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We consider the differential time-delay model of a stirred tank studied in H. Kwakernaak, R. Sivan,
Linear Optimal Control Systems, Wiley-Interscience, 1972. The system matrix is defined by:

> A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s],
> comm=[theta,c[0],c[1],c[2],V[0]]):

> R:=matrix(2,4,[d+1/2/theta,0,-1,-1,0,d+1/theta,-(c[1]1-c[0])/V[0]*delta,
-(c[2]-c[0])/V[0]*deltal);

d+55 0 -1 ~1
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Let us consider the A = Q(co, ¢1, ¢z, Vo, 0)[d, ]-module M = A*4/(A*2 R) finitely presented by R. We
compute the A-module structure of the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A):
We obtain that the A-module FE is defined by

> nops(Endo[1]);

generators which satisfy

> rowdim(Endo[2]);
4

A-linear relations. We do not print the large outputs of Endo.

Let us now search for idempotents of E defined by two idempotent matrices P € A*** and Q € A?*2,
i.e., P and @ satisfy the relations RP = Q R, P2 = P and Q? = Q:

> Idem:=IdempotentsMatConstCoeff (R,Endo[1],A,0,alpha):

> nops(Idem[1]);
12

We obtain 12 different matrices P satisfying the previous relations. Let us consider the first one where
we have set to zero the two arbitrary constants:

> P:=subs(c81=0,c21=0,evalm(Idem[1,1])); Q:=Factorize(Mult(R,P,A),R,A);

0 0 0 0
0 1 0 0 [ 0 0 ]
P = c1—C C2—C Q =
00 o= oo 0 1
0 0 _ti1—¢Co __C2—Co
C1—C2 C1—C2

As we have P? = P and Q? = Q, we know that the A-modules ker4(.P), ims(.P) = kera(.(Iy — P)),
ker4(.Q) and im4(.Q) = kera(.(I — Q)) are projective, and thus, free by the Quillen-Suslin theorem.
Let us compute bases of those free modules:

> Ul:=SyzygyModule(P,A): U2:=SyzygyModule (evalm(1-P) ,A):
> U:=stackmatrix(U1,U02);



1 0 0 0
0 0 1 1
U =
0 1 0 0
0 0 C1 —Chp C2—C

> X1:=SyzygyModule(Q,A): X2:=SyzygyModule(evalm(1-Q),A):
> X:=stackmatrix(X1,X2);
1 0
X =
0 1

We then know that the matrix U € GL4(A) is such that the matrix R is equivalent to the following
block-diagonal matrix S = RU

> S:=Mult(R,LeftInverse(U,A),A);
d+455 -1 0 0 1

0 0 d+j -

S =

We note that the second entry of the matrix S is invertible over A. Hence, we can use an elementary row
operation to reduce the first row. In order to do that, we introduce the following unimodular matrix:

> X:=evalm([[0,1,0,0],[-1,d+1/(2*theta),0,0],[0,0,1,0],[0,0,0,111);

0 1 0 0
-1 d+< 0 0
X:= 26
0 0 10
0 0 0 1

Then, the matrix S X has the form:
> Mult(S,X,A);
1 0 0 0
00 d+j; —<

Hence, if we denote by Y = X1 U € GL4(A) defined by

>  Y:=Mult(LeftInverse(X,A),U,A);

d+55 0 -1 ~1
1 0 0 0
Y =
0 1 0 0
0 0 C1 —Cyp Co2—C

then, the matrix R is equivalent to the following simple block-diagonal matrix V RY ~1:
> Mult(V,R,LeftInverse(Y,A),A);
1 0 0 0
00 d+j; —<

Therefore, we have M =2 A2 /(A(1 0)) ® AY2/(A(d+1/0 §/Vp)), ie.

M=Ae AP?/(A(d+1/6 —6/Vp)).



If F denotes an A-module (e.g., F = C*°(R)), then we obtain that the linear differential time-delay
system kerz(R.) is equivalent to the linear system kerz(S.), i.e.:

G=0, GEF, Gt) =G0+t —h)/Vo=0.
Let us study the A-module structure of the endomorphism ring F = end4 (M) of M:

> extl:=Exti(Involution(Endo[2],A),A,1): exti[1];

10 0 0
0 1 0 0
0 010
0 0 01

As we have ext! (N, A) = 0, where N = A'*2 /(A4 RT), because the previous matrix is the identity
matrix (see F. Chyzak, A. Quadrat, D. Robertz, “OREMODULES: A symbolic package for the study of
multidimensional linear systems”, in the book Applications of Time-Delay Systems, J. Chiasson and J. -
J. Loiseau (Eds.), Lecture Notes in Control and Information Sciences (LNCIS) 352, Springer, 233-264),
we obtain that the A-module F is torsion-free. Let us check whether or not the A-module F is reflexive:

>  ext2:=Exti(Involution(Endo[2],A),A,2)[1];

) 0 0 0 ]
do+1 0 0 0
0 § 0 0
0 do+1 0 0
0 0 5 0
0 0 do+1 0
0 0 0 )

|0 0 0 do+1 |

As the previous matrix is not the identity matrix, we obtain that ext? (N, A) # 0, a fact proving that
the A-module E is not reflexive. Hence, the A-module F is torsion-free but not free.

We proved that M = A® N, where N = AY2/(A(d+1/0 6/Vp)). Hence, we get:
E=ends(M)=ends(A) ®homa(N,A) ®homa(A,N)®ends(N).

We have end4(A) =2 A and hom (A, N) = N. Let us compute the A-modules hom 4 (N, A) and end4(N).
In order to do that, we introduce the two matrices Z =0and T = (d+1/0 §/V):

> Z:=evalm([[0]1);
Z = [ 0 ]
> T:=submatrix(S,2..2,3..4);
T [d4d ¢ ]
Let us check that we have hom4(A, N) 2 N by computing the A-module hom4(A, N):

> E[1] :=MorphismsConstCoeff (Z,T,A);
Ey=[[1 0],[0 1],[ Vodo+Vy =30 ]]

We obtain that the A-module hom4 (A4, N) is defined by two generators f; and f satisfying the A-linear
relation Vy0d fi1 — 06 fo = 0, which is precisely the definition of the A-module N.



Let us now compute the A-module hom4 (N, A):

> E[2] :=MorphismsConstCoeff(T,Z,A);

60
Vod0+ Vg

By = J, []]

We obtain that A-module hom 4 (N, A) is defined by one generator which does not satisfy any A-linear
relation, i.e., it is not a torsion element. Hence, we obtain hom4 (N, A) = A. We note that we have
T E[2][1] = 0, which is consistent with the fact that hom (V, A) = ker4(T.).

Let us compute the A-module end 4 (V):
> E[3]:=MorphismsConstCoeff (T,T,A):
> E[3][1];
0 50

0 Vod9+V0

b

1 0
i)

The A-module end4(N) is defined by two generators g; and go = idy which satisfy the relation:
> E[3][2];
[ -1 Vodo+V, |

Hence, we obtain that ¢ = V (6d 4 1)idyy, i.e., the A-module end4(N) is generated by idas, which
proves that end4(N) = A. We finally obtain:

EXAoNoA® A=A N.

We can check the previous result by studying the A-module E. One way to do that is to find an injective
A-morphism ¢ : N — E such that coker ¢ = A'*3, Using OREMORPHISMS, we can try to handle the
corresponding computations. We first compute the A-module hom 4 (N, E):

> Morph:=MorphismsConstCoeff (T,Endo[2],4):

If we consider the matrix P = Morph[1][6] € A**® defining the element h of hom4 (N, E) and compute
a matrix Q € AY*® satisfying T P = Q Endo|2],

> Y:=Morph[1] [6]; Z:=Factorize(Mult(T,Y,A),Endo[2],A);
0 0 0
Y =
9‘/0(62(}1—62004—002—0160) -0V (8261—0260+002—0160) 0
Voe(—01+02)0 0 0 0 O
0 9V0 (—202 Co+002+022) 0 0 O —9V0 (—201 Co+CO2 +Cl2)
7 = [ 0 0 001 ]
then we can compute the A-module ker ¢:
> K:=KerMorphism(T,Endo[2],Y,Z,A);
K=[1],[Vodo+Vo =00 ] [d+07" =% ]l [ 737 ]
As the first matrix K[1][1] is 1, we obtain that ¢ € hom (N, F) is injective.

Let us now compute the A-module coker ¢:
> Coker:=CokerMorphism(T,Endo[2],Y,Z,A):

Let us compute its rank:



> OreRank(Coker,A);
3

We finally need to check whether or not the A-module coker ¢ is free:

> Extl:=Exti(Involution(Coker,A),A,1): Exti[1];

100000
010000
001000
000100
000010

(0000 0 1]

We obtain that the A-module coker ¢ is torsion-free. Moreover, we have coker ¢ = A8 Fxt1[3].

> map(factor,LeftInverse(Ext1[3],A));
0000 O 1 1 :

2(C2—Cl)2V09 (02—01)2(61—60) (02—61)2(C0—Cl)
ca—c co—c2 _ 1
00000 2(—c1+02()J2V09 (Cz—C10)2(C0—Cl) (ca—c1)? 0
co—C: 1 co—C:
00000 i ae ca)(a—c)

As the matrix Fxt1[3] admits a left-inverse over A, we obtain that coker ¢ & A3 which proves that
we have the split exact sequence of A-modules 0 — N -2 E — A3 — 0, a fact implying
that F = N @ A3 and proves the result. In all the previous computations, we have assumed that we
were in the generic situation, i.e., the constants cg, ¢; and co are pairwise different. As the module
properties of M are known to depend on the system parameters (see F. Chyzak, A. Quadrat, D. Robertz,
OREMODULES project, http://wwwb.math.rwth-aachen.de/0OreModules for the precise details), we let
the reader handle the different non-generic situations.



