> with(OreModules):
> with(Stafford):

We consider the ordinary differential linear system which defines the derivative of the Dirac distribution
0. For more details, see Example 4 of A. Quadrat and D. Robertz, Constructive computation of bases of
free modules over the Weyl algebra, INRIA Report 5786, 2005. We first introduce the first Weyl algebra
Alg = A_1 formed by ordinary differential operators with polynomial coefficients.

> Alg:=DefineOreAlgebra(diff=[D,t],polynom=[t]):
The system is then defined by the following matrix of differential operators

> R:=evalm([[t~2], [t*D+2]1]);
t2
Ri= [ tD+2 }

i.e., the derivative y of the Dirac distribution ¢ satisfies the equations:

> ApplyMatrix(R, [y(t)],Alg)=evalm([[0]1$2]);

[ 2y<t>ﬁ¥(&y<t» } B [ 8 ]

Let us compute a finite free resolution of the left Alg-module M defined as the cokernel of R, i.e., M=
Alg/(Alg (t*)+Alg (tD +2)):

> F:=FreeResolution(R,Alg);
2

F :=table([1 = { D42

],Z[D —t],3:INJ(1)])

Let us check whether or not we can find a shorter free resolution of M:

> G:=ShorterFreeResolution(F,Alg);
t2 t

G := table([1 = { iD+2 D

] 2= INJ(2)))

As the first matrix of G has a trivial syzygy module, we obtain that G is a "minimal free resolution” of
M. This last result can be directly obtained by:

> MinimalFreeResolution(R,Alg);
t? t

table([1 = [ D+2 D

} , 2 =INJ(2)])

Now, we can check whether or not M is a stably free left Alg-module by checking if a right-inverse of
G[1] exists:

> RightInverse(G[1],Alg);

[

Hence, we obtain that M is not a stably free left Alg-module. Another way to check this result is to
compute the projective dimension of M.



> ProjectiveDimension(R,Alg) ;
1

We obtain again that M is a not a stably free left Alg-module. Finally, this result can also be checked
by computing:

> Extl:=Exti(Involution(R,Alg),Alg,1);
12

Ext1 ::[[ 4D 42

} , [ 1 ],SURJ(I)]
As the first matrix of Ext! is not the identity matrix, we conclude that M is not a torsion-free Alg-

module, and thus, not a stably free Alg-module. As the second matrix is just 1, we obtain that M is a
torsion Alg-module.

Finally, we can prove that the left ideal of Alg defined by the two entries of the matrix R is not principal.
For more details, see Example 17 of A. Quadrat and D. Robertz, Constructive computation of bases of
free modules over the Weyl algebra; INRIA Report 5786, 2005.

We now consider the linear system of partial differential equations formed by the infinitesimal trans-
formations of the Lie pseudogroup defining the contact transformations. See Example V. 1. 84 of
J.-F. Pommaret, Partial Differential Control Theory, Kluwer, 2001, and Example 5 of A. Quadrat and
D. Robertz, Constructive computation of bases of free modules over the Weyl algebra, INRIA Report
5786, 2005.

We first introduce the Weyl algebra Alg2 = A_3 of the partial differential operators in z1, z2 and x3
with polynomial coefficients.

> Alg2:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],diff=[D3,x3],polynom=[x1,x2,x3]):
The system is defined by the following matrix R2 of differential operators:

> R2:=evalm([[(x2/2)*D1,x2*D2+1,x2*D3+D1/2], [-(x2/2)*D2-3/2,0,D2/2],
> [-D1-(x2/2)*D3,-D2,-D3/211);

”“"22]31 22D2 + 1 x?DS—F%
poo_ | _#2D2 3 . D2
2 2 2
pp_®D3 b3
2 2

In other words, we consider the system of partial differential equations defined by:

> x:=x1,x2,x3:
> ApplyMatrix(R2, [eta[1] (x),etal[2] (x),etal3] (x)],Alg2)=evalm([[0]$3]);

1
[2 z2 (% m(zl, 22, 23)) + no(xl, 22, 28) + 22 (% na(zl, 22, ©3))

1
+ 3 (% n3(zl, 2, ©3)) + 12 (% ns3(zl, 2, 3))
3 1. 1,
_inl(xL z2, x3) — 3 12 (525 m(z1, 22, 23)) + B (525 n3(xl, 22, 23))

1
[— (goz m(al, 22, 23)) = 5 22 (555 m (w1, 22, 23)) = (535 (a1, 22, 25))

0

1
—5 (—823 n3(zl, 22, z3))| = | O
0



Let us compute a finite free resolution of the left Alg2-module M2 defined as the cokernel of the matrix
R2,ie., M2=Alg2"{1*3}/(Alg2"{1*3} R_2).

> F2:=FreeResolution(R2,Alg2);

D1 D1

$22 2D2+1 a2D3+ —
F2 = table((l = | %P2 3 0 bz ;

2 2 2

D D
_pro DS —73

2=[D2 —DI—22D3 2+a2D2 ],
3 =INJ(1)
)

Let us check whether or not M2 admits a shorter finite free resolution. We have:

> G2:=ShorterFreeResolution(F2,Alg2) ;

D1 D1
Igz #2D2+1 @2D3+ — —a2
G2 = table(l = | —%2D2 3 0 b2 0 |,2=INJ@3)
2 2 2
D D
p1_#D3 ——23 1

Hence, we obtain a shorter finite free resolution defined by G2. As the first matrix G2 has full row rank,
i.e., its syzygy module is trivial as G2[2]= INJ(3), we know that we cannot reduce once more the free
resolution G2. This information can also be obtained using the command ”minimal free resolution”.

> MinimalFreeResolution(R2,A1g2);

2 D1 D1
x2 22D2+1 a2D3+ — —a2
table([1 = | —%2D2 3 0 b2 0 |,2=INJ@3))
2 2 2
D D
p1_#b3 —73 1

Finally, let us check whether or not M2 is a projective, and thus, a stably free left Alg2-module. In order
to do that, let us compute if the full row rank matrix G2[1] admits a right-inverse:

> RightInverse(G2[1],A1g2);

0 -1 0
1 0 z2
0 —z2 0

D2 —-D1—-22D3 2+z2D2

This last result is also coherent with the fact that the projective dimension of M2 is:

> ProjectiveDimension(R2,Alg2) ;



Indeed, M2 is then a projective left Alg2-module. We note that this result corrects a small typo in
Example 7 in page 14 of A. Quadrat and D. Robertz, Constructive computation of bases of free modules
overthe Weyl algebra, INRIA Report 5786, 2005. Hence, M2 is a stably free Alg2-module of rank:

> OreRank(R2,Alg2) ;
We cannot use the result due to J. T. Stafford which asserts that every stably free Alg2-module of rank

at least 2 is free, in order to conclude that M2 is a free left Alg2-module. However, we can try to find if
there exists an injective minimal parametrization of R2:

> Q:=MinimalParametrization(R2,Alg2);

—D2
Q:=| D1+z2D3
—2—22D2 |
> §:=LeftInverse(Q,Alg2);
2 -1
Si=| — —
> 0 3

> Mult(S,Q,Alg2);
[1]

Hence, we obtain that M2 is a free Alg2-module of rank 1 and we have the following parametrization of
the system R2n = 0:

> evalm([seq([etal[i]l (x)],i=1..3)])=Parametrization(R2,A1g2);

m(zl, 22, z3) —(% &1(xl, x2, 23))
no(xl, 22, z3) | = (%51(1:1, z2, x3)) + 22 (%gl(xl, z2, 18))
ns3(zl, 22, ©3) —2&1(x1, 22, 23) — 22 (555 §1(w1, 22, 23))

This parametrization is injective as we then have:

> xi[1] (x)=ApplyMatrix(S, [seq(etalil (x),i=1..3)],A1g2)[1,1];

1 1
&i(xl, x2, 28) = §x2 m(zl, 22, 23) — 5773(:101, z2, ©3)

Let us consider the so-called Janet’s example (M. Janet, Lecons sur les systemes d’equations aux derivees
partielles, Gauthier-Vilars, 1929, p. 76-77). The system is defined by the following matrix of differential
operators:

> R3:=evalm([[D3"2-x2%D1°2], [D2"2]11);

D3? - D1% 2
= | PV 002
Let us compute a finite free resolution of the left Alg2-module M3 defined as the cokernel of the matrix
R3, i.e., M3= Alg2/(Alg2 (D3* — 22 D1%)+ Alg2 (D2?)).



> F3:=FreeResolution(R3,Alg2);

2 12
F3 := table([1 = { D3” - D172 }

D2?

2 =[D2%, 3D1% + D2D1% 22 — D2D3?]

[D3*D2% + 2D2D3%? D12 — 2D3% D12 22 D2% 4+ 2D1* — 2D1* 22 D2
+ D1* 222 D2%, 3D3* D1? 22 — D3° — 3D3% D1* 222 + D1° 227],
3=[ D1"22? —2D1°22D3* + D3* -D2 |,

4=1INJ(1)

)

We now can compute a shorter free resolution of M& if it exists. We obtain:

> MinimalFreeResolution(R3,Alg2);

2 q2
table([1 = { D3? — D1% 22 }

D2?

2 =[D2*, 3D1% + D2D1% 2 — D2D3?|

[D3*D2% 4 2D2D3*D1? — 2D3?> D1* 22 D2% 4+ 2D1* — 2D1* 22 D2
+D1*222D2% 3D3* D12 22 — D3° — 3D3% D1* 222 4 D1° 223,
3=[ D1*22? -2D1°22D3* + D3* -D2 |,

4=1NJ(1)

I

Hence, it is not possible to shorten the finite free resolution of M8 defined by F3. Therefore, we obtain
that the projective dimension of M3 is:

> ProjectiveDimension(R3,Alg2);

Finally, let us consider the following example.
> Alg4:=DefineOreAlgebra(diff=[D1,x1],diff=[D2,x2],polynom=[x1,x2]):
The system is defined by means of the following matrix of differential operators:
> Ré4:=evalm([[D2"3+x2], [D1"°2+D2]1]1);
3
mi=| D i

We then have the system of partial differential equations:

> x:=x1,x2: ApplyMatrix(R4, [y(x)],Algd)=evalm([[0]1$2]);
12y(xl, 22) + (35 y(al, 22)) | _ { 0 }
(3% y(21, 22)) + (327 y(z1, 22)) 0

We compute a finite free resolution of the left Algj-module M/ defined as the cokernel of the matrix R/,
ie., M{= Algj/(Alg} (D2® + 22) + Alg4 (D1? + D2)).



> F4:=FreeResolution(R4,Alg4d);

D23
F4 = table([1 = [ D12;r|—1§22 } )
2{ 2—D1;1—2D42D122—D22 2+D1§D23+D1§m2+D224+x22D2 ’
1-D12D2® — D2* — D1% 22 — 22 D2 D2% + 222 D2% + 3D2% + 22
3=[D2°+22 -D1I°-D2 ],
4 =1INJ(1)
)

Let us check whether or not we can shorten the previous finite free resolution of M/.

> G4:=ShorterFreeResolution(F4,Alg4d) ;

D2° + 22
G4 :=table([1 = | D1+ D2 |,
0
o —-D1* —2D2D12 — D2?, 2+ D12D2% + D12 22 + D2* + 22 D2, —D1%2 — D2
T | 1-D1°D2* - D2* — D1%22 — 22 D2, D2% + 222 D2% + 3D2% + 222, —D2% — 22 |’
3 =1INJ(2)
)

Hence, we can reduce the length of the free resolution F4 of M/ by one. Let us try to continue.

> H4:=ShorterFreeResolution(G4,Alg4d);

D23 + 22 0 1
Hj := table([1 = | D1? + D2 1 0 , 2=1INJ(3)])
0 D22 +12 -D1%2-D2

We obtain a finite free resolution of M4 defined by a full row rank matrix as H4[2]= INJ(3). Hence, it
is a "minimal free resolution” of M. This last result can be directly checked by computing a minimal
free resolution of M/:

> MinimalFreeResolution(R4,Alg4);

D2% + 22 0 1
table([1 = | D12 + D2 1 0 , 2 =1INJ(3)])
0 D22 +z2 —-D1?2-D2

As M} is presented by means of a full row rank matrix, we then know that M4 is a stably free left
Alg4-module iff the presentation matrix H4[1] admits a right-inverse. Let us check this last point:

> RightInverse(H4[1],Alg4);
D124+ D2, -D2% — 22,1
-D1* —2D2D1% = D2?, 2+ D12D2% + D1% 22 4+ D2* + 22 D2, —D1% — D2
1-D1°D2® — D2 —D1% 22 — 22 D2, D2° + 222 D2% +3D2? 4+ 222, —D2° — 22
Therefore, we obtain that M/ is a stably free left Alg4-module of rank:

> OreRank(R4,Algd);



However, as the rank of M/ over Alg4 is 0, we know that M/ is also a torsion left Alg/-module, and
thus, we obtain that M/ must be the zero module. The fact that M/ is the zero module is equivalent to
the existence of a left-inverse S/ of R4 over Alg4 as we can easily check:

> S4:=LeftInverse(R4,Alg4);
S4:=[D1*+D2 -D2°—22 |

Indeed, we have S4 R4 = 1:

> Mult(S4,R4,Algd);
[1]

Finally, the projective dimension of M4 = 0 is:

> ProjectiveDimension(R4,Alg4);



