation:

> Lambda[1] :=subs ({b321=0,b521=0},Mu[1,2]);

0
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o o o o o

We get a non-trivial idempotent defined by the following matrices Py and Q4:

> P[4]:=simplify(evalm(P[3]+Mult(Lambdal1],S,4)));
> Q[4] :=simplify(evalm(Q[3]+Mult(S,Lambdal1],A)));

[ o2 —0,2 —0:2 o, 0]
0;2—-1 —0/241 —042 o0, 0 1 ny—d+mns 0
Py = 0 0 1 0 0 Qs:= 1|0 0 0
0 0 0 1 0 0 1 1
0 0 0 0 1

We now compute bases of the free A-modules kera(.Py), kera(.Q4), ima(.Py) = kera(.(Is — Py)) and
ima(.Qq) =kera(.(Is — Q4)) and we get the following two unimodular matrices X and Y:

> X1:=SyzygyModule(P[4],A): X2:=SyzygyModule(evalm(1-P[4]),A):
> X:=stackmatrix(X1,X2);
>  Y1:=SyzygyModule(Q[4],A): Y2:=SyzygyModule(evalm(1-Q[4]),A):
> Y:=stackmatrix(Y1,Y2);
_0'12—1 —0'12 —012 g1 O_
1 -1 0 0 0 0 1 0
X = 0 0 1 0 0 Y =11 0 d—n2—ny
0 0 0 1 0 0 1 1
i 0 0 0 0 1 |

Then, we obtain the following decomposition Y S X! of the matrix S:

> S_dec:=Mult(Y,S,LeftInverse(X,A),A);

S_dec =
1 0 0 0 0
0 2ny —d—ng —n1+02°d—mg0% —02%n; 0 (n; —d+mng)oy
0 0;2-1 —012 4052 oy —02

We continue by considering the second diagonal block matrix T" of S_dec:



> T:=submatrix(S_dec,2..3,2..5):
We apply the same technique as above:

> P[5]:=diag(1%$4): Q[5]:=diag(1$2): Z[5]:=matrix(4,2,[0$8]):
We compute the solutions of the Riccati equation AT A + A = 0:

> Mul:=RiccatiConstCoeff (T,P[5],Q[5],Z[5],A,0,alpha):
We choose one solution Ay of the previous algebraic Riccati equation:

> Lambda[2]:=subs({b311=0},Mu1[1,1]);

—1/(2n1)

Ay =

o O o O

0
0
0
Hence, we get an idempotent of the endomorphism ring of the A-module finitely presented by 7" defined

by the following matrices Ps and Qg:

> P[6]:=simplify(evalm(P[5]+Mult(Lambda[2],T,A)));
> Q[6]:=simplify(evalm(Q[5]+Mult(T,Lambdal2],4)));

0 1/2nctmetdmes dinositortn g/ (nodin)os
p | 1 0 0

0 0 1 0

0 0 0 1

0 0
Qs = 2_q
—1/2T 1

We now compute bases of the free A-modules kera(.Fs), kera(.Qg), ima(.Ps) = kera(.(I4 — Ps)) and
ima(.Qs) = kera(.(I2 — Q6)) and we obtain the following unimodular matrices G and H:

> G1:=SyzygyModule(P[6],A): G2:=SyzygyModule(evalm(1-P[6]),A):
> G:=stackmatrix(G1,G2);
> H1l:=SyzygyModule(Q[6],A): H2:=SyzygyModule(evalm(1-Q[6]),A):
> H:=stackmatrix(H1,H2);
G =
201 —d—mnz —n1 +02°d—n202* =02’ 0 0an; —o2d+nz0z
1 0 0
0 0 1 0
0 0 0 1

1 0
H =
oi2—1 =2

Then, we obtain the following decomposition H T G~ of the matrix T

> T_dec:=Mult(H,T,LeftInverse(G,A),A);



T _dec :=
1 0

0 ((—mi4+d—m2)o®>+ni—d—mn2)oi>+(—d—ni+n2) o> +d+n2+n1 —2n;0;
0 0
*27’]10‘1 (771*d+772)0'20'12+(d*772+771)0'2

From the previous three invertible transformations, we can deduce the unimodular matrices that perform
all this decomposition process in one step:

> W[1]:=Mult(diag(1,1,G),diag(1,X),U,A):
> W[2]:=Mult(diag(1l,1,H),diag(1,Y),V,A):

The system matrix R is equivalent to the matrix L = Wo RW |~ L
> L:=Mult(W[2],R,LeftInverse(W[1],A),A)):
The matrix L has then the form

> ShapeOfMatrix(L);

1 0 00 0O
01 0 0 0 O
001 0 0 O
0 0 0 *x % =

where the stars * denote non-trivial elements of A respectively defined by:
> collect(L[4,4],{d,sigmal1],sigmal2]});
(=mi+d—n2)os®+n; —d—mnz) o2+ (=d—n; +n2) 02> +d+n2 + 1y
> collect(L[4,5],{d,sigmal1],sigmal2]});
—2n; 04
> collect(L[4,6],{d,sigmal1],sigmal2]});
(1 —d+mz)oz0:> +(d—ng+n1)0s

The entries of the last row of L can be reduced by means of elementary column operations. Hence, if we
consider the following unimodular matrix

J =
M1 1 -1 -1 0 0 T
0 o1>’—-1 —0,? —oy? o1 0
0 2m  —2m  —m—n2—d+oa®>d— o2t m — 2o’ 0 —(d—m —n2) o2
0 0 0 1—0y° 0 o2
0 0 0 o1 (022d7022771 fngangdfnngm) —2m —o201(d—m —n2)
L O 0 0 20912 0 —21n2 i

obtained from W, by means of elementary operations (see the corresponding Maple worksheet), we finally
get the following simpler decomposition Wo R J ! of R:

> R_final:=Mult(W[2],R,LeftInverse(J,A),A);

1 00 0 0 0

010 0 0 0
R_final =

0 0 1 0 0 0

0 0 0 d+m+mn o1 o2



Hence, the differential time-delay system (1) formed by 4 equations in 6 unknowns is equivalent to the
following sole equation in 3 unknowns:

Z1(t) + (m 4+ n2) z1(t) + z2(t — he) + z3(t — he) = 0. (2)

Using the simple form of (2), we can easily study its structural properties (e.g., controllability, parametriz-
ability, flatness, m-freeness, stability, stabilizability), and thus, those of (1). In particular, we obtain
that (2), and thus, (1) is controllable, parametrizable, o1-free and oo-free (see F. Chyzak, A. Quadrat,
D. Robertz, “Effective algorithms for parametrizing linear control systems over Ore algebras”, Appl.
Algebra Engrg. Comm. Comput., 16 (2005), 319-376, and M. Fliess, H. Mounier, “Controllability and
observability of linear delay systems: an algebraic approach”, ESAIM: Control, Optimisation and Cal-
culus of Variations, 3 (1998), 301-314, for the corresponding definitions). Parametrizations of (1) can
directly be obtained from the ones of (2) by means of the matrix J—! (see the previous references).
System (2) admits an unstable pole at —(m1 + 72), where the #;’s are two positive parameters of (1).
Its stabilizability can be studied using, e.g., A. Quadrat, “The fractional representation approach to
synthesis problems: an algebraic analysis viewpoint. Part II: Internal stabilization”, SIAM J. Control &
Optimization, 42 (2003), 300-320.



