- restart:
- with(OreModules):
- with(OreMorphisms);
- with(linalg):

We consider the model of a string with an interior mass studied in H. Mounier, J. Rudolph, M. Fliess, P. Rouchon, "Tracking control of a vibrating string with an interior mass viewed as delay system", ESAIM COCV, 3 (1998), 315-321,

$$\begin{cases}
\phi_1(t) + \psi_1(t) - \phi_2(t) - \psi_2(t) = 0, \\
\dot{\phi}_1(t) + \dot{\psi}_1(t) + \eta_1 \phi_1(t) - \eta_1 \psi_1(t) - \eta_2 \phi_2(t) + \eta_2 \psi_2(t) = 0, \\
\phi_1(t - 2h_1) + \psi_1(t) - u(t - h_1) = 0, \\
\phi_2(t) + \psi_2(t - 2h_2) - v(t - h_2) = 0.
\end{cases}$$
(1)

where η_1, η_2 are constant parameters and $h_1, h_2 \in \mathbb{R}_+$ are such that $\mathbb{Q} h_1 + \mathbb{Q} h_2$ is a 2-dimensional \mathbb{Q} vector space. Let us denote by $A = \mathbb{Q}(\eta_1, \eta_2) [d, \sigma_1, \sigma_2]$ the commutative polynomial algebra of differential incommensurable time-delay operators in d, σ_1 and σ_2 , where:

$$d f(t) = \dot{f}(t), \quad \sigma_1 f(t) = f(t - h_1), \quad \sigma_2 f(t) = f(t - h_2).$$

The system matrix $R \in A^{4 \times 6}$ of (1) is defined by:

- A:=DefineOreAlgebra(diff=[d,t],dual_shift=[sigma[1],x[1]],
- $dual_shift=[sigma[2],x[2]],polynom=[t,x[1],x[2]],$
- comm=[eta[1],eta[2]]):
- R:=matrix(4,6,[1,1,-1,-1,0,0,d+eta[1],d-eta[1],-eta[2], eta[2],0,0,_sigma[1]^2,1,0,0,-sigma[1],0,0,0,1,sigma[2]^2,
- 0,-sigma[2]]);

$$R := \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ d + \eta_1 & d - \eta_1 & -\eta_2 & \eta_2 & 0 & 0 \\ \sigma_1^2 & 1 & 0 & 0 & -\sigma_1 & 0 \\ 0 & 0 & 1 & \sigma_2^2 & 0 & -\sigma_2 \end{bmatrix}$$

Factorization problem We show how to use OreMorphisms for computing a factorization of R of the form R = LS. We first need to compute the endomorphism ring $\operatorname{end}_A(M)$ of the A-module $M = A^{1\times 6}/(A^{1\times 4}R)$ finitely presented by the matrix R.

Endo:=MorphismsConstCoeff(R,R,A):

Then, we choose a particular morphism f by selecting the first element P_1 of Endo[1] and compute a matrix Q_1 satisfying $RP_1 = Q_1R$. The latter operation can be performed by means of the Factorize procedure of OREMODULES.

> P[1]:=Endo[1,1]; Q[1]:=Factorize(Mult(R,P[1],A),R,A);

$$P_1 := \begin{bmatrix} 0 & 0 & \eta_2 \sigma_2 & \eta_2 \sigma_2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & \sigma_2 \eta_1 & \eta_2 \sigma_2 & 0 & 0 & 0 \\ 0 & -\sigma_2 \eta_1 & 0 & \eta_2 \sigma_2 & 0 & 0 \\ 0 & 0 & \eta_2 \sigma_2 \sigma_1 & \eta_2 \sigma_2 \sigma_1 & 0 & 0 \\ 0 & \eta_1 - \sigma_2^2 \eta_1 & 0 & 0 & 0 & \eta_2 \sigma_2 \end{bmatrix}$$

By Theorem 3.1 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381, the matrix S that we are searching for is the one defining the coimage of the endomorphism f of M defined by the previous matrices P_1 and Q_1 . So, we compute it using the CoimMorphism procedure.

> S:=CoimMorphism(R,R,P[1],Q[1],A)[1];

The matrix L such that R = LS can be obtained by right factoring R by S.

> L:=Factorize(R,S,A);

$$L := \left[egin{array}{ccccccc} 1 & 1 & 0 & 0 & 0 & 0 \ d + \eta_1 & d - \eta_1 & 0 & 1 & 0 & 0 \ \sigma_1{}^2 & 1 & \sigma_1 & 0 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \end{array}
ight]$$

We note that choosing another endomorphism of M, i.e., another element of Endo[1], would lead to another factorization of the matrix R.

Reduction problem We use the package OREMORPHISMS to reduce the matrix R, i.e., to find an equivalent matrix with a block-triangular form. Theorem 3.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", $Linear\ Algebra\ and\ Its\ Applications$, 428 (2008), 324-381, this can be done using an endomorphism of M defined by a pair of matrices P and Q provided that the A-modules $\ker_A(.P)$, $\operatorname{coim}_A(.P)$, $\ker_A(.Q)$ and $\operatorname{coim}_A(.Q)$ are free. We use the library OREMODULES to check that these properties are fulfilled and use a heuristic method to compute bases of those free A-modules. We then form the matrices U and V as defined in Theorem 3.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", $Linear\ Algebra\ and\ Its\ Applications$, 428 (2008), 324-381. We note that we generally need to use the package QUILLENSUSLIN to compute bases of free modules over a commutative polynomial ring (see A. Fabiańska, A. Quadrat, "Applications of the Quillen-Suslin theorem in multidimensional systems theory", chapter of the book $Gr\ddot{o}bner\ Bases\ in\ Control\ Theory\ and\ Signal\ Processing$, H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de Gruyter publisher, 2007, 23-106).

- > U1:=SyzygyModule(P[1],A): EU:=Exti(Involution(U1,A),A,1):
- > U2:=LeftInverse(EU[3],A): U:=stackmatrix(U1,U2);
- > V1:=SyzygyModule(Q[1],A): EV:=Exti(Involution(V1,A),A,1):
- > V2:=LeftInverse(EV[3],A): V:=stackmatrix(V1,V2);

$$U := \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \sigma_1 & \sigma_1 & -1 & 0 \\ 0 & 0 & -1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad V := \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then, we can compute the reduction VRU^{-1} of the matrix R:

> R_red:=Mult(V,R,LeftInverse(U,A),A);

This reduction can be obtained using the *HeuristicReduction* procedure

> HeuristicReduction(R,P[1],A)[1];

$$\begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ \sigma_1^2 & 1 & \sigma_1 & 0 & 0 & 0 \\ d + \eta_1 & d - \eta_1 & 0 & -\eta_1 - \eta_2 - d & -2\eta_2 & 0 \\ 0 & 0 & 0 & -\sigma_2^2 & 1 - \sigma_2^2 & -\sigma_2 \end{bmatrix}$$

Decomposition problem We now show how to use the package OREMORPHISMS to decompose the differential time-delay linear system (1), i.e., to find an equivalent system defined by a block-diagonal matrix. To achieve this decomposition, we first need to compute idempotent endomorphisms of M that are defined by idempotent matrices P and Q i.e., RP = QR, $P^2 = P$ and $Q^2 = Q$. A way to do that is to use the procedure IdempotentsMatConstCoeff of OREMORPHISMS. We need to specify the total order in d, σ_1 and σ_2 of the idempotent matrix P, a piece of information which is specified by the fourth entry of the procedure. We first start by searching for idempotents of M defined by constant matrices.

> Idem_order0:=IdempotentsMatConstCoeff(R,Endo[1],A,0)[1]

We choose the non-trivial idempotent, i.e., the second entry of *Idem_order0*:

> P[2]:=Idem_order0[2]; Q[2]:=Factorize(Mult(R,P[2],A),R,A);

$$P_2 := egin{bmatrix} 0 & -1 & 1 & 1 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad Q_2 := egin{bmatrix} 0 & 0 & 0 & 0 & 0 \ -d - \eta_1 & 1 & 0 & 0 \ -\sigma_1{}^2 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

The fact that $P_2^2 = P_2$ and $Q_2^2 = Q_2$ imply that the A-modules $\ker_A(.P_2)$, $\ker_A(.Q_2)$, $\operatorname{im}_A(.P_2) = \ker_A(.(I_6 - P_2))$ and $\operatorname{im}_A(.Q_2) = \ker_A(.(I_4 - Q_2))$ are projective, and thus, free by the Quillen-Suslin theorem. We need to compute bases of those free A-modules. We then form the matrices U and V as explained in Theorem 4.2 of T. Cluzeau, A. Quadrat, "Factoring and decomposing a class of linear functional systems", Linear Algebra and Its Applications, 428 (2008), 324-381.

- > U1:=SyzygyModule(P[2],A): U2:=SyzygyModule(evalm(1-P[2]),A):
- > U:=stackmatrix(U1,U2);
- > V1:=SyzygyModule(Q[2],A): V2:=SyzygyModule(evalm(1-Q[2]),A):
- > V:=stackmatrix(V1,submatrix(V2,[1, 2, 4],1..4));

$$U := \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad V := \begin{bmatrix} 1 & 0 & 0 & 0 \\ d + \eta_1 & -1 & 0 & 0 \\ \sigma_I^2 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Now, we can compute the corresponding decomposition VRU^{-1} of R:

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

$$R_dec := egin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \ 0 & 2\,\eta_1 & -d+\eta_2-\eta_1 & -d-\eta_2-\eta_1 & 0 & 0 \ 0 & \sigma_1^{\,2}-1 & -\sigma_1^{\,2} & -\sigma_1^{\,2} & \sigma_1 & 0 \ 0 & 0 & 1 & \sigma_2^{\,2} & 0 & -\sigma_2 \end{bmatrix}$$

We can now try to decompose the second diagonal block matrix S of R-dec:

> S:=submatrix(R_dec,2..4,2..6):

We apply the same technique as above: compute the endomorphism ring of the A-module $N = A^{1\times 5}/(A^{1\times 3}S)$ finitely presented by S, find one idempotent defined by idempotent matrices, compute bases of the free A-modules defined by their kernels and images, form the corresponding unimodular matrices and deduce the decomposition of S.

- > Endo1:=MorphismsConstCoeff(S,S,A):
- > Idem1_order0:=IdempotentsMatConstCoeff(S,Endo1[1],A,0)[1];

We do not obtain a non-trivial idempotent of order 0 by means of the IdempotentsMatConstCoeff procedure. Hence, we can try another technique which searches for idempotents which are obtained by homotopies from the trivial idempotent id_N defined by $P_3 = I_5$ and $Q_3 = I_3$, i.e., $SP_3 = Q_3 S$.

> P[3]:=diag(1\$5): Q[3]:=diag(1\$3): Z[3]:=matrix(5,3,[0\$15]):

We then need to solve the algebraic Riccati equation $\Lambda S \Lambda + \Lambda = 0$:

> Mu:=RiccatiConstCoeff(S,P[3],Q[3],Z[3],A,0,alpha):

We choose one solution Λ_1 of the previous algebraic Riccati equation:

> Lambda[1]:=subs({b321=0,b521=0},Mu[1,2]);

We get a non-trivial idempotent defined by the following matrices P_4 and Q_4 :

- > P[4]:=simplify(evalm(P[3]+Mult(Lambda[1],S,A)));
- > Q[4]:=simplify(evalm(Q[3]+Mult(S,Lambda[1],A)));

$$P_4 := \begin{bmatrix} \sigma_1^2 & -\sigma_1^2 & -\sigma_1^2 & \sigma_1 & 0 \\ \sigma_1^2 - 1 & -\sigma_1^2 + 1 & -\sigma_1^2 & \sigma_1 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad Q_4 := \begin{bmatrix} 1 & \eta_1 - d + \eta_2 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

We now compute bases of the free A-modules $\ker_A(.P_4)$, $\ker_A(.Q_4)$, $\operatorname{im}_A(.P_4) = \ker_A(.(I_5 - P_4))$ and $\operatorname{im}_A(.Q_4) = \ker_A(.(I_3 - Q_4))$ and we get the following two unimodular matrices X and Y:

- > X1:=SyzygyModule(P[4],A): X2:=SyzygyModule(evalm(1-P[4]),A):
- > X:=stackmatrix(X1,X2);
- > Y1:=SyzygyModule(Q[4],A): Y2:=SyzygyModule(evalm(1-Q[4]),A):
- > Y:=stackmatrix(Y1,Y2);

$$X := \begin{bmatrix} \sigma_1^2 - 1 & -\sigma_1^2 & -\sigma_1^2 & \sigma_1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \quad Y := \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & d - \eta_2 - \eta_1 \\ 0 & 1 & 1 \end{bmatrix}$$

Then, we obtain the following decomposition $Y S X^{-1}$ of the matrix S:

> S_dec:=Mult(Y,S,LeftInverse(X,A),A);

$$S_dec := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 2\eta_1 & -d - \eta_2 - \eta_1 + \sigma_2^2 d - \eta_2 \sigma_2^2 - \sigma_2^2 \eta_1 & 0 & (\eta_1 - d + \eta_2) \sigma_2 \\ 0 & \sigma_1^2 - 1 & -\sigma_1^2 + \sigma_2^2 & \sigma_1 & -\sigma_2 \end{bmatrix}$$

We continue by considering the second diagonal block matrix T of S_dec :

T:=submatrix(S_dec,2..3,2..5):

We apply the same technique as above:

We compute the solutions of the Riccati equation $\Lambda T \Lambda + \Lambda = 0$:

Mu1:=RiccatiConstCoeff(T,P[5],Q[5],Z[5],A,0,alpha):

We choose one solution Λ_2 of the previous algebraic Riccati equation:

> Lambda[2]:=subs({b311=0},Mu1[1,1]);

$$\Lambda_2 := \left[egin{array}{ccc} -1/(2\,\eta_1) & 0 \ 0 & 0 \ 0 & 0 \ 0 & 0 \end{array}
ight]$$

Hence, we get an idempotent of the endomorphism ring of the A-module finitely presented by T defined by the following matrices P_6 and Q_6 :

- > P[6]:=simplify(evalm(P[5]+Mult(Lambda[2],T,A)));
- > Q[6]:=simplify(evalm(Q[5]+Mult(T,Lambda[2],A)));

$$P_{6} = \begin{bmatrix} 0 & 1/2 \frac{\eta_{I} + \eta_{2} + d - \sigma_{2}^{2} d + \eta_{2} \sigma_{2}^{2} + \sigma_{2}^{2} \eta_{I}}{\eta_{I}} & 0 & -1/2 \frac{(\eta_{I} - d + \eta_{2}) \sigma_{2}}{\eta_{I}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$Q_{6} = \begin{bmatrix} 0 & 0 \\ -1/2 \frac{\sigma_{I}^{2} - 1}{\eta_{I}} & 1 \end{bmatrix}$$

$$Q_6 = \left[\begin{array}{cc} 0 & 0 \\ -1/2 \frac{\sigma_I^2 - 1}{\eta_I} & 1 \end{array} \right]$$

We now compute bases of the free A-modules $\ker_A(.P_6)$, $\ker_A(.Q_6)$, $\operatorname{im}_A(.P_6) = \ker_A(.(I_4 - P_6))$ and $\operatorname{im}_A(Q_6) = \ker_A((I_2 - Q_6))$ and we obtain the following unimodular matrices G and H:

- > G1:=SyzygyModule(P[6],A): G2:=SyzygyModule(evalm(1-P[6]),A):
- > G:=stackmatrix(G1,G2);
- > H1:=SyzygyModule(Q[6],A): H2:=SyzygyModule(evalm(1-Q[6]),A):
 > H:=stackmatrix(H1,H2);

$$G := \begin{bmatrix} 2\eta_1 & -d - \eta_2 - \eta_1 + \sigma_2^2 d - \eta_2 \sigma_2^2 - \sigma_2^2 \eta_1 & 0 & \sigma_2 \eta_1 - \sigma_2 d + \eta_2 \sigma_2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$H := \begin{bmatrix} 1 & 0 \\ \sigma_1^2 - 1 & -2\eta_1 \end{bmatrix}$$

Then, we obtain the following decomposition $H T G^{-1}$ of the matrix T:

> T_dec:=Mult(H,T,LeftInverse(G,A),A);

$$T_dec := \begin{bmatrix} 1 & 0 & \\ 0 & ((-\eta_1 + d - \eta_2) \sigma_2^2 + \eta_1 - d - \eta_2) \sigma_1^2 + (-d - \eta_1 + \eta_2) \sigma_2^2 + d + \eta_2 + \eta_1 & -2\eta_1 \sigma_1 \\ 0 & 0 & \\ -2\eta_1 \sigma_1 & (\eta_1 - d + \eta_2) \sigma_2 \sigma_1^2 + (d - \eta_2 + \eta_1) \sigma_2 \end{bmatrix}$$

From the previous three invertible transformations, we can deduce the unimodular matrices that perform all this decomposition process in one step:

- > W[1]:=Mult(diag(1,1,G),diag(1,X),U,A):
- > W[2]:=Mult(diag(1,1,H),diag(1,Y),V,A):

The system matrix R is equivalent to the matrix $L = W_2 R W_1^{-1}$.

> L:=Mult(W[2],R,LeftInverse(W[1],A),A)):

The matrix L has then the form

> ShapeOfMatrix(L);

where the stars * denote non-trivial elements of A respectively defined by:

> collect(L[4,4],{d,sigma[1],sigma[2]});

$$((-\eta_1 + d - \eta_2) \sigma_2^2 + \eta_1 - d - \eta_2) \sigma_1^2 + (-d - \eta_1 + \eta_2) \sigma_2^2 + d + \eta_2 + \eta_1$$

> collect(L[4,5],{d,sigma[1],sigma[2]});

$$-2\eta_1\sigma_1$$

> collect(L[4,6],{d,sigma[1],sigma[2]});

$$(\eta_1 - d + \eta_2) \sigma_2 \sigma_1^2 + (d - \eta_2 + \eta_1) \sigma_2$$

The entries of the last row of L can be reduced by means of elementary column operations. Hence, if we consider the following unimodular matrix

$$J := \begin{bmatrix} 1 & 1 & -1 & -1 & 0 & 0 \\ 0 & \sigma_1^2 - 1 & -\sigma_1^2 & -\sigma_1^2 & \sigma_1 & 0 \\ 0 & 2\eta_1 & -2\eta_1 & -\eta_1 - \eta_2 - d + \sigma_2^2 d - \sigma_2^2 \eta_1 - \eta_2 \sigma_2^2 & 0 & -(d - \eta_1 - \eta_2) \sigma_2 \\ 0 & 0 & 0 & 1 - \sigma_2^2 & 0 & \sigma_2 \\ 0 & 0 & 0 & \sigma_1 \left(\sigma_2^2 d - \sigma_2^2 \eta_1 - \eta_2 \sigma_2^2 - d - \eta_2 + \eta_1\right) & -2\eta_1 & -\sigma_2 \sigma_1 (d - \eta_1 - \eta_2) \\ 0 & 0 & 0 & 2\sigma_2 \eta_2 & 0 & -2\eta_2 \end{bmatrix}$$

obtained from W_1 by means of elementary operations (see the corresponding Maple worksheet), we finally get the following simpler decomposition $W_2 R J^{-1}$ of R:

> R_final:=Mult(W[2],R,LeftInverse(J,A),A);

$$R_final = \left[egin{array}{cccccc} 1 & 0 & 0 & 0 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 & 0 & 0 & 0 \ 0 & 0 & d + \eta_1 + \eta_2 & \sigma_1 & \sigma_2 \end{array}
ight]$$

Hence, the differential time-delay system (1) formed by 4 equations in 6 unknowns is equivalent to the following sole equation in 3 unknowns:

$$\dot{x}_1(t) + (\eta_1 + \eta_2) x_1(t) + x_2(t - h_1) + x_3(t - h_2) = 0.$$
(2)

Using the simple form of (2), we can easily study its structural properties (e.g., controllability, parametrizability, flatness, π -freeness, stability, stabilizability), and thus, those of (1). In particular, we obtain that (2), and thus, (1) is controllable, parametrizable, σ_1 -free and σ_2 -free (see F. Chyzak, A. Quadrat, D. Robertz, "Effective algorithms for parametrizing linear control systems over Ore algebras", Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376, and M. Fliess, H. Mounier, "Controllability and observability of linear delay systems: an algebraic approach", ESAIM: Control, Optimisation and Calculus of Variations, 3 (1998), 301-314, for the corresponding definitions). Parametrizations of (1) can directly be obtained from the ones of (2) by means of the matrix J^{-1} (see the previous references). System (2) admits an unstable pole at $-(\eta_1 + \eta_2)$, where the η_i 's are two positive parameters of (1). Its stabilizability can be studied using, e.g., A. Quadrat, "The fractional representation approach to synthesis problems: an algebraic analysis viewpoint. Part II: Internal stabilization", SIAM J. Control & Optimization, 42 (2003), 300-320.