```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the third Weyl algebra $A=A_{3}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]],
> diff=[d[3],x[3]], polynom=[x[1],x[2],x[3]]):
```

and the left A-module M finitely presented by the following matrix:

$$
\begin{aligned}
& >\quad \mathrm{R}:=\operatorname{evalm}([[\mathrm{x}[2] * \mathrm{~d}[1] / 2, \mathrm{x}[2] * \mathrm{~d}[2]+1, \mathrm{x}[2] * \mathrm{~d}[3]+\mathrm{d}[1] / 2], \\
& >\quad[-\mathrm{x}[2] * \mathrm{~d}[2] / 2-3 / 2,0, \mathrm{~d}[2] / 2],[-\mathrm{d}[1]-\mathrm{x}[2] * \mathrm{~d}[3] / 2,-\mathrm{d}[2],-\mathrm{d}[3] / 2]]) ; \\
& R:=\left[\begin{array}{ccc}
\frac{1}{2} x_{2} d_{1} & x_{2} d_{2}+1 & x_{2} d_{3}+\frac{1}{2} d_{1} \\
-\frac{1}{2} x_{2} d_{2}-\frac{3}{2} & 0 & \frac{1}{2} d_{2} \\
-d_{1}-\frac{1}{2} x_{2} d_{3} & -d_{2} & -\frac{1}{2} d_{3}
\end{array}\right]
\end{aligned}
$$

The left A-module M corresponds to a system defining the infinitesimal transformations of the Lie pseudogroup formed by the contact transformations.

Let us compute the rank of M:
$>\operatorname{OreRank}(\mathrm{R}, \mathrm{A})$;

Thus, we get $\operatorname{rank}_{A}(\mathrm{M})=1$. Let us now study $\operatorname{hom}_{A}(\mathrm{M}, A)$. We first compute $\operatorname{ker}_{A}(\mathrm{R}$.$) .$

$$
\begin{gathered}
>\mathrm{Q}:=\text { Involution(SyzygyModule(Involution(R, } \mathrm{A}), \mathrm{A}), \mathrm{A}) ; \\
\qquad Q:=\left[\begin{array}{c}
-d_{2} \\
d_{1}+x_{2} d_{3} \\
-2-x_{2} d_{2}
\end{array}\right]
\end{gathered}
$$

We obtain $\operatorname{ker}_{A}(\mathrm{R})=.\mathrm{Q} A^{\wedge} 3$. In particular, let us check that $\mathrm{R} \mathrm{Q}=0$:

```
> Mult(R,Q,A);
```

$$
\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Hence, we get $\operatorname{hom}_{A}(\mathrm{M}, A)$ is isomorphic to $\operatorname{ker}_{A}(\mathrm{R})=.\mathrm{Q} A$. A form of M is then defined by means of a right multiple $\mathrm{Q} \xi$ of Q , where ξ is an element of A.

A unimodular element of M represented by some row vector λ^{*} in $A^{1 \times 3}$ satisfies $\lambda^{*}\left(\mathrm{Q} \xi^{*}\right)=1$ for a certain element ξ^{*} of A. Since Q admits a left inverse

$$
\begin{array}{ll}
>\mathrm{T}:=\operatorname{LeftInverse}(\mathrm{Q}, \mathrm{~A}) ; \\
& T:=\left[\begin{array}{ccc}
\frac{1}{2} x_{2} & 0 & \frac{-1}{2}
\end{array}\right]
\end{array}
$$

i.e., $\mathrm{T} \mathrm{Q}=1$, if $\lambda^{*}=\mathrm{T}$, then λ^{*} represents a unimodular element m^{*} of M and Q induces a left A-homomorphism ϕ from M to A which satisfies $\phi\left(\mathrm{m}^{*}\right)=\mathrm{T} \mathrm{Q}=1$.

Serre's Splitting-off theorem cannot be used since $\operatorname{rank}_{A}(\mathrm{M})<2$.

```
> UnimodularElement(R,A);
```

Error, (in Stafford/UnimodularElementInSubmodule) expecting that the rank of the left module presented by the first matrix is at least 2 .

But using the option "checkrank" =false, we can try to detect a unimodular element of M by means of a different method.

```
> U := UnimodularElement(R,A,"checkrank"=false);
\[
U:=\left[\left[\begin{array}{lll}
\frac{1}{2} x_{2} & 0 & \frac{-1}{2}
\end{array}\right],\left[\begin{array}{c}
-d_{2} \\
d_{1}+x_{2} d_{3} \\
-2-x_{2} d_{2}
\end{array}\right]\right]
\]
```

We find again the unimodular element m^{*} of M represented by $\mathrm{U}[1]$ and the left A-homomorphism ϕ from M to A induced by $\mathrm{U}[2]$ which satisfies $\phi\left(\mathrm{m}^{*}\right)=1$:

```
> Mult(U[1],U[2],A);
```

Finally, we can check that ϕ is a well-defined left A-homomorphism from M to A since $\mathrm{R} \mathrm{U}[2]=0$:

```
> Mult(R,U[2],A);
```

$\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

Now, let us consider a new left A-module M finitely presented by the following matrix:

$$
\begin{aligned}
& >\mathrm{R}:=\operatorname{evalm}([[\mathrm{d}[1]+\mathrm{x}[2], \mathrm{d}[2], \mathrm{d}[3]+\mathrm{x}[1]]]) ; \\
& \qquad R:=\left[\begin{array}{lll}
d_{1}+x_{2} & d_{2} & d_{3}+x_{1}
\end{array}\right]
\end{aligned}
$$

The rank of M is clearly 2. Let us compute a unimodular element based on Serre's Splitting-off theorem.

$$
\begin{aligned}
& >U:=\text { UnimodularElement }(\mathrm{R}, \mathrm{~A}) ; \\
& \qquad U:=\left[\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right],\left[\begin{array}{c}
-\left(d_{3}+x_{1}+d_{2}\right)\left(d_{3}+x_{1}\right) \\
1 \\
2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2}
\end{array}\right]\right]
\end{aligned}
$$

We obtain a unimodular element m^{*} of M represented by $\mathrm{U}[1]$ and a left A-homomorphism ϕ from M to A induced by $\mathrm{U}[2]$ which satisfies $\phi\left(\mathrm{m}^{*}\right)=1$:

```
> Mult(U[1],U[2],A);
```

Let us check that ϕ is a well-defined left A -homomorphism from M to A, i.e., $\mathrm{R} \mathrm{U}[2]=0$:

```
> Mult(R,U[2],A);
```

```
\([0]\)
```

Since M admits a unimodular element, M can be decomposed as a direct sum of A and another left A-module M' up to isomorphism. A presentation of M' can be obtained using the command FreeDirectSummand with the option "presentation".

```
> F := FreeDirectSummand(R,A,"presentation"):
> nops(F);
```


4

The output of the command FreeDirectSummand with the option "presentation" is a list with four entries. The first one $\mathrm{F}[1]$ is a representative of a unimodular element of M
$>\mathrm{F}[1]$;

$$
\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

i.e., m^{*} represented by $\mathrm{F}[1]$ is a unimodular element of M . The second entry of F

```
    > F[2];
```

$$
\left[\begin{array}{c}
-\left(d_{3}+x_{1}+d_{2}\right)\left(d_{3}+x_{1}\right) \\
1 \\
2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2}
\end{array}\right]
$$

induces a left A-homomorphism ϕ from M to A which satisfies $\phi\left(\mathrm{m}^{*}\right)=1$. The third entry of F , namely,
$>\mathrm{F}[3]$;

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & d_{1}+x_{2} & -d_{3}-x_{1}
\end{array}\right]
$$

is a presentation matrix of M' which is isomorphic to $\operatorname{ker}(\phi)$. Finally, the last entry of F, namely,
$>\mathrm{F}[4]$;

$$
\left[\begin{array}{ccc}
d_{1}+x_{2} & d_{2} & d_{3}+x_{1} \\
1 & d_{2} d_{3}+d_{3}^{2}+x_{1}^{2}+2 d_{3} x_{1}+d_{2} x_{1} & 0 \\
0 & 2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2} & -1
\end{array}\right]
$$

induces an injective left A-homomorphism i from M' to M. Using the OreMorphism package, we can check again that i is injective:

```
> TestInj(F[3],R,F[4],A);
```

Let us compute $\operatorname{rank}_{A}\left(\mathrm{M}^{\prime}\right)$:
> OreRank(F[3],A);

Since $\operatorname{rank}_{A}\left(\mathrm{M}^{\prime}\right)=1$, we cannot use Serre's Splitting-off theorem again to decompose the left A-module M'.

Using the option "isomorphism" of the command FreeDirectSummand,

```
> G := FreeDirectSummand(R,A,"isomorphism"):
```

we can get another representation of the above splitting. The output G contains

```
> nops(G);
```

four entries. The first one
$>\mathrm{G}[1]$;

$$
\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]
$$

represents the unimodular element m^{*} of M . The second one, namely,
$>\mathrm{G}[2]$;

$$
\left[\begin{array}{c}
-\left(d_{3}+x_{1}+d_{2}\right)\left(d_{3}+x_{1}\right) \\
1 \\
2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2}
\end{array}\right]
$$

induces a left A-homomorphism ϕ from M to A such that $\phi\left(\mathrm{m}^{*}\right)=1$. The third one
$>G[3]$;

$$
\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & -1 & d_{1}+x_{2} & -d_{3}-x_{1}
\end{array}\right]
$$

is a presentation matrix of the left A-module M_{1} which is isomorphic to the direct sum of A and M^{\prime}, and isomorphic to M. Indeed, we note that $\mathrm{G}[3]=(0 \mathrm{~F}[3])$. The last entry of G

```
> G[4];
```

$$
\left[\begin{array}{ccc}
0 & 1 & 0 \\
d_{1}+x_{2} & d_{2} & d_{3}+x_{1} \\
1 & d_{2} d_{3}+d_{3}^{2}+x_{1}{ }^{2}+2 d_{3} x_{1}+d_{2} x_{1} & 0 \\
0 & 2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2} & -1
\end{array}\right]
$$

induces a left A-isomorphism g from M_{1} to M . This last result can be checked again using the OreMorphisms package:

```
> TestIso(G[3],R,G[4],A);
```

true

We can simplify the presentation $\mathrm{G}[3]$ of M_{1}. Indeed, M_{1} is isomorphic to M_{2} which is finitely presented by the second entry of S defined by:

```
    > with(PurityFiltration):
    > S := ReducedPresentation(G[3],A);
S:=[[\begin{array}{rrrcc}{0}&{1}&{0}&{0}\\{0}&{-1}&{\mp@subsup{d}{1}{}+\mp@subsup{x}{2}{}}&{-\mp@subsup{d}{3}{}-\mp@subsup{x}{1}{}}\end{array}],[[\begin{array}{ccc}{0}&{\mp@subsup{d}{1}{}+\mp@subsup{x}{2}{}}&{-\mp@subsup{d}{3}{}-\mp@subsup{x}{1}{}}\end{array}],[\begin{array}{l}{1}\\{0}\end{array}0}
```

The left A-isomorphism h from M_{2} to M_{1} is induced by $\mathrm{S}[4]$.

```
> TestIso(S[2],S[1],S[4],A);
```


true

Hence, if we define $P=S[4] G[4]$, namely,

```
> P := Mult(S [4],G[4],A);
```

$$
P:=\left[\begin{array}{rcr}
0 & 1 & 0 \\
1 & d_{2} d_{3}+d_{3}{ }^{2}+x_{1}{ }^{2}+2 d_{3} x_{1}+d_{2} x_{1} & 0 \\
0 & 2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2} & -1
\end{array}\right]
$$

then the composition i of g and h , which is induced by P , is a left A-isomorphism.

```
> TestIso(S[2],R,P,A);
```

true

Let us now compute i^{-1}.

```
> Q := InverseMorphism(S[2],R,P,A);
```

$$
Q:=\left[\left[\begin{array}{crr}
-d_{2} d_{3}-d_{3}^{2}-x_{1}^{2}-2 d_{3} x_{1}-d_{2} x_{1} & 1 & 0 \\
1 & 0 & 0 \\
2+d_{1} d_{3}+x_{1} d_{1}+x_{2} d_{3}+x_{1} x_{2}+d_{2} d_{1}+x_{2} d_{2} & 0 & -1
\end{array}\right],[1]\right]
$$

We obtain that i^{-1} is induced by $\mathrm{Q}[1]$. Finally, let us check again that i^{-1} is a well-defined left $A-$ isomorphism between M and M_{2} :

```
> TestIso(R,S[2],Q[1],A);
```

