Let us consider the first Weyl algebra $A = A_1(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

$$A := \text{DefineOreAlgebra}(\text{diff}=[d,t], \text{polynom}=[t])$$

and the left A-module M finitely presented by the matrix R defined by

$$R := \text{evalm([[d,0,-t]])};$$

and the left A-module M' finitely presented by the matrix R' defined by

$$R' := \text{evalm([[d,-t,0,0,0,-1], [0,d,0,-t,0,0], [0,0,d,0,-t,0]])};$$

Let us also consider the matrix P defined by

$$P := \text{evalm([[0,0,1,0,0,0], [1,0,0,0,0,1], [0,0,0,0,1,0]])};$$

and the matrix P' defined by

$$P' := \text{evalm([[0,0,1]])};$$

which are such that $R P = P' R'$. Thus, they define the left A-homomorphism ι from M to M' induced by P. We can check that ι is injective:

$$\text{TestInj}(R,R',P,A);$$

Hence, we get that M is isomorphic to the left A-submodule $\iota(M) = (A^{1\times3} P + A^{1\times3} R') / (A^{1\times3} R')$ of M'.

Let us now compute an element m^* of M such that $\iota(m^*)$ is a unimodular element of M'.

$$U := \text{UnimodularElementInSubmodule}(R,R',P,A);$$

The output U of the command $\text{UnimodularElementInSubmodule}$ contains two entries.

$$\text{nops}(U);$$

2
the first one $U[1]$, namely,

> $U[1];$

$\begin{bmatrix}
0 & 1 & 0
\end{bmatrix}$

represents an element m^* of M which is such that $\iota(m^*)$ is a unimodular element of M'. The second entry $U[2]$ of U, namely,

> `map(collect,U[2],[d,t]);`

\[
\begin{bmatrix}
-\frac{2}{9} t^2 + t - \frac{1}{3} d t^2 + \frac{2}{27} t^3 \\
-\frac{t d^2}{3} + \left(\frac{1}{3} - \frac{5}{9} t + \frac{2}{27} t^2\right) d + \frac{5}{9} + \frac{2 t^2}{27} \\
\frac{4}{27} - \frac{d^3}{3} + \left(-\frac{5}{9} + \frac{2 t}{27}\right) d^2 + \left(\frac{2 t}{27} + \frac{4}{27}\right) d \\
\frac{1}{3} d t^2 - t + 1 + \frac{2}{9} t^2 - \frac{2}{27} t^3
\end{bmatrix}
\]

defines a left A-homomorphism ϕ from M' to A which is such that $\phi(\iota(m^*)) = U[1] P U[2] = 1$. Indeed, if $\lambda^* = U[1] P$, i.e.,

> `lambda_star := Mult(U[1],P,A);`

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 1
\end{bmatrix}
\]

then $\lambda^* U[2] = U[1] P U[2]$ is equal to:

> `Mult(lambda_star,U[2],A);`

$\begin{bmatrix}
1
\end{bmatrix}$

Finally, let us check that ϕ is a well-defined left A-homomorphism from M' to A, i.e., $R' U[2] = 0$:

> `Mult(Rp,U[2],A);`

$\begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix}$