```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the third Weyl algebra $A=A_{3}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d1,x1], diff=[d2,x2], diff=[d3,x3],
> polynom=[x1,x2,x3]):
```

and the left A-module M finitely presented by the matrix R defining the divergence operator in 3 -space, namely:

```
> R := evalm([[d1,d2,d3]]);
```

$$
R:=\left[\begin{array}{lll}
d 1 & d 2 & d 3
\end{array}\right]
$$

Moreover, let us consider $\mathrm{d}=\mathrm{d} 1$

```
> d := d1;
```

$$
d:=d 1
$$

and the element m of M represented by

```
> lambda := evalm([[0,0,-x1]]);
```

$$
\lambda:=\left[\begin{array}{lll}
0 & 0 & -x 1
\end{array}\right]
$$

Let Q be a matrix with three rows and k columns and entries in A such that $\operatorname{ker}_{A}(\mathrm{R})=.\mathrm{Q} A^{k}$.
$>$ Q := Involution(SyzygyModule(Involution(R,A), A), A);

$$
Q:=\left[\begin{array}{ccc}
d 3 & d 2 & 0 \\
0 & -d 1 & d 3 \\
-d 1 & 0 & -d 2
\end{array}\right]
$$

Thus, we have that $\operatorname{hom}_{A}(\mathrm{M}, A)$ is isomorphic to $\operatorname{ker}_{A}(\mathrm{R})=.\mathrm{Q} A^{3}$.
Let us check that (d, m) is a unimodular element of the direct sum of A and M , i.e., $\mathrm{de}+\lambda \mathrm{Q} \xi=1$ for certain elements e of A and ξ of $A^{\wedge} 3$, or equivalently that $\mathrm{S}=(\mathrm{d} \lambda \mathrm{Q})$ admits a right inverse $\left(\mathrm{e} \xi^{\wedge} \mathrm{T}\right)^{\wedge} \mathrm{T}$. We first have

```
> L := Mult(lambda,Q,A);
```

$$
L:=\left[\begin{array}{lllll}
x 1 & d 1 & 0 & x 1 & d 2
\end{array}\right]
$$

which yields that $\mathrm{S}=(\mathrm{d} \lambda \mathrm{Q})$ is defined by

```
> S := augment(evalm([[d]]),L);
    S:=[[\begin{array}{llllll}{d1}&{x1}&{d1}&{0}&{x1d2}\end{array}]
```

The matrix S admits a right inverse T defined by

```
> T := RightInverse(S,A);
```

$$
T:=\left[\begin{array}{c}
x 1 \\
-1 \\
0 \\
0
\end{array}\right]
$$

Hence, we get that e is defined by

```
> e := T[1,1];
```

$$
e:=x 1
$$

and ξ is defined by:

```
    > xi := submatrix(T,2..4,1..1);
```

$$
\xi:=\left[\begin{array}{r}
-1 \\
0 \\
0
\end{array}\right]
$$

Let us check that $\mu=\mathrm{Q} \xi$, namely,

```
> mu := Mult(Q,xi,A);
```

$$
\mu:=\left[\begin{array}{c}
-d 3 \\
0 \\
d 1
\end{array}\right]
$$

is an element of $\operatorname{ker}_{A}(\mathrm{R}$.$) , i.e., \mu$ induces a left A-homomorphism ϕ from M to A :

```
> Mult(R,mu,A);
```

Now, since $\operatorname{rank}_{A}(\mathrm{M})=3-1=2$, let us compute a left A-homomorphism ψ from A to M which is such that $\psi(\mathrm{d})+\mathrm{m}$ is a unimodular element of M .

```
> U := ReductionOfUnimodularElement(R,d,lambda,e,mu,A,"splithom"):
```

The output of the command ReductionOfUnimodularElement contains two entries
$>$ nops(U);
the first one $\mathrm{U}[1]$, namely,
> U[1];

$$
\left[\begin{array}{lll}
0 & x 1+1 & 0
\end{array}\right]
$$

represents an element m_{1} of M which is such that $\psi(\mathrm{a})=$ a m_{1} for every element a of A. Moreover, the second entry $\mathrm{U}[2]$ of U , namely,
$>$ U[2];

$$
\left[\begin{array}{c}
-d 3+d 3 d 1^{2} x 1^{2}+d 3 d 1^{2} x 1-x 1 d 2+d 2 x 1^{2} d 1+2 d 3 d 1 x 1+2 d 1 d 3 \\
-x 1 d 1-x 1^{2} d 1^{2}+1 \\
-d 1-d 1^{3} x 1-x 1^{2} d 1^{3}-4 x 1 d 1^{2}-3 d 1^{2}
\end{array}\right]
$$

induces a left A-homomorphism ϕ from M to A satisfying:
ϕ

$$
(\psi(\mathrm{d})+\mathrm{m})=(\lambda+\mathrm{d} \mathrm{U}[1]) \mathrm{U}[2]=1 .
$$

Finally, let us check again this result. We first have $u=\lambda+d U[1]$

```
> u := simplify(evalm(lambda+Mult(d,U[1],A)));
    u:=[[\begin{array}{lll}{0}&{d1+x1d1+1}&{-x1}\end{array}]
```

then we have $\mathrm{u} \mathrm{U}[2]=1$ since

```
> Mult(u,U[2],A);
```

and $\mathrm{R} \mathrm{U}[2]=0$
$>\operatorname{Mult}(\mathrm{R}, \mathrm{U}[2], \mathrm{A})$;

$$
[0]
$$

which shows that $\mathrm{U}[2]$ defines a left A-homomorphism ϕ from M to A, which satisfies $\phi(\psi(\mathrm{d})+\mathrm{m})=1$.

