```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the third Weyl algebra $A=A_{3}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d[3],x[3]], diff=[d[1],x[1]],
> diff=[d[2],x[2]], polynom=[x[3],x[1],x[2]]):
```

and the left A-module L finitely presented by the matrix P of PD operators defining the curl operator in 3 -space, namely:

$$
\begin{array}{r}
>P:=\operatorname{evalm}([[0,-\mathrm{d}[3], \mathrm{d}[2]],[\mathrm{d}[3], 0,-\mathrm{d}[1]],[-\mathrm{d}[2], \mathrm{d}[1], 0]]) ; \\
P:=\left[\begin{array}{ccc}
0 & -d_{3} & d_{2} \\
d_{3} & 0 & -d_{1} \\
-d_{2} & d_{1} & 0
\end{array}\right]
\end{array}
$$

Let us compute the rank of L :

```
> OreRank(P,A);
```

Thus, we get $\operatorname{rank}_{A}(\mathrm{~L})=1$. We can check that L is not a free left A-module of rank 1 since $\operatorname{ext}_{A}{ }^{3}(\mathrm{~N}, A)$ is isomorphic to $A /\left(A d_{1}+A d_{2}+A d_{3}\right)$, which is non-zero, where N is the Auslander transpose of L :

```
> Exti(Involution(P,A),A,2);
```

$$
\left[\left[\begin{array}{l}
d_{2} \\
d_{1} \\
d_{3}
\end{array}\right],[1], \operatorname{SURJ}(1)\right]
$$

Equivalently, we can check that no generalized inverse of P exists:

```
> GeneralizedInverse(P,A);
```

[]

Hence, L can be generated by two elements. Using Stafford's reduction, let us try to compute a presentation of L with two generators:

```
> S := map(collect,StaffordReduction(P,A),[d[1],d[2],d[3]]):
```

The output of the command StaffordReduction is a list with two entries.

```
> nops(S);
```

The first entry $S[1]$ of S
> $\mathrm{S}[1]$;

$$
\left[\begin{array}{cc}
0 & 0 \\
-d_{3}^{2} & -d_{1} d_{3}+\left(2+d_{3}\left(x_{3}+1\right)\right) d_{2} \\
d_{1} d_{3}+\left(1+\left(-x_{3}-1\right) d_{3}\right) d_{2} & d_{1}^{2}+\left(-2 x_{3}-2\right) d_{2} d_{1}+\left(2 x_{3}+x_{3}^{2}+1\right) d_{2}^{2}
\end{array}\right]
$$

is a matrix presenting a left A-module L_{2} isomorphic to L . The second entry $\mathrm{S}[2]$ of S defines this left A-isomorphism
$>S[2] ;$

$$
\left[\begin{array}{ccc}
-1 & x_{3}+1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

i.e., the left A-homomorphism γ from L_{2} to L induced by $\mathrm{S}[2]$ is a left A-isomorphism:

```
> TestIso(S[1],P,S[2],A);
```


true

A minimal set of generators of L is defined by the images under γ of the residue classes represented by (1 0) and (0 1), i.e.,

$$
z_{1}=-y_{1}+\left(x_{3}+1\right) y_{2}, \quad z_{2}=y_{3},
$$

where $\left\{y_{1}, y_{2}, y_{3}\right\}$ is a set of generators of L . Moreover, computing γ^{-1},

```
> U := InverseMorphism(S[1],P,S[2],A);
```

$$
U:=\left[\left[\begin{array}{cc}
d_{3} x_{3}+d_{3}-1 & -2 d_{2} x_{3}-d_{2} x_{3}^{2}-d_{2}+d_{1} x_{3}+d_{1} \\
d_{3} & -d_{2} x_{3}-d_{2}+d_{1} \\
0 & 1
\end{array}\right],\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & -x_{3}-1 & 0 \\
0 & 0 & 1
\end{array}\right]\right]
$$

we obtain the left A-isomorphism γ^{-1} induced by $\mathrm{U}[1]$. Thus, in terms of generators, we get $\mathrm{y}=\mathrm{U}[1] \mathrm{z}$, where $\mathrm{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\wedge} \mathrm{T}, \mathrm{z}=\left(z_{1}, z_{2}\right)^{\wedge} \mathrm{T}$.

Let us try to reduce the number of relations of the above presentation of L_{2}.

```
> T := map(collect,StaffordReduction(P,A,"reduce_relations"=true),
> [d[1],d[2],d[3]]):
```

We obtain that L_{2} is finitely presented by $\mathrm{T}[1]$, where $\mathrm{T}[1]$ is defined by
$>\mathrm{T}[1]$;

$$
\left[\begin{array}{cc}
-d_{1} d_{3}+\left(-1+d_{3}\left(x_{3}+1\right)\right) d_{2} & -d_{1}^{2}+\left(2 x_{3}+2\right) d_{2} d_{1}+\left(-2 x_{3}-x_{3}^{2}-1\right) d_{2}^{2} \\
-d_{3}^{2} & -d_{1} d_{3}+\left(2+d_{3}\left(x_{3}+1\right)\right) d_{2}
\end{array}\right]
$$

and is isomorphic to L , i.e., the left A-isomorphism γ from L_{2} to L is induced by $\mathrm{T}[2]$, where $\mathrm{T}[2]$ is defined by
$>\mathrm{T}[2]$;

$$
\left[\begin{array}{ccc}
-1 & x_{3}+1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

i.e., $\mathrm{T}[2]=\mathrm{S}[2]$. To conclude, the linear PD system P y $=0$ defined by the curl operator in 3 -space is equivalent to the linear PD system $\mathrm{T}[1]\left(z_{1}, z_{2}\right)^{\wedge} \mathrm{T}=0$ in two unknowns z_{1}, z_{2} and two equations.

