with(OreModules) :
with(OreMorphisms) :
with(Stafford):
with(linalg):

vV V. V V

Let us consider the second Weyl algebra A = A5(Q), where Q is the field of rational numbers,
> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y]):
and the left A-module M finitely presented by the following matrix:

> R := evalm([[dx,dy,0,0,0,0],[0,1,-1,0,dx,dy], [0,0,dx,dy,0,011);

de. dy 0 0 0 O
R:= 0 1 -1 0 dx dy
0 0 dxr dy 0 O

The left A-module M corresponds to Cosserat’s equations appearing in linear elasticity.

The rank of M is:

> OreRank(R,A);

Thus, M admits a unimodular element. Let us compute one:

> U := UnimodularElement(R,A);

dy
—dz
0
U=1[0 00 0 1 0],

0

1

0

The residue class of U[1] is a unimodular element m;* of M. Moreover, the left A-homomorphism ¢,
from M to A induced by UJ2] satisfies ¢1(m,*) = U[1] U[2] = 1:

> Mult(U[1],U[2],A);
[1]
Let us check that ¢ is a well-defined left A-homomorphism from M to A4, i.e., U[2] in kera(R.):

> Mult(R,U[2],A);

0
0
0

Therefore, M is the direct sum of A m;* and ker(¢;). The left A-submodule ker(¢;) of M can be computed
using the command FreeDirectSummand with the option ”kernel”.

> E := FreeDirectSummand(R,A,"kernel");



1000 dy 0
*gx 0010 0 —dy
Ei={[000010],| o |.] 00100 o0
0001 0 0

(1) 0000 0 1

The first entry E[1] of E corresponds to U[1] and the second entry E[2] is U[2]. The residue classes of the
rows of the third entry E[3] of E generate ker(¢q).

The command FreeDirectSummand with the option ”presentation” computes a presentation of ker(¢1).

> F := FreeDirectSummand(R,A,"presentation");
dy -1 0 0 0 dy 0
—dzx 0 1 0 0 0 0 de dy 0 0 0 O
B 0 00 1 -1 0 dy 0 1 0 0 dz 0
Fe=|[0000 10} o 1l g g 0 a a 0/ 0 010 0 o0
1 dc 1 —dy 0 0 0 0 0 01 0 0
0 0 0O 0 0 0 1

The first entry F[1] of F corresponds to U[1] and the second entry F[2] of F is U[2]. The third entry
F[3] of F is a presentation of ker(¢;). Finally, F[4] induces a left A-homomorphism 4; from this finitely
presented left A-module O; to M. Let us check again that i; is injective:

> TestInj(F[3],R,F[4],4);

true

Using the option ”isomorphism” of the command FreeDirectSummand

> F2 := FreeDirectSummand(R,A,"isomorphism");
I dy 0 0 00 1 0
—dx 00 1 0 0 0 0 -1 0 00 dy 0
0 00 0 1 -1 0 d dedy 00 0 0
F2:=1{[0 000 1 0], : 1,10 1 00 dz 0
0 0 0 0 0 dr dy O
1 0 dc 1 —dy 0 0 0 00 10 00
0 y 0 0 01 0 0
I 0 0 00 0 1

we first obtain a representative F2[1] of the unimodular element m;* of M and a left A-homomorphism ¢
from M to A induced by F2[2] such that ¢1(m1*) = 1. Moreover, the left A-module M; finitely presented
by the third entry F2[3] of F2 is such that M; is isomorphic to the direct sum of A and ker(¢;). The
left A-homomorphism g; from M; to M induced by F2[4], where F2[4] is the fourth entry of F2, is a left
A-isomorphism:

> TestIso(F2[3],R,F2[4],4);
true

Let us compute the rank of the left A-module ker(¢y):

> OreRank(F[3],A);




Since rank 4 (ker(¢1)) = 2, there exists a unimodular element of the left A-module ker(¢;).

> G := FreeDirectSummand(F[3],A, "presentation");
0 0 1 0 00 0 1 00 0O 0 O
0 01 0 0 0 O
0 00 L 100 001 0 0 O
G::[OOO()Ol], ,] 0 0 0 O 1 0 |,
dy 00 0 —1 0 dy
de. 1 —dy 0 0 O
—dx 00 0 dr 1 —d 0 0 0 de dy O
1 v Y 000 0 1 dz

We have that ker(¢1) is the direct sum of A ms and ker(¢s), where mo* is the unimodular element of
ker(¢7) represented by G[1] and ¢s is the left A-homomorphism from ker(¢;) to A induced by G[2] which
satisfies ¢a(ma*) = G[1] G[2] = 1. Moreover, ker(¢s) is isomorphic to the left A-module finitely presented
by G[3], and the embedding 45 from this left A-module Oy to ker(¢;) is induced by G[4]. Let us check
again that io is injective:

> TestInj(G[3],F[3],G[4],4);

true

Now, the rank of O is equal to:

> OreRank(G[3],A);
1

Hence, the above technique cannot be applied again to the left A-module ker(¢s).

The left A-homomorphism ¢ = iz 0 i1 from O2 to M is then induced by J, where J = G[4] F[4] is defined
by:

> J := Mult(G[4],F[4],8);

-1 0 0 0 dy O

de dy O 0O 0 O

g 0 1 0 0 dr O

T 0 0 -1 0 0 dy

0 0 dr dy 0 O

0 0 0 1 0 dz

Let us check again that ¢ is injective:
> TestInj(G[3],R,J,A);
true

Elementary operations can be used to simplify the presentation G[3] of Os.

> with(PurityFiltration):
> K := ReducedPresentation(G[3],A);

0 1 0 0 0 O 8(1)8
0 0 1 1 0 0 iz 0 —dy 10 0 0 001 0O
K = 0o 0 0 0 1 0 ’[dyde}’ 1007100000
de. 1 —dy 0 0 O 0 000 01
0 0 0 dr 1 —dy 000
0 0 1



We obtain that S = K][2] defined by

> S := K[2];

| dz 0 —dy
S'_[dy dr 0 }

is a presentation matrix of a left A-module Os’ which is isomorphic to Os. Moreover, the left A-
homomorphism js from Oz’ to Oy induced by K[4] is a left A-isomorphism. Thus, we get that M is
isomorphic to the direct sum of A'*2? and Oy’. The left A-homomorphism y from O’ to M induced by
P, where P = K[4] J is defined by

> P := Mult(K[4],J,A);

0 0 -1 0 0 dy
P:=| -1 0 0 0 dy O
0 0 01 0 dzx
is injective:
> TestInj(S,R,P,A);
true

We note that the left A-module O3’ corresponds to the linear PD system defining the equilibrium of the
symmetric stress tensor. Hence, if F' is a left A-module, then ker z(R.) is isomorphic to the direct sum of
F? and kerg(S.), which shows that the solution space of Cosserat’s equations is isomorphic to the direct
sum of F'2 and the solutions of the classical linear PD system defining the equilibrium of the symmetric
stress tensor. Since x and y do not appear in the coefficients of the unimodular elements and in their
corresponding forms, the above results are also valid over the commutative polynomial ring B = Q[dx,dy]
and for any B-module F.

Using the command MazimalFreeDirectSummand, the decomposition of M as a direct sum of A'*? and
O can be obtained in one step.

> N := MaximalFreeDirectSummand(R,A,"presentation");
_dé/m 8 01 0 0 0
0 J 0 O 1 1 0
[000 00 1 0], .00 000 1], Y .00 0 o0 1
0 —dz
1 0 de. 1 —dy 0 0
0 1 0 O 0 dr 1
0 0 0 dy O
dy 0 0O 0 O
1 0 0 dr O
-1 0 0 dy

The first entry N[1] of N returns two unimodular elements m1* and mo* of M and the corresponding two
forms.

> N[1];

L o000



—dr 0

0 dy
(00001 0], | 4 [[-|][00000 1], [
1 0
0 1
The second entry N[2], namely,
> N[2];
0 1 0 0 0 O
0 O 1 1 0 0
0 O 0 0 1 0
d 1 —dy 0 0 O
0 0 O dr 1 —dy

is a presentation matrix of the left A-module Oy which is isomorphic to ker(¢2). Moreover, the left
A-homomorphism 72 from Oy to M induced by N[3], where the matrix N[3] is defined by

> N[3];
-1 0 0 0 dy O
dc,. dy 0 0 0 O
0 1 0 0 dz O
0 0 -1 0 0 dy
0 0 dr dy 0 0
0 0 O 1 0 dz
is injective:
> TestInj(N[2],R,N[3],A);
true
Since the rank of O5 is one
> OreRank(N[2],A);
1

the above technique cannot be applied again to decompose Os.
If we use the option ”isomorphism” of the command MaximalFreeDirectSummand,
> N2 := MaximalFreeDirectSummand(R,A,"isomorphism"):

then we first find again two unimodular elements m1* and mo* of M with their corresponding forms ¢
and ¢s,

> N2[1];
dy 0
—dr 0
0 d
(00001 o0], | 4 [f-|[o00o0o0 1], | 7
1 0
0 1



and the left A-module M; finitely presented by the second entry N2[2] of N2, namely,

> N2[2];
00 0 1 0 0 0 0
00 0 O 1 1 0 0
00 0 O 0 0 1 0
00 dc 1 —dy 0 0 0
00 0 O 0 dr 1 —dy

is isomorphic to the direct sum of A'*? and O,. The left A-isomorphism g from M; to M is induced by
N2[3], where the third entry N2[3] of N2 is defined by:

> N2[3];
0 0o 0o 0 1 0]
o 0 o0 o0 o0 1
-1 0 0 0 dy O
dc dy 0 0 0 O
0 1 0 0 dx O
0 0 -1 0 0 dy
0 0 dr dy 0 0
. 0 0 0 1 0 dz |
We can check again that g is a left A-isomorphism:
> TestIso(N2[2],R,N2[3],A);
true

Let us compute f = g~1. We have that f is induced by X[1], where X[1] is the first entry of X defined
by:

> X := InverseMorphism(N2[2],R,N2[3],A);

dy 0 -1 0 O 0 0 O
—dx 0 00 0 -1 0 O
0 dy 000 -1 0 0 L —dy 0 =10
X = , 0O 0 0 0
0 —dz 0 0 O 0 0 1 0 0 1 0 —1
1 0 0 0 O 0 0 O
0 1 0 0 O 0 0 O
> TestIso(R,N2[2],X[1],4);
true



