- > restart:
- > with(OreModules):
- > with(OreMorphisms);
- > with(linalg):

We consider the following matrix of differential operators taken from A. D. Polyanin, A. V. Manzhirov, *Handbook of Mathematics for Engineers and Scientists*, Chapman, 2007:

> R[1]:=evalm([[d[t]-k*d[x]-a[1],-b[1]],[-a[2],d[t]-k*d[x]-b[2]]]);

$$R_1 := \begin{bmatrix} d_t - k d_x - a_1 & -b_1 \\ -a_2 & d_t - k d_x - b_2 \end{bmatrix}$$

We denote by $A = \mathbb{Q}(a_1, a_2, b_1, b_2, k)[d_t, d_x]$ the commutative polynomial ring of differential operators in d_t and d_x with coefficients in the field $\mathbb{Q}(a_1, a_2, b_1, b_2, k)$

- > A:=DefineOreAlgebra(diff=[d[t],t],diff=[d[x],x],polynom=[t,x],comm=[a[1],
- > a[2],b[1],b[2],k]):

and $M_1 = A^{1\times 2}/(A^{1\times 2}R_1)$ the A-module finitely presented by the matrix R_1 . The endomorphism ring $E_1 = \operatorname{end}_A(M_1)$ is defined by the generators f_i 's defined by $f_i(\pi_1(\lambda)) = \pi_1(\lambda P_i)$, where $\pi_1 : A^{1\times 2} \longrightarrow M_1$ denote the projection onto M_1 , λ is any element of $A^{1\times 2}$ and P_i is one of the following two matrices:

- > Endo[1]:=MorphismsConstCoeff(R[1],R[1],A):
- > Endo[1][1];

$$\begin{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & b_1 \\ a_2 & -a_1 + b_2 \end{bmatrix} \end{bmatrix}$$

The family of generators $\{f_1 = \mathrm{id}_{M_1}, f_2\}$ of the A-module E_1 satisfy the A-linear relations defined by Endo[1][2] F = 0, where $F = \begin{pmatrix} f_1 & f_2 \end{pmatrix}^T$ and Endo[1][2] is the following matrix:

> Endo[1][2];

$$\begin{bmatrix} -a_2 b_1 & d_t - k d_x - b_2 \\ d_t - k d_x - a_1 & -1 \end{bmatrix}$$

Let us study the existence of idempotents of the ring E_1 defined by constant matrices:

- > Idem[1]:=IdempotentsMatConstCoeff(R[1],Endo[1][1],A,0,alpha):
- > Idem[1][1];

$$\begin{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1/2 \alpha_1 a_1 - 1/2 \alpha_1 b_2 + 1/2 & \alpha_1 b_1 \\ \alpha_1 a_2 & -1/2 \alpha_1 a_1 + 1/2 \alpha_1 b_2 + 1/2 \end{bmatrix} \end{bmatrix}$$

We obtain three idempotents of E_1 defined by means of constant matrices. In particular, the first two ones are the trivial ones 0 and id_M . The last one is defined by a matrix Idem[1][1,3] whose entries belong to the ring $B = Q(a_1,a_2,b_1,b_2,k)[\alpha_1]/(((a_1-b_2)^2+4a_2b_1)\alpha_1^2-1)[d_t,d_x]$:

> B:=Idem[1][2]: collect(B[9][1],alpha[1]);

$$-1 + (a_1^2 - 2 a_1 b_2 + b_2^2 + 4 a_2 b_1) \alpha_1^2$$

Using the fact that B is a commutative polynomial ring over a field, we know that the matrix R_1 is then equivalent to the block diagonal matrix $T_1 = V_1 R_1 U_1^{-1}$ defined by:

- > S[1]:=simplify(subs(alpha[1]^2=1/((a[1]-b[2])^2+4*a[2]*b[1]),
- > HeuristicDecomposition(R[1],Idem[1][1,3],B))):
- > T[1]:=map(collect,S[1][1],{d[t],d[x]},distributed);

$$T_1 := \begin{bmatrix} d_t - k d_x - \frac{\alpha_1 a_1 + \alpha_1 b_2 - 1}{2 \alpha_1} & 0 \\ 0 & d_t - k d_x - \frac{\alpha_1 b_2 + \alpha_1 a_1 + 1}{2 \alpha_1} \end{bmatrix}$$

The unimodular matrices U_1 and V_1 are then defined by:

 $\ > \ {\tt U[1]:=evalm(S[1][2]); \ V[1]:=evalm(S[1][3]);}$

$$U_1 := \begin{bmatrix} -2\alpha_1 a_2 & -\alpha_1 b_2 + \alpha_1 a_1 + 1 \\ 2\alpha_1 a_2 & 1 - \alpha_1 a_1 + \alpha_1 b_2 \end{bmatrix} \quad V_1 := \begin{bmatrix} -2\alpha_1 a_2 & -\alpha_1 b_2 + \alpha_1 a_1 + 1 \\ 2\alpha_1 a_2 & 1 - \alpha_1 a_1 + \alpha_1 b_2 \end{bmatrix}$$

We now consider a second example coming from A. D. Polyanin, A. V. Manzhirov, *Handbook of Mathematics for Engineers and Scientists*, Chapman, 2007, which is defined by the following matrix of differential operators:

> R[2]:=evalm([[d[t]-k*d[x]^2-a[1],-b[1]],[-a[2],d[t]-k*d[x]^2-b[2]]]);

$$R_2 := \begin{bmatrix} d_t - k d_x^2 - a_1 & -b_1 \\ -a_2 & d_t - k d_x^2 - b_2 \end{bmatrix}$$

Doing similarly as before, we obtain that the endomorphism ring $E_2 = \operatorname{end}_A(M_2)$ of the A-module $M_2 = A^{1\times 2}/(A^{1\times 2}R_2)$ is generated by two generators g_i 's defined by $g_i(\pi_2(\lambda)) = \pi_2(\lambda P_i)$, where $\pi_2 : A^{1\times 2} \longrightarrow M_2$ denote the projection onto M_2 , λ is any element of $A^{1\times 2}$ and P_i is one of the following two matrices:

- > Endo[2]:=MorphismsConstCoeff(R[2],R[2],A):
- > Endo[2][1];

$$[\left[\begin{array}{cc}1&0\\0&1\end{array}\right],\left[\begin{array}{cc}0&b_1\\a_2&-a_1+b_2\end{array}\right]]$$

The family of generators $\{g_1 = \mathrm{id}_{M_2}, g_2\}$ of the A-module E_2 satisfy the A-linear relations defined by Endo[2][2] G = 0, where $G = (g_1 \quad g_2)^T$ and Endo[2][2] is the following matrix:

> Endo[2][2];

$$\begin{bmatrix} a_2 b_1 & -d_t + k d_x^2 + b_2 \\ -d_t + k d_x^2 + a_1 & 1 \end{bmatrix}$$

We can now study the existence of idempotents of the ring E_2 defined by constant matrices:

- > Idem[2]:=IdempotentsMatConstCoeff(R[2],Endo[2][1],A,0,alpha):
 - > Idem[2][1]

$$\begin{bmatrix} \left[\begin{array}{ccc} 1/2\,\alpha_1\,a_1 - 1/2\,\alpha_1\,b_2 + 1/2 & \alpha_1\,b_1 \\ \alpha_1\,a_2 & -1/2\,\alpha_1\,a_1 + 1/2\,\alpha_1\,b_2 + 1/2 \end{array} \right], \left[\begin{array}{ccc} 0 & 0 \\ 0 & 0 \end{array} \right], \left[\begin{array}{ccc} 1 & 0 \\ 0 & 1 \end{array} \right] \end{bmatrix}$$

We obtain three idempotents of E_2 defined by means of constant matrices: 0, id_M and an idempotent e defined by the matrix $Idem[2][1,1] \in B^{2\times 2}$, i.e., $e \in \mathrm{end}_B(B \otimes_A M_2)$:

> B:=Idem[2][2]: collect(B[9][1],alpha[1]);

$$-1 + (a_1^2 - 2 a_1 b_2 + b_2^2 + 4 a_2 b_1) \alpha_1^2$$

Then, the matrix R_2 is equivalent to the block-diagonal matrix $T_2 = V_2 R_2 U_2^{-1}$ defined by:

- $> S[2]:=simplify(subs(alpha[1]^2=1/((a[1]-b[2])^2+4*a[2]*b[1]),$
- > HeuristicDecomposition(R[2],Idem[2][1,1],B))):
- > T[2]:=map(collect,S[2][1],{d[t],d[x]},distributed);

$$T_2 := \begin{bmatrix} d_t - k d_x^2 - \frac{\alpha_1 a_1 + \alpha_1 b_2 - 1}{2 \alpha_1} & 0 \\ 0 & d_t - k d_x^2 - \frac{\alpha_1 b_2 + \alpha_1 a_1 + 1}{2 \alpha_1} \end{bmatrix}$$

The unimodular matrices U_2 and V_2 are then defined by:

> U[2]:=evalm(S[2][2]); V[2]:=evalm(S[2][3]);

$$U_2 := \left[\begin{array}{ccc} 2 \, \alpha_1 \, a_2 & \alpha_1 \, b_2 - \alpha_1 \, a_1 - 1 \\ -2 \, \alpha_1 a_2 & -1 + \alpha_1 \, a_1 - \alpha_1 \, b_2 \end{array} \right] \quad V_2 := \left[\begin{array}{ccc} 2 \, \alpha_1 \, a_2 & \alpha_1 \, b_2 - \alpha_1 \, a_1 - 1 \\ -2 \, \alpha_1 \, a_2 & -1 + \alpha_1 \, a_1 - \alpha_1 \, b_2 \end{array} \right]$$

To finish, we consider the matrix of differential operators defined by:

 $> R[3] := evalm([[d[t]^2-k*d[x]^2-a[1],-b[1]],[-a[2],d[t]^2-k*d[x]^2-b[2]]]);$

$$R_3 := \begin{bmatrix} d_t^2 - k d_x^2 - a_1 & -b_1 \\ -a_2 & d_t^2 - k d_x^2 - b_2 \end{bmatrix}$$

The endomorphism ring $E_3 = \text{end}_A(M_3)$ of the A-module $M_3 = A^{1\times 2}/(A^{1\times 2}R_3)$ is generated by two generators h_1 and h_2 respectively defined by means of the following matrices:

- > Endo[3]:=MorphismsConstCoeff(R[3],R[3],A):
- > Endo[3][1];

$$\begin{bmatrix} 0 & b_1 \\ a_2 & -a_1 + b_2 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{bmatrix}$$

The family of generators $\{g_1, g_2 = \mathrm{id}_{M_3}\}$ of the A-module E_3 satisfy the A-linear relations Endo[3][2] G = 0, where $G = (g_1 \quad g_2)^T$ and the matrix Endo[3][2] is defined by:

> Endo[3][2];

$$\begin{bmatrix} -1 & d_t^2 - k d_x^2 - a_1 \\ d_t^2 - k d_x^2 - b_2 & -a_2 b_1 \end{bmatrix}$$

Let us compute idempotents of the ring E_3 which are defined by means of constant matrices:

- > Idem[3]:=IdempotentsMatConstCoeff(R[3],Endo[3][1],A,0,alpha):
- > Idem[3][1];

$$[\left[\begin{array}{cc} 0 & 0 \\ 0 & 0 \end{array}\right], \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right], \left[\begin{array}{cc} 1/2\,\alpha_1\,a_1 - 1/2\,\alpha_1\,b_2 + 1/2 & \alpha_1\,b_1 \\ \alpha_1\,a_2 & -1/2\,\alpha_1\,a_1 + 1/2\,\alpha_1\,b_2 + 1/2 \end{array}\right]]$$

We obtain the two trivial idempotents 0 and id_{M_3} of E_3 but a non-trivial one defined by the third matrix Idem[3][1,3] of Idem[3]. The entries of Idem[3][1,3] also belong to the ring B:

> B:=Idem[3][2]: collect(B[9][1],alpha[1]);

$$-1 + (a_1^2 - 2 a_1 b_2 + b_2^2 + 4 a_2 b_1) \alpha_1^2$$

Then, the matrix R_3 is equivalent to the block-diagonal matrix $T_3 = V_3 R_3 U_3^{-1}$ defined by:

- $> S[3]:=simplify(subs(alpha[1]^2=1/((a[1]-b[2])^2+4*a[2]*b[1]),$
- > HeuristicDecomposition(R[3],Idem[3][1,3],B))):
- > T[3]:=map(collect,S[3][1],{d[t],d[x]},distributed);

$$T_3 := \left[\begin{array}{cc} {d_t}^2 - k \, {d_x}^2 - \frac{\alpha_1 \, a_1 + \alpha_1 \, b_2 - 1}{2 \, \alpha_1}} & 0 \\ 0 & {d_t}^2 - k \, {d_x}^2 - \frac{\alpha_1 \, b_2 + \alpha_1 \, a_1 + 1}{2 \, \alpha_1}} \end{array} \right]$$

The unimodular matrices U_3 and V_3 are then defined by:

> U[3]:=evalm(S[3][2]); V[3]:=evalm(S[3][3]);

$$U_3 := \begin{bmatrix} 2\alpha_1 a_2 & \alpha_1 b_2 - \alpha_1 a_1 - 1 \\ 2\alpha_1 a_2 & 1 - \alpha_1 a_1 + \alpha_1 b_2 \end{bmatrix} \quad V_3 := \begin{bmatrix} 2\alpha_1 a_2 & \alpha_1 b_2 - \alpha_1 a_1 - 1 \\ 2\alpha_1 a_2 & 1 - \alpha_1 a_1 + \alpha_1 b_2 \end{bmatrix}$$