```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the first Weyl algebra $A=A_{1}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d,t], polynom=[t]):
```

and the left A-module M finitely presented by the matrix R defined by

```
> R := evalm([[d,0,-t]]);
```

$$
R:=\left[\begin{array}{lll}
d & 0 & -t
\end{array}\right]
$$

and the left A-module M' finitely presented by the matrix R ' defined by

```
> Rp := evalm([[d,-t,0,0,0,-1],[0,d,0,-t,0,0],[0,0,d,0,-t,0]]);
```

$$
R p:=\left[\begin{array}{cccccr}
d & -t & 0 & 0 & 0 & -1 \\
0 & d & 0 & -t & 0 & 0 \\
0 & 0 & d & 0 & -t & 0
\end{array}\right]
$$

Let us also consider the matrix P defined by

$$
\begin{aligned}
& >P:=\operatorname{evalm}([[0,0,1,0,0,0],[1,0,0,0,0,1],[0,0,0,0,1,0]]) ; \\
& P:=\left[\begin{array}{cccccc}
0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

and the matrix P^{\prime} defined by

```
> Pp := evalm([[0,0,1]]);
\[
P p:=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]
\]
```

which are such that $\mathrm{R} P=\mathrm{P}^{\prime} \mathrm{R}^{\prime}$. Thus, they define the left A-homomorphism ι from M to M^{\prime} induced by P . We can check that ι is injective:

```
> TestInj(R,Rp,P,A);
```


true

Hence, we get that M is isomorphic to the left A-submodule $\iota(\mathrm{M})=\left(A^{1 \times 3} \mathrm{P}+A^{1 \times 3} \mathrm{R}^{\prime}\right) /\left(A^{1 \times 3} \mathrm{R}^{\prime}\right)$ of M'.

Let us now compute an element m^{*} of M such that $\iota\left(\mathrm{m}^{*}\right)$ is a unimodular element of M^{\prime}.

```
> U := UnimodularElementInSubmodule(R,Rp,P,A):
```

The output U of the command UnimodularElementInSubmodule contains two entries

```
> nops(U);
```

the first one $\mathrm{U}[1]$, namely,
$>\mathrm{U}[1]$;
$\left[\begin{array}{lll}0 & 1 & 0\end{array}\right]$
represents an elements m^{*} of M which is such that $\iota\left(\mathrm{m}^{*}\right)$ is a unimodular element of M^{\prime}. The second entry $U[2]$ of U, namely,

$$
\begin{aligned}
& >\operatorname{map}(\text { collect }, \mathrm{U}[2],[\mathrm{d}, \mathrm{t}]) ; \\
& \\
& {\left[\begin{array}{c}
-\frac{2}{9} t^{2}+t-\frac{1}{3} d t^{2}+\frac{2}{27} t^{3} \\
-\frac{t d^{2}}{3}+\left(\frac{1}{3}-\frac{5}{9} t+\frac{2}{27} t^{2}\right) d+\frac{5}{9}+\frac{2 t^{2}}{27} \\
0 \\
\frac{4}{27}-\frac{d^{3}}{3}+\left(-\frac{5}{9}+\frac{2 t}{27}\right) d^{2}+\left(\frac{2 t}{27}+\frac{4}{27}\right) d \\
0 \\
\frac{1}{3} d t^{2}-t+1+\frac{2}{9} t^{2}-\frac{2}{27} t^{3}
\end{array}\right]}
\end{aligned}
$$

defines a left A-homomorphism ϕ from M' to A which is such that $\phi\left(\iota\left(\mathrm{m}^{*}\right)\right)=\mathrm{U}[1] \mathrm{P} \mathrm{U}[2]=1$. Indeed, if $\lambda^{*}=\mathrm{U}[1]$ P, i.e.,

```
> lambda_star := Mult(U[1],P,A);
    lambda_star :=[ [1 0
```

then $\lambda^{*} \mathrm{U}[2]=\mathrm{U}[1]$ P $\mathrm{U}[2]$ is equal to:

```
> Mult(lambda_star,U[2],A);
```

Finally, let us check that ϕ is a well-defined left A-homomorphism from M' to A, i.e., R ' $\mathrm{U}[2]=0$:

```
> Mult(Rp,U[2],A);
```

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

