- > with(OreModules):
- > with(OreMorphisms):
- > with(Stafford):
- > with(linalg):

Let us consider the second Weyl algebra $A = A_2(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y]):

and the left A-module M finitely presented by the following matrix:

> R := evalm([[dx,dy,0,0,0,0],[0,1,-1,0,dx,dy],[0,0,dx,dy,0,0]]);

$$R := \begin{bmatrix} dx & dy & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & dx & dy \\ 0 & 0 & dx & dy & 0 & 0 \end{bmatrix}$$

The left A-module M corresponds to Cosserat's equations appearing in linear elasticity.

The rank of M is:

> OreRank(R,A);

3

Thus, M admits a unimodular element. Let us compute one:

```
> U := UnimodularElement(R,A);
```

$$U := \left[\left[\begin{array}{ccccccccc} 0 & 0 & 0 & 0 & 1 & 0 \end{array} \right], \left[\begin{array}{c} dy \\ -dx \\ 0 \\ 0 \\ 1 \\ 0 \end{array} \right] \right]$$

The residue class of U[1] is a unimodular element m_1^* of M. Moreover, the left A-homomorphism ϕ_1 from M to A induced by U[2] satisfies $\phi_1(m_1^*) = U[1] U[2] = 1$:

> Mult(U[1],U[2],A);

```
\begin{bmatrix} 1 \end{bmatrix}
```

Let us check that ϕ_1 is a well-defined left A-homomorphism from M to A, i.e., U[2] in $ker_A(R_{\cdot})$:

> Mult(R,U[2],A);

 $\left[\begin{array}{c} 0\\ 0\\ 0\end{array}\right]$

Therefore, M is the direct sum of $A m_1^*$ and ker (ϕ_1) . The left A-submodule ker (ϕ_1) of M can be computed using the command *FreeDirectSummand* with the option "kernel".

> E := FreeDirectSummand(R,A,"kernel");

The first entry E[1] of E corresponds to U[1] and the second entry E[2] is U[2]. The residue classes of the rows of the third entry E[3] of E generate ker (ϕ_1) .

The command *FreeDirectSummand* with the option "presentation" computes a presentation of ker(ϕ_1).

> F := FreeDirectSummand(R,A,"presentation");

$$F := \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} dy \\ -dx \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & dy \\ 0 & 0 & 0 & dx & dy & 0 \\ dx & 1 & -dy & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & 0 & dy & 0 \\ dx & dy & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & dx & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{bmatrix}$$

The first entry F[1] of F corresponds to U[1] and the second entry F[2] of F is U[2]. The third entry F[3] of F is a presentation of ker(ϕ_1). Finally, F[4] induces a left A-homomorphism i_1 from this finitely presented left A-module O₁ to M. Let us check again that i_1 is injective:

> TestInj(F[3],R,F[4],A);

true

Using the option "isomorphism" of the command FreeDirectSummand

$$F2 := \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} dy \\ -dx \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} dy \\ -dx \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & dy \\ 0 & 0 & 0 & 0 & dx & dy & 0 \\ 0 & dx & 1 & -dy & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 0 & dy & 0 \\ dx & dy & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & dx & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \end{bmatrix}$$

we first obtain a representative F2[1] of the unimodular element m_1^* of M and a left A-homomorphism ϕ_1 from M to A induced by F2[2] such that $\phi_1(m_1^*) = 1$. Moreover, the left A-module M_1 finitely presented by the third entry F2[3] of F2 is such that M_1 is isomorphic to the direct sum of A and ker(ϕ_1). The left A-homomorphism g_1 from M_1 to M induced by F2[4], where F2[4] is the fourth entry of F2, is a left A-isomorphism:

> TestIso(F2[3],R,F2[4],A);

true

Let us compute the rank of the left A-module $\ker(\phi_1)$:

> OreRank(F[3],A);

2

Since $rank_A(ker(\phi_1)) = 2$, there exists a unimodular element of the left A-module $ker(\phi_1)$.

```
> G := FreeDirectSummand(F[3],A,"presentation");
```

We have that $\ker(\phi_1)$ is the direct sum of $A \ m_2$ and $\ker(\phi_2)$, where m_2^* is the unimodular element of $\ker(\phi_1)$ represented by G[1] and ϕ_2 is the left A-homomorphism from $\ker(\phi_1)$ to A induced by G[2] which satisfies $\phi_2(m_2^*) = G[1] \ G[2] = 1$. Moreover, $\ker(\phi_2)$ is isomorphic to the left A-module finitely presented by G[3], and the embedding i_2 from this left A-module O₂ to $\ker(\phi_1)$ is induced by G[4]. Let us check again that i_2 is injective:

> TestInj(G[3],F[3],G[4],A);

true

Now, the rank of O_2 is equal to:

> OreRank(G[3],A);

1

Hence, the above technique cannot be applied again to the left A-module ker(ϕ_2).

The left A-homomorphism $\iota = i_2 \text{ o } i_1$ from O_2 to M is then induced by J, where J = G[4] F[4] is defined by:

	-1	0	0	0	dy	0
	dx	dy	0	0	0	0
<i>T</i>	0	1	0	0	dx	0
J :=	0	0	-1	0	0	dy
	0	0	dx	dy	0	0
	0	0	0	1	0	dx

Let us check again that ι is injective:

```
> TestInj(G[3],R,J,A);
```

Elementary operations can be used to simplify the presentation G[3] of O_2 .

> with(PurityFiltration):
> K := ReducedPresentation(G[3],A);
$$K := \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ dx & 1 & -dy & 0 & 0 & 0 \\ 0 & 0 & 0 & dx & 1 & -dy \end{bmatrix}, \begin{bmatrix} dx & 0 & -dy \\ dy & dx & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \end{bmatrix}$$

We obtain that S = K[2] defined by

> S := K[2];

$$S := \left[\begin{array}{ccc} dx & 0 & -dy \\ dy & dx & 0 \end{array} \right]$$

is a presentation matrix of a left A-module O_2 ' which is isomorphic to O_2 . Moreover, the left Ahomomorphism j_2 from O_2 ' to O_2 induced by K[4] is a left A-isomorphism. Thus, we get that M is isomorphic to the direct sum of $A^{1\times 2}$ and O_2 '. The left A-homomorphism χ from O_2 ' to M induced by P, where P = K[4] J is defined by

is injective:

true

We note that the left A-module O_2 ' corresponds to the linear PD system defining the equilibrium of the symmetric stress tensor. Hence, if F is a left A-module, then $ker_F(\mathbf{R}.)$ is isomorphic to the direct sum of F^2 and $ker_F(\mathbf{S}.)$, which shows that the solution space of Cosserat's equations is isomorphic to the direct sum of F^2 and the solutions of the classical linear PD system defining the equilibrium of the symmetric stress tensor. Since x and y do not appear in the coefficients of the unimodular elements and in their corresponding forms, the above results are also valid over the commutative polynomial ring $\mathbf{B} = \mathbb{Q}[d\mathbf{x},d\mathbf{y}]$ and for any B-module F.

Using the command *MaximalFreeDirectSummand*, the decomposition of M as a direct sum of $A^{1\times 2}$ and O₂ can be obtained in one step.

> N := MaximalFreeDirectSummand(R,A,"presentation");

The first entry N[1] of N returns two unimodular elements m_1^* and m_2^* of M and the corresponding two forms.

> N[1];

The second entry N[2], namely,

> N[2];

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ dx & 1 & -dy & 0 & 0 & 0 \\ 0 & 0 & 0 & dx & 1 & -dy \end{bmatrix}$$

is a presentation matrix of the left A-module O_2 which is isomorphic to ker(ϕ_2). Moreover, the left A-homomorphism i_2 from O_2 to M induced by N[3], where the matrix N[3] is defined by

> N[3];

Γ	$^{-1}$	0	0	0	dy	0
	dx	dy	0	0	0	0
	0	1	0	0	dx	0
	0	0	-1	0	0	dy
	0	0	dx	dy	0	0
L	0	0	0	1	0	dx

is injective:

```
> TestInj(N[2],R,N[3],A);
```

true

Since the rank of O_2 is one

> OreRank(N[2],A);

1

the above technique cannot be applied again to decompose O_2 .

If we use the option "isomorphism" of the command MaximalFreeDirectSummand,

> N2 := MaximalFreeDirectSummand(R,A,"isomorphism"):

then we first find again two unimodular elements m_1^* and m_2^* of M with their corresponding forms ϕ_1 and ϕ_2 ,

> N2[1];

$$\begin{bmatrix} \begin{bmatrix} 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} dy \\ -dx \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ dy \\ -dx \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}$$

and the left A-module M_1 finitely presented by the second entry N2[2] of N2, namely,

> N2[2];

Γ	0	0	0	1	0	0	0	0 -
	0	0	0	0	1	1	0	0
	0	0	0	0	0	0	1	0
	0	0	dx	1	-dy	0	0	0
	0	0	0	0	0	dx	1	-dy

is isomorphic to the direct sum of $A^{1\times 2}$ and O_2 . The left A-isomorphism g from M_1 to M is induced by N2[3], where the third entry N2[3] of N2 is defined by:

> N2[3];

0	0	0	0	1	0
0	0	0	0	0	1
-1	0	0	0	dy	0
dx	dy	0	0	0	0
0	1	0	0	dx	0
0	0	$^{-1}$	0	0	dy
0	0	dx	dy	0	0
0	0	0	1	0	dx

We can check again that g is a left A-isomorphism:

```
> TestIso(N2[2],R,N2[3],A);
```

true

Let us compute $f = g^{-1}$. We have that f is induced by X[1], where X[1] is the first entry of X defined by:

> X := InverseMorphism(N2[2],R,N2[3],A);

$$X := \begin{bmatrix} dy & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\ -dx & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & dy & 0 & 0 & 0 & -1 & 0 & 0 \\ 0 & -dx & 0 & 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & -dy & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & -1 \end{bmatrix} \end{bmatrix}$$
> TestIso(R,N2[2],X[1],A);

true