
> with(OreModules):

> with(OreMorphisms):

> with(Stafford):

> with(linalg):

Let us consider the second Weyl algebra A = A2(Q), where Q is the field of rational numbers,

> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y]):

and the left A-module M finitely presented by the following matrix:

> R := evalm([[dx,dy,0,0,0,0],[0,1,-1,0,dx,dy],[0,0,dx,dy,0,0]]);

R :=

 dx dy 0 0 0 0
0 1 −1 0 dx dy
0 0 dx dy 0 0


The left A-module M corresponds to Cosserat’s equations appearing in linear elasticity.

The rank of M is:

> OreRank(R,A);

3

Thus, M admits a unimodular element. Let us compute one:

> U := UnimodularElement(R,A);

U :=


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0




The residue class of U[1] is a unimodular element m1* of M. Moreover, the left A-homomorphism φ1
from M to A induced by U[2] satisfies φ1(m1*) = U[1] U[2] = 1:

> Mult(U[1],U[2],A); [
1
]

Let us check that φ1 is a well-defined left A-homomorphism from M to A, i.e., U[2] in kerA(R.):

> Mult(R,U[2],A);  0
0
0


Therefore, M is the direct sum of Am1* and ker(φ1). The left A-submodule ker(φ1) of M can be computed
using the command FreeDirectSummand with the option ”kernel”.

> E := FreeDirectSummand(R,A,"kernel");
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E :=


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0

 ,


−1 0 0 0 dy 0
0 0 1 0 0 −dy
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




The first entry E[1] of E corresponds to U[1] and the second entry E[2] is U[2]. The residue classes of the
rows of the third entry E[3] of E generate ker(φ1).

The command FreeDirectSummand with the option ”presentation” computes a presentation of ker(φ1).

> F := FreeDirectSummand(R,A,"presentation");

F :=


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0

 ,


0 1 0 0 0 0
0 0 1 −1 0 dy
0 0 0 dx dy 0
dx 1 −dy 0 0 0

 ,


−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




The first entry F[1] of F corresponds to U[1] and the second entry F[2] of F is U[2]. The third entry
F[3] of F is a presentation of ker(φ1). Finally, F[4] induces a left A-homomorphism i1 from this finitely
presented left A-module O1 to M. Let us check again that i1 is injective:

> TestInj(F[3],R,F[4],A);

true

Using the option ”isomorphism” of the command FreeDirectSummand

> F2 := FreeDirectSummand(R,A,"isomorphism");

F2 :=


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0

 ,


0 0 1 0 0 0 0
0 0 0 1 −1 0 dy
0 0 0 0 dx dy 0
0 dx 1 −dy 0 0 0

 ,


0 0 0 0 1 0
−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1




we first obtain a representative F2[1] of the unimodular element m1* of M and a left A-homomorphism φ1
from M to A induced by F2[2] such that φ1(m1*) = 1. Moreover, the left A-module M1 finitely presented
by the third entry F2[3] of F2 is such that M1 is isomorphic to the direct sum of A and ker(φ1). The
left A-homomorphism g1 from M1 to M induced by F2[4], where F2[4] is the fourth entry of F2, is a left
A-isomorphism:

> TestIso(F2[3],R,F2[4],A);

true

Let us compute the rank of the left A-module ker(φ1):

> OreRank(F[3],A);

2
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Since rankA(ker(φ1)) = 2, there exists a unimodular element of the left A-module ker(φ1).

> G := FreeDirectSummand(F[3],A,"presentation");

G :=


[

0 0 0 0 0 1
]
,


0
0
0
dy
−dx

1

 ,


0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
dx 1 −dy 0 0 0
0 0 0 dx 1 −dy

 ,


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 dy
0 0 0 dx dy 0
0 0 0 0 1 dx




We have that ker(φ1) is the direct sum of A m2 and ker(φ2), where m2* is the unimodular element of
ker(φ1) represented by G[1] and φ2 is the left A-homomorphism from ker(φ1) to A induced by G[2] which
satisfies φ2(m2*) = G[1] G[2] = 1. Moreover, ker(φ2) is isomorphic to the left A-module finitely presented
by G[3], and the embedding i2 from this left A-module O2 to ker(φ1) is induced by G[4]. Let us check
again that i2 is injective:

> TestInj(G[3],F[3],G[4],A);

true

Now, the rank of O2 is equal to:

> OreRank(G[3],A);

1

Hence, the above technique cannot be applied again to the left A-module ker(φ2).

The left A-homomorphism ι = i2 o i1 from O2 to M is then induced by J, where J = G[4] F[4] is defined
by:

> J := Mult(G[4],F[4],A);

J :=


−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 −1 0 0 dy
0 0 dx dy 0 0
0 0 0 1 0 dx


Let us check again that ι is injective:

> TestInj(G[3],R,J,A);

true

Elementary operations can be used to simplify the presentation G[3] of O2.

> with(PurityFiltration):

> K := ReducedPresentation(G[3],A);

K :=




0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
dx 1 −dy 0 0 0
0 0 0 dx 1 −dy

 ,
[

dx 0 −dy
dy dx 0

]
,


0 1 0
0 0 0

−1 0 0
1 0 0
0 0 0
0 0 1

 ,
 0 0 0 1 0 0

1 0 0 0 0 0
0 0 0 0 0 1



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We obtain that S = K[2] defined by

> S := K[2];

S :=

[
dx 0 −dy
dy dx 0

]
is a presentation matrix of a left A-module O2’ which is isomorphic to O2. Moreover, the left A-
homomorphism j2 from O2’ to O2 induced by K[4] is a left A-isomorphism. Thus, we get that M is
isomorphic to the direct sum of A1×2 and O2’. The left A-homomorphism χ from O2’ to M induced by
P, where P = K[4] J is defined by

> P := Mult(K[4],J,A);

P :=

 0 0 −1 0 0 dy
−1 0 0 0 dy 0

0 0 0 1 0 dx


is injective:

> TestInj(S,R,P,A);

true

We note that the left A-module O2’ corresponds to the linear PD system defining the equilibrium of the
symmetric stress tensor. Hence, if F is a left A-module, then kerF (R.) is isomorphic to the direct sum of
F 2 and kerF (S.), which shows that the solution space of Cosserat’s equations is isomorphic to the direct
sum of F 2 and the solutions of the classical linear PD system defining the equilibrium of the symmetric
stress tensor. Since x and y do not appear in the coefficients of the unimodular elements and in their
corresponding forms, the above results are also valid over the commutative polynomial ring B = Q[dx,dy]
and for any B-module F .

Using the command MaximalFreeDirectSummand, the decomposition of M as a direct sum of A1×2 and
O2 can be obtained in one step.

> N := MaximalFreeDirectSummand(R,A,"presentation");

N :=





[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0



 ,

[

0 0 0 0 0 1
]
,


0
0
dy
−dx

0
1





 ,


0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
dx 1 −dy 0 0 0
0 0 0 dx 1 −dy

 ,


−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 −1 0 0 dy
0 0 dx dy 0 0
0 0 0 1 0 dx




The first entry N[1] of N returns two unimodular elements m1* and m2* of M and the corresponding two
forms.

> N[1];
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


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0



 ,

[

0 0 0 0 0 1
]
,


0
0
dy
−dx

0
1






The second entry N[2], namely,

> N[2]; 
0 1 0 0 0 0
0 0 1 1 0 0
0 0 0 0 1 0
dx 1 −dy 0 0 0
0 0 0 dx 1 −dy


is a presentation matrix of the left A-module O2 which is isomorphic to ker(φ2). Moreover, the left
A-homomorphism i2 from O2 to M induced by N[3], where the matrix N[3] is defined by

> N[3]; 
−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 −1 0 0 dy
0 0 dx dy 0 0
0 0 0 1 0 dx


is injective:

> TestInj(N[2],R,N[3],A);

true

Since the rank of O2 is one

> OreRank(N[2],A);

1

the above technique cannot be applied again to decompose O2.

If we use the option ”isomorphism” of the command MaximalFreeDirectSummand,

> N2 := MaximalFreeDirectSummand(R,A,"isomorphism"):

then we first find again two unimodular elements m1* and m2* of M with their corresponding forms φ1
and φ2,

> N2[1];


[

0 0 0 0 1 0
]
,


dy
−dx

0
0
1
0



 ,

[

0 0 0 0 0 1
]
,


0
0
dy
−dx

0
1






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and the left A-module M1 finitely presented by the second entry N2[2] of N2, namely,

> N2[2]; 
0 0 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 0
0 0 dx 1 −dy 0 0 0
0 0 0 0 0 dx 1 −dy


is isomorphic to the direct sum of A1×2 and O2. The left A-isomorphism g from M1 to M is induced by
N2[3], where the third entry N2[3] of N2 is defined by:

> N2[3]; 

0 0 0 0 1 0
0 0 0 0 0 1
−1 0 0 0 dy 0
dx dy 0 0 0 0
0 1 0 0 dx 0
0 0 −1 0 0 dy
0 0 dx dy 0 0
0 0 0 1 0 dx


We can check again that g is a left A-isomorphism:

> TestIso(N2[2],R,N2[3],A);

true

Let us compute f = g−1. We have that f is induced by X[1], where X[1] is the first entry of X defined
by:

> X := InverseMorphism(N2[2],R,N2[3],A);

X :=




dy 0 −1 0 0 0 0 0
−dx 0 0 0 0 −1 0 0

0 dy 0 0 0 −1 0 0
0 −dx 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

 ,
 1 −dy 0 −1 0

0 0 0 0 0
0 0 1 0 −1




> TestIso(R,N2[2],X[1],A);

true
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