```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the first Weyl algebra $A=A_{1}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d,t], polynom=[t]):
```

and the left A-module M finitely presented by the matrix R defined by:

$$
\begin{aligned}
& >\mathrm{R}:=\operatorname{evalm}([[0, \mathrm{~d}, 0,-1],[\mathrm{d}, 0,-\mathrm{t}, 0]]) ; \\
& \qquad R:=\left[\begin{array}{cccr}
0 & d & 0 & -1 \\
d & 0 & -t & 0
\end{array}\right]
\end{aligned}
$$

The rank of the finitely presented left A-module M is:

```
> OreRank(R,A);
```

Since R admits a right inverse S defined by
$>S:=$ RightInverse (R,A);

$$
S:=\left[\begin{array}{rr}
0 & t \\
0 & 0 \\
0 & d \\
-1 & 0
\end{array}\right]
$$

M is a stably free left A-module of rank 2, i.e., a free left A-module of rank 2 . Using the fact that the direct sum of $A^{1 \times 2}$ and M is isomorphic to $A^{1 \times 4}$, and using the Cancellation Theorem, let us compute a basis of M. Let us first compute

$$
\begin{aligned}
& >\mathrm{X}:=\operatorname{stackmatrix}(\mathrm{R}, 1-\mathrm{Mult}(\mathrm{~S}, \mathrm{R}, \mathrm{~A})) ; \\
& X:=\left[\begin{array}{cccc}
0 & d & 0 & -1 \\
d & 0 & -t & 0 \\
-d t+1 & 0 & t^{2} & 0 \\
0 & 1 & 0 & 0 \\
-d^{2} & 0 & 2+d t & 0 \\
0 & d & 0 & 0
\end{array}\right]
\end{aligned}
$$

which defines the left A-isomorphism g from the direct sum of $A^{1 \times 2}$ and M onto $A^{1 \times 4}$. Moreover, the direct sum of $A^{1 \times 2}$ and M is isomorphic to the left A-module L finitely presented by the matrix $\mathrm{P}=(0$ R) defined by

$$
\begin{aligned}
& >P:=\operatorname{augment}(\text { evalm }([[0,0],[0,0]]), \mathrm{R}) ; \\
& \qquad P:=\left[\begin{array}{cccccr}
0 & 0 & 0 & d & 0 & -1 \\
0 & 0 & d & 0 & -t & 0
\end{array}\right]
\end{aligned}
$$

Similarly, a finite presentation of $A^{1 \times 3}$ is given by the matrix R ' defined by

```
> Rp := evalm([[0$3]]);
```

$$
R p:=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

and $A^{1 \times 4}$ is isomorphic to the left A-module L' finitely presented by the matrix $\mathrm{P}^{\prime}=\left(0 \mathrm{R}^{\prime}\right)$ defined by

```
> Pp := augment(evalm([[0]]),Rp);
\[
P p:=\left[\begin{array}{llll}
0 & 0 & 0 & 0
\end{array}\right]
\]
```

Let us check again that the left A-homomorphism f from L to L ' induced by X is a left A-isomorphism:

```
> TestIso(P,Pp,X,A);
```


true

We obtain a left A-isomorphism h_{1} from M_{1} onto $A^{1 \times 3}$ induced by Q1, where M_{1} is the left A-module finitely presented by P1, which is isomorphic to the direct sum of A and M , and the matrix $\mathrm{P} 1=(0 \mathrm{R})$ is defined by

```
> P1 := augment(evalm([[0],[0]]),R);
\[
\text { P1 }:=\left[\begin{array}{rrrcr}
0 & 0 & d & 0 & -1 \\
0 & d & 0 & -t & 0
\end{array}\right]
\]
```

and the matrix Q1 is defined by

$$
\begin{aligned}
& >\text { Q1 := Cancellation(Rp,X,A, "splithom"); } \\
& \qquad Q 1:=\left[\begin{array}{ccc}
d^{2} & -t & -d \\
-(d t-1) d & t^{2} & d t-1 \\
1 & 0 & 0 \\
-d^{3} & 2+d t & d^{2} \\
d & 0 & 0
\end{array}\right]
\end{aligned}
$$

Let us check again that h_{1} is a left A-isomorphism:

```
> TestIso(P1,Rp,Q1,A);
```

true
Let $\mathrm{R} "=\left(\begin{array}{l}0\end{array}\right)$, namely,

```
> Rpp := evalm([[0$2]]);
```

$$
R p p:=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

and L" be the left A-module finitely presented by R ", which is isomorphic to $A^{1 \times 2}$. We obtain a left A-isomorphism h_{2} from M onto $A^{1 \times 2}$ induced by Q2, where Q 2 is the matrix defined by:

$$
\begin{aligned}
& >\text { Q2 }:=\text { Cancellation(Rpp,Q1,A,"splithom"); } \\
& \qquad Q 2:=\left[\begin{array}{cc}
t^{2}+d^{2} t^{2}+d t-1 & d t-1+(d t-1) d^{2} \\
-t & -d \\
2+d t+d^{3} t+3 d^{2} & d^{2}+d^{4} \\
-1-d t & -d^{2}
\end{array}\right]
\end{aligned}
$$

Thus, Q2 is an injective parametrization of M, namely, $\operatorname{ker}_{A}(. \mathrm{Q} 2)=A^{1 \times 2} \mathrm{R}$,
> SyzygyModule(Q2,A);

$$
\left[\begin{array}{rccr}
d & 0 & -t & 0 \\
0 & d & 0 & -1
\end{array}\right]
$$

or equivalently, M is isomorphic to $A^{1 \times 4} \mathrm{Q} 2$, and Q 2 admits a left inverse defined by

```
> T2 := LeftInverse(Q2,A);
```

$$
T 2:=\left[\begin{array}{cccc}
0 & 0 & 1 & 1+d^{2} \\
-1 & -t & 0 & -d t+1
\end{array}\right]
$$

