
> with(OreModules):

> with(OreMorphisms):

> with(Stafford):

> with(linalg):

Let us consider the third Weyl algebra A = A3(Q), where Q is the field of rational numbers,

> A := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]],
> diff=[d[3],x[3]], polynom=[x[1],x[2],x[3]]):

and the left A-module M finitely presented by the following matrix:

> R := evalm([[x[2]*d[1]/2,x[2]*d[2]+1,x[2]*d[3]+d[1]/2],
> [-x[2]*d[2]/2-3/2,0,d[2]/2],[-d[1]-x[2]*d[3]/2,-d[2],-d[3]/2]]);

R :=


1

2
x2 d1 x2 d2 + 1 x2 d3 +

1

2
d1

−1

2
x2 d2 −

3

2
0

1

2
d2

−d1 −
1

2
x2 d3 −d2 −1

2
d3


The left A-module M corresponds to a system defining the infinitesimal transformations of the Lie
pseudogroup formed by the contact transformations.

Let us compute the rank of M:

> OreRank(R,A);

1

Thus, we get rankA(M) = 1. Let us now study homA(M, A). We first compute kerA(R.).

> Q := Involution(SyzygyModule(Involution(R,A),A),A);

Q :=

 −d2
d1 + x2 d3
−2 − x2 d2


We obtain kerA(R.) = Q Aˆ3. In particular, let us check that R Q = 0:

> Mult(R,Q,A);  0
0
0


Hence, we get homA(M, A) is isomorphic to kerA(R.) = Q A. A form of M is then defined by means of
a right multiple Q ξ of Q, where ξ is an element of A.

A unimodular element of M represented by some row vector λ* in A1×3 satisfies λ* (Q ξ*) = 1 for a
certain element ξ* of A. Since Q admits a left inverse

> T := LeftInverse(Q,A);

T :=

[
1

2
x2 0

−1

2

]

1



i.e., T Q = 1, if λ* = T, then λ* represents a unimodular element m* of M and Q induces a left
A-homomorphism φ from M to A which satisfies φ(m*) = T Q = 1.

Serre’s Splitting-off theorem cannot be used since rankA(M) < 2.

> UnimodularElement(R,A);

Error, (in Stafford/UnimodularElementInSubmodule) expecting that the
rank of the left module presented by the first matrix is at least 2.

But using the option ”checkrank”=false, we can try to detect a unimodular element of M by means of a
different method.

> U := UnimodularElement(R,A,"checkrank"=false);

U :=

[ 1

2
x2 0

−1

2

]
,

 −d2
d1 + x2 d3
−2 − x2 d2


We find again the unimodular element m* of M represented by U[1] and the left A-homomorphism φ
from M to A induced by U[2] which satisfies φ(m*) = 1:

> Mult(U[1],U[2],A); [
1
]

Finally, we can check that φ is a well-defined left A-homomorphism from M to A since R U[2] = 0:

> Mult(R,U[2],A);  0
0
0


Now, let us consider a new left A-module M finitely presented by the following matrix:

> R := evalm([[d[1]+x[2],d[2],d[3]+x[1]]]);

R :=
[
d1 + x2 d2 d3 + x1

]
The rank of M is clearly 2. Let us compute a unimodular element based on Serre’s Splitting-off theorem.

> U := UnimodularElement(R,A);

U :=

[ 0 1 0
]
,

 −(d3 + x1 + d2) (d3 + x1)
1

2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2


We obtain a unimodular element m* of M represented by U[1] and a left A-homomorphism φ from M to
A induced by U[2] which satisfies φ(m*) = 1:

> Mult(U[1],U[2],A); [
1
]

Let us check that φ is a well-defined left A-homomorphism from M to A, i.e., R U[2] = 0:
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> Mult(R,U[2],A); [
0
]

Since M admits a unimodular element, M can be decomposed as a direct sum of A and another left
A-module M’ up to isomorphism. A presentation of M’ can be obtained using the command FreeDirect-
Summand with the option ”presentation”.

> F := FreeDirectSummand(R,A,"presentation"):

> nops(F);

4

The output of the command FreeDirectSummand with the option ”presentation” is a list with four entries.
The first one F[1] is a representative of a unimodular element of M

> F[1]; [
0 1 0

]
i.e., m* represented by F[1] is a unimodular element of M. The second entry of F

> F[2];  −(d3 + x1 + d2) (d3 + x1)
1

2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2


induces a left A-homomorphism φ from M to A which satisfies φ(m*) = 1. The third entry of F, namely,

> F[3]; [
1 0 0

−1 d1 + x2 −d3 − x1

]
is a presentation matrix of M’ which is isomorphic to ker(φ). Finally, the last entry of F, namely,

> F[4];  d1 + x2 d2 d3 + x1
1 d2 d3 + d3

2 + x1
2 + 2 d3 x1 + d2 x1 0

0 2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2 −1


induces an injective left A-homomorphism i from M’ to M. Using the OreMorphism package, we can
check again that i is injective:

> TestInj(F[3],R,F[4],A);

true

Let us compute rankA(M’):

> OreRank(F[3],A);

1

Since rankA(M’) = 1, we cannot use Serre’s Splitting-off theorem again to decompose the left A-module
M’.

3



Using the option ”isomorphism” of the command FreeDirectSummand,

> G := FreeDirectSummand(R,A,"isomorphism"):

we can get another representation of the above splitting. The output G contains

> nops(G);

4

four entries. The first one

> G[1]; [
0 1 0

]
represents the unimodular element m* of M. The second one, namely,

> G[2];  −(d3 + x1 + d2) (d3 + x1)
1

2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2


induces a left A-homomorphism φ from M to A such that φ(m*) = 1. The third one

> G[3]; [
0 1 0 0
0 −1 d1 + x2 −d3 − x1

]
is a presentation matrix of the left A-module M1 which is isomorphic to the direct sum of A and M’, and
isomorphic to M. Indeed, we note that G[3] = (0 F[3]). The last entry of G

> G[4]; 
0 1 0

d1 + x2 d2 d3 + x1
1 d2 d3 + d3

2 + x1
2 + 2 d3 x1 + d2 x1 0

0 2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2 −1


induces a left A-isomorphism g from M1 to M. This last result can be checked again using the OreMor-
phisms package:

> TestIso(G[3],R,G[4],A);

true

We can simplify the presentation G[3] of M1. Indeed, M1 is isomorphic to M2 which is finitely presented
by the second entry of S defined by:

> with(PurityFiltration):

> S := ReducedPresentation(G[3],A);

S :=

[ 0 1 0 0
0 −1 d1 + x2 −d3 − x1

]
,
[

0 d1 + x2 −d3 − x1
]
,


1 0 0
0 0 0
0 1 0
0 0 1

 ,
 1 0 0 0

0 0 1 0
0 0 0 1



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The left A-isomorphism h from M2 to M1 is induced by S[4].

> TestIso(S[2],S[1],S[4],A);

true

Hence, if we define P = S[4] G[4], namely,

> P := Mult(S[4],G[4],A);

P :=

 0 1 0

1 d2 d3 + d3
2 + x1

2 + 2 d3 x1 + d2 x1 0
0 2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2 −1


then the composition i of g and h, which is induced by P, is a left A-isomorphism.

> TestIso(S[2],R,P,A);

true

Let us now compute i−1.

> Q := InverseMorphism(S[2],R,P,A);

Q :=

 −d2 d3 − d3
2 − x1

2 − 2 d3 x1 − d2 x1 1 0
1 0 0

2 + d1 d3 + x1 d1 + x2 d3 + x1 x2 + d2 d1 + x2 d2 0 −1

 , [ 1
]

We obtain that i−1 is induced by Q[1]. Finally, let us check again that i−1 is a well-defined left A-
isomorphism between M and M2:

> TestIso(R,S[2],Q[1],A);

true
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