```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the second Weyl algebra $A=A_{2}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y]):
```

and the left A-module M finitely presented by the following matrix:

```
> R := evalm([[dx,dy,0,0,0,0],[0,1,-1,0,dx,dy],[0,0,dx,dy,0,0]]);
```

$$
R:=\left[\begin{array}{cccccc}
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & d x & d y \\
0 & 0 & d x & d y & 0 & 0
\end{array}\right]
$$

The left A-module M corresponds to Cosserat's equations appearing in linear elasticity.
The rank of M is:

```
> OreRank(R,A);
```


3

Thus, M admits a unimodular element. Let us compute one:

```
> U := UnimodularElement(R,A);
```

$$
\left.U:=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right]
$$

The residue class of $\mathrm{U}[1]$ is a unimodular element $m_{1}{ }^{*}$ of M . Moreover, the left A-homomorphism ϕ_{1} from M to A induced by $\mathrm{U}[2]$ satisfies $\phi_{1}\left(m_{1}^{*}\right)=\mathrm{U}[1] \mathrm{U}[2]=1$:
> Mult(U[1],U[2],A);

Let us check that ϕ_{1} is a well-defined left A-homomorphism from M to A, i.e., $\mathrm{U}[2]$ in $k e r_{A}(\mathrm{R}$.$) :$
$>\operatorname{Mult}(\mathrm{R}, \mathrm{U}[2], \mathrm{A})$;

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Therefore, M is the direct sum of $A m_{1}{ }^{*}$ and $\operatorname{ker}\left(\phi_{1}\right)$. The left A-submodule $\operatorname{ker}\left(\phi_{1}\right)$ of M can be computed using the command FreeDirectSummand with the option "kernel".

```
> E := FreeDirectSummand(R,A,"kernel");
```

$$
E:=\left[\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & d y & 0 \\
0 & 0 & 1 & 0 & 0 & -d y \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right]
$$

The first entry $\mathrm{E}[1]$ of E corresponds to $\mathrm{U}[1]$ and the second entry $\mathrm{E}[2]$ is $\mathrm{U}[2]$. The residue classes of the rows of the third entry $\mathrm{E}[3]$ of E generate $\operatorname{ker}\left(\phi_{1}\right)$.

The command FreeDirectSummand with the option "presentation" computes a presentation of $\operatorname{ker}\left(\phi_{1}\right)$.

$$
\begin{aligned}
& >\mathrm{F}:=\text { FreeDirectSummand(R,A, "presentation"); } \\
F: & \left.:\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & d y \\
0 & 0 & 0 & d x & d y & 0 \\
d x & 1 & -d y & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right]
\end{aligned}
$$

The first entry $\mathrm{F}[1]$ of F corresponds to $\mathrm{U}[1]$ and the second entry $\mathrm{F}[2]$ of F is $\mathrm{U}[2]$. The third entry $\mathrm{F}[3]$ of F is a presentation of $\operatorname{ker}\left(\phi_{1}\right)$. Finally, $\mathrm{F}[4]$ induces a left A-homomorphism i_{1} from this finitely presented left A-module O_{1} to M. Let us check again that i_{1} is injective:

```
> TestInj(F[3],R,F[4],A);
```


true

Using the option "isomorphism" of the command FreeDirectSummand

$$
\begin{aligned}
& >\text { F2 }:=\text { FreeDirectSummand(R,A, "isomorphism"); } \\
F & {\left.\left[\begin{array}{llllll}
& {\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]}
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{ccccccc}
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & d y \\
0 & 0 & 0 & 0 & d x & d y & 0 \\
0 & d x & 1 & -d y & 0 & 0 & 0
\end{array}\right],\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right] }
\end{aligned}
$$

we first obtain a representative F2[1] of the unimodular element $m_{1} *$ of M and a left A-homomorphism ϕ_{1} from M to A induced by F2[2] such that $\phi_{1}\left(m_{1}{ }^{*}\right)=1$. Moreover, the left A-module M_{1} finitely presented by the third entry F2[3] of F2 is such that M_{1} is isomorphic to the direct sum of A and $\operatorname{ker}\left(\phi_{1}\right)$. The left A-homomorphism g_{1} from M_{1} to M induced by F2[4], where F2[4] is the fourth entry of F2, is a left A-isomorphism:

```
> TestIso(F2[3],R,F2[4],A);
```


true

Let us compute the rank of the left A-module $\operatorname{ker}\left(\phi_{1}\right)$:

```
> OreRank(F[3],A);
```

Since $\operatorname{rank}_{A}\left(\operatorname{ker}\left(\phi_{1}\right)\right)=2$, there exists a unimodular element of the left A-module $\operatorname{ker}\left(\phi_{1}\right)$.

$$
\begin{aligned}
>G:=\text { FreeDirectSummand(F[3], A, "presentation"); } \\
\left.G:=\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
0 \\
d y \\
-d x \\
1
\end{array}\right],\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
d x & 1 & -d y & 0 & 0 & 0 \\
0 & 0 & 0 & d x & 1 & -d y
\end{array}\right],\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & d y \\
0 & 0 & 0 & d x & d y & 0 \\
0 & 0 & 0 & 0 & 1 & d x
\end{array}\right]\right]
\end{aligned}
$$

We have that $\operatorname{ker}\left(\phi_{1}\right)$ is the direct sum of $A m_{2}$ and $\operatorname{ker}\left(\phi_{2}\right)$, where $m_{2} *$ is the unimodular element of $\operatorname{ker}\left(\phi_{1}\right)$ represented by $\mathrm{G}[1]$ and ϕ_{2} is the left A-homomorphism from $\operatorname{ker}\left(\phi_{1}\right)$ to A induced by $\mathrm{G}[2]$ which satisfies $\phi_{2}\left(m_{2}{ }^{*}\right)=\mathrm{G}[1] \mathrm{G}[2]=1$. Moreover, $\operatorname{ker}\left(\phi_{2}\right)$ is isomorphic to the left A-module finitely presented by G[3], and the embedding i_{2} from this left A-module O_{2} to $\operatorname{ker}\left(\phi_{1}\right)$ is induced by $\mathrm{G}[4]$. Let us check again that i_{2} is injective:

```
> TestInj(G[3],F[3],G[4],A);
```

> true

Now, the rank of O_{2} is equal to:

```
> OreRank(G[3],A);
```

Hence, the above technique cannot be applied again to the left A-module $\operatorname{ker}\left(\phi_{2}\right)$.
The left A-homomorphism $\iota=i_{2}$ o i_{1} from O_{2} to M is then induced by J , where $\mathrm{J}=\mathrm{G}[4] \mathrm{F}[4]$ is defined by:

```
> J := Mult(G[4],F[4],A);
```

$$
J:=\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & -1 & 0 & 0 & d y \\
0 & 0 & d x & d y & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & d x
\end{array}\right]
$$

Let us check again that ι is injective:

```
> TestInj(G[3],R,J,A);
```

true

Elementary operations can be used to simplify the presentation $\mathrm{G}[3]$ of O_{2}.

$$
\begin{aligned}
& >\text { with(PurityFiltration): } \\
& >\mathrm{K}:=\text { ReducedPresentation(G[3],A); } \\
K & :=\left[\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
d x & 1 & -d y & 0 & 0 & 0 \\
0 & 0 & 0 & d x & 1 & -d y
\end{array}\right],\left[\begin{array}{ccc}
d x & 0 & -d y \\
d y & d x & 0
\end{array}\right],\left[\begin{array}{rcc}
0 & 1 & 0 \\
0 & 0 & 0 \\
-1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right],\left[\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]\right]
\end{aligned}
$$

We obtain that $\mathrm{S}=\mathrm{K}[2]$ defined by

```
> S := K[2];
```

$$
S:=\left[\begin{array}{ccc}
d x & 0 & -d y \\
d y & d x & 0
\end{array}\right]
$$

is a presentation matrix of a left A-module $\mathrm{O}_{2}{ }^{\prime}$ which is isomorphic to O_{2}. Moreover, the left A homomorphism j_{2} from $\mathrm{O}_{2}{ }^{\prime}$ to O_{2} induced by $\mathrm{K}[4]$ is a left A-isomorphism. Thus, we get that M is isomorphic to the direct sum of $A^{1 \times 2}$ and $\mathrm{O}_{2}{ }^{\prime}$. The left A-homomorphism χ from $\mathrm{O}_{2}{ }^{\prime}$ to M induced by P , where $\mathrm{P}=\mathrm{K}[4] \mathrm{J}$ is defined by

```
> P := Mult(K[4],J,A);
```

$$
P:=\left[\begin{array}{rcrccc}
0 & 0 & -1 & 0 & 0 & d y \\
-1 & 0 & 0 & 0 & d y & 0 \\
0 & 0 & 0 & 1 & 0 & d x
\end{array}\right]
$$

is injective:

```
> TestInj(S,R,P,A);
```

true

We note that the left A-module $\mathrm{O}_{2}{ }^{\prime}$ corresponds to the linear PD system defining the equilibrium of the symmetric stress tensor. Hence, if F is a left A-module, then $\operatorname{ker}_{F}(\mathrm{R}$.) is isomorphic to the direct sum of F^{2} and $\operatorname{ker}_{F}(\mathrm{~S}$.$) , which shows that the solution space of Cosserat's equations is isomorphic to the direct$ sum of F^{2} and the solutions of the classical linear PD system defining the equilibrium of the symmetric stress tensor. Since x and y do not appear in the coefficients of the unimodular elements and in their corresponding forms, the above results are also valid over the commutative polynomial ring $\mathrm{B}=\mathbb{Q}[\mathrm{dx}, \mathrm{dy}]$ and for any B-module F.

Using the command MaximalFreeDirectSummand, the decomposition of M as a direct sum of $A^{1 \times 2}$ and O_{2} can be obtained in one step.

```
> N := MaximalFreeDirectSummand(R,A,"presentation");
```

$$
\begin{aligned}
& N:=\left[\left[\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right],\left[\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
d y \\
-d x \\
0 \\
1
\end{array}\right]\right]\right]\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
d x & 1 & -d y & 0 & 0 & 0 \\
0 & 0 & 0 & d x & 1 & -d y
\end{array}\right], \\
& \left.\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & -1 & 0 & 0 & d y \\
0 & 0 & d x & d y & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & d x
\end{array}\right]\right]
\end{aligned}
$$

The first entry $\mathrm{N}[1]$ of N returns two unimodular elements $m_{1}{ }^{*}$ and $m_{2}{ }^{*}$ of M and the corresponding two forms.

```
> N[1];
```

$$
\left.\left[\left[\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
d y \\
-d x \\
0 \\
0 \\
1 \\
0
\end{array}\right]\right],\left[\begin{array}{llllll}
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right],\left[\begin{array}{c}
0 \\
0 \\
d y \\
-d x \\
0 \\
1
\end{array}\right]\right]\right]
$$

The second entry $\mathrm{N}[2]$, namely,
$>N[2] ;$

$$
\left[\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
d x & 1 & -d y & 0 & 0 & 0 \\
0 & 0 & 0 & d x & 1 & -d y
\end{array}\right]
$$

is a presentation matrix of the left A-module O_{2} which is isomorphic to $\operatorname{ker}\left(\phi_{2}\right)$. Moreover, the left A-homomorphism i_{2} from O_{2} to M induced by $\mathrm{N}[3]$, where the matrix $\mathrm{N}[3]$ is defined by
$>\mathrm{N}[3]$;

$$
\left[\begin{array}{cccccc}
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & -1 & 0 & 0 & d y \\
0 & 0 & d x & d y & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & d x
\end{array}\right]
$$

is injective:

```
> TestInj(N[2],R,N[3],A);
```

true

Since the rank of O_{2} is one

```
> OreRank(N[2],A);
```

the above technique cannot be applied again to decompose O_{2}. If we use the option "isomorphism" of the command MaximalFreeDirectSummand,

```
> N2 := MaximalFreeDirectSummand(R,A,"isomorphism"):
```

then we first find again two unimodular elements $m_{1} *$ and $m_{2}{ }^{*}$ of M with their corresponding forms ϕ_{1} and ϕ_{2},
$>$ N2[1];

and the left A-module M_{1} finitely presented by the second entry N2[2] of N2, namely,
$>$ N2[2];

$$
\left[\begin{array}{cccccccc}
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & d x & 1 & -d y & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & d x & 1 & -d y
\end{array}\right]
$$

is isomorphic to the direct sum of $A^{1 \times 2}$ and O_{2}. The left A-isomorphism g from M_{1} to M is induced by $\mathrm{N} 2[3]$, where the third entry $\mathrm{N} 2[3]$ of N 2 is defined by:

```
> N2[3];
```

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 & d y & 0 \\
d x & d y & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & d x & 0 \\
0 & 0 & -1 & 0 & 0 & d y \\
0 & 0 & d x & d y & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & d x
\end{array}\right]
$$

We can check again that g is a left A-isomorphism:

```
> TestIso(N2[2],R,N2[3],A);
```

true

Let us compute $f=g^{-1}$. We have that f is induced by $\mathrm{X}[1]$, where $\mathrm{X}[1]$ is the first entry of X defined by:

$$
\begin{aligned}
& >\mathrm{X}:=\text { InverseMorphism (N2[2],R,N2[3], A); } \\
& X:=\left[\left[\begin{array}{ccccccc}
d y & 0 & -1 & 0 & 0 & 0 & 0 \\
\hline-d x & 0 & 0 & 0 & 0 & -1 & 0 \\
0 \\
0 & d y & 0 & 0 & 0 & -1 & 0 \\
0 & -d x & 0 & 0 & 0 & 0 & 0 \\
1 \\
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0
\end{array}\right],\left[\begin{array}{ccccc}
1 & -d y & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & -1
\end{array}\right]\right] \\
& >\text { TestIso(R,N2[2],X[1],A); }
\end{aligned}
$$

