restart:
with(OreModules) :
with(OreMorphisms) ;
with(linalg):

vV V. V V

We consider a time-delay model of a flexible rod with a torque studied in H. Mounier, J. Rudolph,
M. Petitot, M. Fliess, “A flexible rod as a linear delay system”, in Proccedings of 3rd European Control
Conference, Rome (Italy), 1995, and defined by the following system matrix:
A:=DefineOreAlgebra(diff=[d,t],dual_shift=[delta,s],polynom=[t,s]):
R:=matrix(2,3, [d,-d*delta,-1,2*d*delta,-d*delta~2-d4,0]);
d —dd -1
2d5 —dé*—d 0
If we denote by A = Q[d, §] the commutative polynomial ring of differential time-delay operators with

rational constant coefficients, M = A1*3/(A'*2 R) the A-module finitely presented by R, then we can
compute the A-module structure of the endomorphism ring F = end 4 (M) of M:

> Endo:=MorphismsConstCoeff (R,R,A,mult_table):

> Endo[1];
d 00 0 0 —1—62 0 0 0 0 d —6
[Od070025,261+620,[d01,
0 0 d 0 0 dé*>—d 0 0 0 0 0 dé
1 00 0 1+6% 0 0 —-d o
010]70260,d01]
0 0 1 0 0 26 0 0 —dé
> Endo[2];
1 1.0 0 0 0 6
§ 000 0 0 1
-1 0 0 0 d 0 0
0 0d OO0 O0 0
0 00 1001
| 0 00 0 0 d 2 |
> Endo[3];



[ 1,1 d 0 o 000 07 i

45 0 0 0 0 0 0o -1
[1,2] © d 0 000 0

46 2 2 0 0 0 0 0
[1,3] 0 0 0 00 0 0

4,7 —-d —-d 0 0 0 0 0
(1,4] 0 0 0 0 0 0 —d

5,1 1 0 0 0 0 0 0
[1,5] 1 0 0 000 0

[5,2] 0 1 0 0 0 0 0
[1,6] 0 0 0 00 0 -2

(5,3 0 0 1 0 0 0 0
1,7 0 0 0 00 0 d

5,4 0 0 0 0 0 0o -1
[2,1] 0 d 0 000 0

»,5/ 0 0 0 0 1 0 0
[2,2] 0 dé&*—d 0 000 O

(,6) 0 0 0 0 0 1 0
2,3] 0 0 0 000 0

(5,7 0 0 0 0 0 0 1
[2,4] 0 dé 0 000 0

6,1 0 0 0 0 0 0 -2
[2,5] 0 1 0 000 0

6,2 0 25 0 0 0 0 0
[2,6] 0 26 0 000 0

6,3] 0 0 25 0 —26-26% 146 0
2,77 0 —d§ 0O 000 0

6,4 2 2 0 0 0 0 0
3,1 0 0 0 000 0

6,5 0 0 0 0 0 1 0
[3,2] 0 0 0 000 0

6,6 0 0 0 0 0 26 0
[3,3) © 0 1+6° 0 0 0 O

6,7 -2 -2 0 0 0 0 0
3,4] 0 0 0 000 0

[, 0 0 0 0 0 0 d
[3,5] 0 0 1 00 0 O

[7,2] 0 —dé 0 0 0 0 0
[3,6] 0 0 0 000 0

7,3 0 0 0 0 0 0 0
3,7 0 0 0 000 0

[7,4] —d —d 0 0 0 0 0
[4,1] 0 0 0 0 0 0 —d

[7,5] 0 0 0 0 0 0 1
[4,2] 0 dé 0 000 0

[7,6] =2 -2 0 0 0 0 0
[4,3] 0 0 0 00 0 0

L 7,77 d d 0 0 0 0 0 |
| [4,4] d d 0 000 0 |

Hence, we obtain that the A-module F is generated by the A-endomorphisms f;’s defined by the 7 matrices
Pys of Endo[l], i.e., f;(m(\)) = n(AP;), where 7 : D**3 — M denotes the canonical projection onto
M and ) is any element of A>3, Moreover, the generators f;’s of E satisfy the relations Endo[2] F = 0,
where F' = (f; ... f7)T. Finally, the multiplication table T of the generators f;’s is the matrix Endo[3]
without the first column which corresponds to the indices (4, ) of the product f; o f;, namely, we have
F®F =T F, where ® denotes the Kronecker product, namely, FQ F = ((fioF)T ... (froF)T)T. Using
Endo[3], we can rewrite any polynomial in the f;’s with coefficients in A as an A-linear combination of
the fi’S.

Let us try to find idempotent elements of E defined by idempotent matrices P € A3*3 and Q € A%*2,
namely, e € E satisfying e? = e, where e(n(\)) = 7(AP), for all A € AY3 and RP = QR, P> = P,
Q* = Q:

> Idem:=IdempotentsMatConstCoeff(R,Endo[1],A,2);



Idem =

—6% 1/26 (1+46%) 0 000 14062 —1/26 (1+6%) 0 100
[l —2¢ 1462 ol,[l0 0 0], 26 —52 0,0 1 0]
0 0 0 0 0 O 0 0 1 0 0 1
[Ore_algebra, [“diff ", dual_shift], [t, s], [d, 8], [t, s], [}, 0, [], [I, [, s, [}, [, [diff = [d, t], dual_shift = [4, s]]]]

We obtain two non-trivial idempotent endomorphisms e; and ey of E respectively defined by the matrices
Idem][1,1] and Idem[1, 3]. We note that we have e;+e2 = idps. Let us consider e; defined by the following
matrices P = Idem[1,1] and Q € A?*? satisfying RP = Q R:

> P:=Idem[1,1]; Q:=Factorize(Mult(R,P,A),R,A);
—6% 1/26 (1+46%) 0
/ ( ) 0 1/26
P:=| —2§ 1+ 62 0 Q =

0 1
0 0 0

As we have P2 = P and Q% = Q, we know that the A-modules ker4(.P), im4(.P) = kera(.(I3 — P)) ,
ker4(.Q) and im4(.Q) = ker 4(.(I2 — Q)) are projective, and thus, free by the Quillen-Suslin theorem. Let
us compute bases of the corresponding modules. We try heuristic methods implemented in OREMODULES
which do not require the use of the package QUILLENSUSLIN:

Ul:=SyzygyModule (P,A) : U2:=SyzygyModule (evalm(1-P) ,A):
U:=stackmatrix(U1,U2);
V1:=SyzygyModule(Q,A): V2:=SyzygyModule (evalm(1-Q),A):
V:=stackmatrix(V1,V2);
-2 4
0 1

We obtain that the two unimodular matrices U and V, i.e., U € GL3(A) and V € GLy(A), satisfy that
the matrix V RU ! is block-diagonal:

vV V. V V

-2 1) 0
U := 0 0 1 Vo=
—26 1462 0

> R_dec:=Mult(V,R,LeftInverse(U,A),A);

d—dé? 2 0
R_dec :=
0 0 —d

We can also use the command HeuristicDecomposition to directly obtain the previous result:

> HeuristicDecomposition(R,P,A) [1];

d—dé&? 2 0
0 0 —d

We can simplify R_dec by introducing the unimodular matrix X defined by:

> X:=diag(evalm([[0,1],[1/2,-(d-d*delta"2)/2]1]),-1);

0 1 0
X = | 1/2 —1/2d+1/2ds> 0
0 0 ~1

Indeed, we have:

> Mult(R_dec,X,A);



100
0 0 d

Therefore, if we consider the new matrix W = X 1 U € GL3(A) defined by

> W:=Mult(LeftInverse(X,A),U,A);
—2d+2d6% dé—ds® 2
W .= —2 1) 0
26 —-1-62 0

we then have the following simple decomposition of the matrix R:

100
0 0 d
Hence, we obtain that M =2 A3 /(A2 S) > A® A/(Ad). Moreover, the linear system of differential
time-delay equations kerz(R.), where F is an A-module (e.g., F = C*°(R)) is equivalent to kerx(S.). In

particular, an element ¢ = (¢(; (o (3)T € kerx(S.) satisfies ¢; = 0, ¢y is arbitrary function of F and
(3 = c an arbitrary constant. Then, n = W ~!( is the general solution of the linear system kerr(R.).

> S:=Mult(V,R,LeftInverse(W,A),A);

S =

We point out that the previous simple equivalent matrix S cannot be obtained by just noticing that the
first row of R contains the invertible element —1 and post-multiplying R by the following elementary
matrix Y

> Y:=matrix(3,3,[1,0,0,0,1,0,d,d*delta,-1]);

1 0 0
Y:=1|0 1 0
d —dé -1
as we then obtain:
> L:=Mult(R,Y,A);
0 0 1

L =
2ds§ —ddé*—-d 0

We refer the reader to A. Fabianska, A. Quadrat, “Applications of the Quillen-Suslin theorem in multidi-
mensional systems theory”, chapter of the book Griobner Bases in Control Theory and Signal Processing,
H. Park and G. Regensburger (Eds.), Radon Series on Computation and Applied Mathematics 3, de
Gruyter publisher, 2007, 23-106, for different algorithms which simplify the presentation matrices. In-
deed, the previous computation only shows that we have:

M= AVS (A2 L) = A2 /(A (2d6 —d (624 1)).

Using the equivalent presentation matrix L of M, we then need to compute ¢(M) and M /t(M) as explained
in F. Chyzak, A. Quadrat, D. Robertz, “Effective algorithms for parametrizing linear control systems over
Ore algebras”, Appl. Algebra Engrg. Comm. Comput., 16 (2005), 319-376, to get that t(M) = A/(Ad)
and M/t(M) = A and to combine these results with the particular fact that M = ¢(M) @ M/t(M) to
find again that M = A ® A/(Ad). However, all these information are obtained in one step using the
previous decomposition approach.

Let us study the A-module structure A**7/(A*% Endo[2]) of the endomorphism ring E.

> extl:=Exti(Involution(Endo[2],A),A,1);



1000000 1 100 0 0 4 —d
0100000 § 000 0 0 1 d—do?
0010000 -1 000 d 0 0 0
ext! == 0 0 0dO0O0O0O]|,] 0 010 0 0 0, —dé |[]
0000100 0001 0 0 1 -1
00000 dO 0 000 25 —1 0 ~24
0000001 | 0 0000 d 2| | di |

We obtain that the endomorphisms ¢; = f3 and to = 20 f5 — fs generate the torsion A-module t(E).
We note that f5 = idys, a fact showing that ¢ = 2§idy; — fg. In particular, we obtain that every
element in ¢ (M) or in to(M) define a torsion element of M. Moreover, the A-module E/t(FE) is finitely
presented by the second matrix extl[2] of extl, ie., E/t(E) = AY™7/(A™"ext1[2]). We also have
E/t(E) = AY™7 ext1[3].
> T:=LeftInverse(ext1[3],A);
T:=[00000 -1 0]

As the matrix extl[3] admits a left-inverse of A, we obtain that E/t(E) = A, i.e., E/t(E) is a free
A-module of rank 1. In particular, the short exact sequence of A-modules

0 —t(E) - E -2 E/t(E) — 0 (1)
splits and we obtain E 2 ¢(E) @ E/t(E) 2 t(FE) @ A. Let us now study the A-module ¢(E):

> K:=stackmatrix(Factorize(Endo[2],ext1[2],A),SyzygyModule(ext1[2],A));

1 0 0 00 0 0]
01 0 0000
00 1 0000
K:=|0 0 0 dO00O0
00 0 0100
00 0 0001
|0 -2 —25 0 0 d 1 |

We obtain that t(E) = AY™7/(A™7 K). Using the special structure of the matrix K, we get that
t(E)= A/(Ad) @ A/(Ad), which shows that:

E=[A/(Ad)? @ A. (2)
(2) is consistent with the fact that M = A3 /(A1*2S) =~ A @ A/(Ad) which implies that:

E = enda(M)2homa(A® A/(Ad),A® A/(Ad))
>~ endy(A) @ homy(A, A/(Ad)) & homa(A/(Ad), A) & endA(A/(Ad)).

We have end4(A) =2 A, homa(A4,A/(Ad)) =2 A/(Ad) and homs(A/(Ad), A) = 0 because A/(Ad) is a
torsion A-module and A is torsion-free. Moreover, we have end4(A/(Ad)) =2 A/(Ad), which proves (2).
Using the following notations F = (f1 ... fr)7 and G = (g1 ... g7)"

> F:=evalm([seq([f[i]],i=1. .nops(Endo[1]))]1);
> G:=evalm([seq([gl[i]],i=1..rowdim(ext1[2]))]1);



f1
f2
fs
Ja
fs
fe
fz

g1
g2
g3
G:=| g
9s
9o

g7 |

the generators f;’s of the A-module F satisfy the relations Endo[2] F' = 0, namely,

>  evalm(Endo [2]&*F)=evalm([[0] $rowdim(Endo[2])]);

[ fi4fo+ OS]
o fr+ fr
—fi+dfs

df3
Jat+ fr
dfe+2fr

o
0
0
0
0
O_

and the generators g;’s of E/t(E) satisfy the equation ext1[2] G = 0:

>  evalm(ext1[2]&*G)=evalm([[0]$rowdim(ext1[2])]);

[ g1+ 92+06g7 ]
g1+ 97
—g1+dgs

g3

ga + g7

2695 — gs

dge +2g7

Il
©c o © o o o ©

Using the split exact sequence of A-modules A'*7 ol guxr emtBL 0, we obtain the following
injective parametrization of the generators g;’s of E/t(E)

> evalm(G)=evalm(ext1[3]*h);

91
g2
93
[z
95
9o

g7
where h is defined by

>  h=evalm(T&*G) [1,1];

—dh
(d—do?)h

—ddh

—24h
déh




h=—gs

i.e., we have E/t(F) 2 Ags and ann4(gs) = 0. Moreover, we have t(E) = At; @ Aty, where annga(ty) =
anng(te) = Ad, which shows that E = Ags @ At; ® Ats.

To finish, we can explicitly describe the previous isomorphism. In order to do that, we first compute a
generalized inverse Z of ext1[2] over A:

> Z:=GeneralizedInverse(ext1[2],A);

00 -1 00 0 0
1 -6 1-62 00 0 0
00 0 10 0 0

Z:=10 -1 =5 01 0 0
00 0 00 0 0
00 0 00 -10
(01 § 00 0 O]

We can check that we have ext1[2] Z ext1[2] = ext1[2]. Let us denote by H = I; — Z ext1[2]:

> H:=evalm(1-Mult(Z,ext1[2],A));

000 0 d 0 0
0000 d62—1) 0 0
000 0 0 00
H:=[0000 déi 00
000 0 1 00
0000 26 00
(0000 —di 0 0|

Using the fact that extl[2] H = 0, we obtain that the A-morphism o : E/t(E) — E defined by
o(7'(\)) = ©#(AH), where 7’ : AT — E/t(E) denotes the projection onto E/t(E) and X is an
element of A™ 7, satisfies po o = idg /(). For more details, see Theorem 4 of A. Quadrat, D. Robertz,
“Parametrizing all solutions of uncontrollable multidimensional linear systems”, Proceedings of 16" IFAC
World Congress, Prague (Czech Republic), 04-08/07/05. We find again that the short exact sequence (1)
splits. The A-morphism o is defined by:

o(g1) =d fs,

o(g2) = d (6% = 1) fs,
o(gs) =0,

0(ga) = d3 fs,

o(g5) = f5,

o(gs) =20 fs,

o(gr) = —dd fs

Using the relations between the generators f;’s of the A-module E, we obtain that the A-morphism
X :idg —oop: E — FE is defined by:

x(f1) = fi—dfs =0,

x(f2) = fa—d(6* = 1) f5 =0,
xX(f3) = fz =t1,

X(f1) = fa—do fs =0,
X(fs)=fs— fs =0,

X(fe) = fo —20 fs = —ta,
X(fr)=fr—ddfs =0



Hence, if we define the A-morphism s : E — t(E) by

we then get that idg = 0 0 p 4 ¢ o k. Therefore, using the fact that f; = idys, we obtain

f1=didp,

fo=d (6% —1)idyy,

fs =11,

fa=ddidyy, (3)
f5 = idp,

fo =20idy — ta,

fr=—ddidyy,

a fact showing that the generators f;’s of E' can be expressed in terms of idy; and ¢ = f3 and ¢ty =
2§idpys — fe and {idas,t1,t2} generates the A-module E. In particular, using the multiplication table
Endo[3] and (3), we can easily obtain the following small multiplication table for the new family of
generators {idps,t1,t2} (compare with Endo[3]):

tiot; = (1+6*)ty

tyoty =201,

tyoty = (1+6%)ta,

thoty =40ty —26(25 — 1)id,
tioidy =idpyot; =t;, 1 =1,2,

Using it, we can rewrite any polynomial in the f;’s with coefficients in A in terms of an A-linear combi-
nation of idy;, t1 and to.



