```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the third Weyl algebra $A=A_{3}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]],
> diff=[d[3],x[3]], polynom=[x[1],x[2],x[3]]):
```

and the left A-module L finitely presented by the following matrix:

```
> P := evalm([[x[2]*d[1]/2,x[2]*d[2]+1,x[2]*d[3]+d[1]/2],
> [-x[2]*d[2]/2-3/2,0,d[2]/2],[-d[1]-x[2]*d[3]/2,-d[2],-d[3]/2]]);
```

$$
P:=\left[\begin{array}{ccc}
\frac{1}{2} x_{2} d_{1} & x_{2} d_{2}+1 & x_{2} d_{3}+\frac{1}{2} d_{1} \\
-\frac{1}{2} x_{2} d_{2}-\frac{3}{2} & 0 & \frac{1}{2} d_{2} \\
-d_{1}-\frac{1}{2} x_{2} d_{3} & -d_{2} & -\frac{1}{2} d_{3}
\end{array}\right]
$$

Let us compute its rank:

```
> OreRank(P,A);
```

We obtain $\operatorname{rank}_{A}(\mathrm{~L})=1$. Hence, L is either a free left A-module of rank 1 or L can be generated by two elements.

Let us compute Stafford's reduction of L:

$$
\left.\left.\begin{array}{l}
>S:=\text { StaffordReduction(P,A,"reduce_generators"=true); } \\
S:=\left[\left[\begin{array}{cc}
-\frac{1}{2} d_{1} x_{2} d_{2}-\frac{3}{2} d_{1}-\frac{1}{2} d_{3} x_{2}{ }^{2} d_{2}-\frac{3}{2} x_{2} d_{3} & \frac{1}{2} x_{2} d_{3} d_{2}+\frac{1}{2} d_{2} d_{1} \\
-\frac{1}{2} x_{2} d_{2}-\frac{3}{2} & \frac{1}{2} d_{2}
\end{array}\right],\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
\end{array}\right] .\right] .
$$

We obtain that the left A-homomorphism γ from L_{2} to L induced by $\mathrm{S}[2]$, where L_{2} is the left A-module finitely presented by $\mathrm{S}[1]$, is a left A-isomorphism. This result can be checked again:

```
> TestIso(S[1],P,S[2],A);
```

true

Let us try to reduce the number of relations in the presentation matrix $\mathrm{S}[1]$ of L_{2} :

$$
\begin{gathered}
>\mathrm{T}:=\text { StaffordReduction(S[1], } \mathrm{A}, \text { "checkrank"=false,"reduce_generators"=true); } \\
T:=\left[[0],\left[\begin{array}{cc}
x_{2} & -1
\end{array}\right]\right]
\end{gathered}
$$

We get that L_{2} is isomorphic to the left A-module finitely presented by $\mathrm{T}[1]$, and thus isomorphic to A. This last isomorphism can be checked again:

```
> TestIso(T[1],S[1],T[2],A);
```


true

Thus, L is a free left A-module of rank 1 . If we define $\mathrm{U}=\mathrm{T}[2] \mathrm{S}[2]$, i.e.,

```
> U := Mult(T[2],S[2],A);
```

$$
U:=\left[\begin{array}{lll}
x_{2} & 0 & -1
\end{array}\right]
$$

then the left A-homomorphism θ from A to L induced by U is a left A-isomorphism:
> TestIso(T[1], P, U, A);

true

In particular, since 1 is a basis of A, then $\theta(1)$ is a basis of L .

