- > with(OreModules):
- > with(OreMorphisms):
- > with(Stafford):
- > with(linalg):

Let us consider the second Weyl algebra $A = A_2(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y]):

the left A-module M finitely presented by the matrix R defined by

> R := transpose(evalm([[dx,dy,0,0,0,0],[0,1,-1,0,dx,dy],[0,0,dx,dy,0,0]]));

$$R := \begin{bmatrix} dx & 0 & 0 \\ dy & 1 & 0 \\ 0 & -1 & dx \\ 0 & 0 & dy \\ 0 & dx & 0 \\ 0 & dy & 0 \end{bmatrix}$$

and the left A-module M' finitely presented by the matrix R' defined by:

> Rp := evalm([[dx,0],[dy/2,dx/2],[0,dy]]);

$$Rp := \left[\begin{array}{cc} \frac{dx}{dy} & 0\\ \frac{dy}{2} & \frac{dx}{2} \\ 0 & dy \end{array} \right]$$

Let f be the left A-homomorphism from M' to M induced by S, where S is given by

> S := evalm([[1,0,0],[0,0,1]]);

$$S := \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 0 & 1 \end{array} \right]$$

We can check that f is a left A-isomorphism:

> TestIso(Rp,R,S,A);

true

Then the direct sum of $A^{1\times 6}$ and N_1 is isomorphic to the direct sum of $A^{1\times 8}$ and N_1 , where N_1 (resp., N_1) is the left A-module finitely presented by the formal adjoint of R (resp., R'), namely:

> Involution(R,A);

$$\begin{bmatrix} -dx & -dy & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & -dx & -dy \\ 0 & 0 & -dx & -dy & 0 & 0 \end{bmatrix}$$

> Involution(Rp,A);

$$\left[\begin{array}{ccc} -dx & -\frac{dy}{2} & 0 \\ 0 & -\frac{dx}{2} & -dy \end{array} \right]$$

The corresponding isomorphism can be computed by the command Auslander Equivalence:

- > unprotect(0);
- > 0 := AuslanderEquivalence(Rp,R,S,A,opt):

The left A-module L finitely presented by the first entry P = O[1] of O

is isomorphic to the direct sum of $A^{1\times 6}$ and N_1 , and the left A-module L' finitely presented by the second entry P' = O[2] of O, namely,

is isomorphic to the direct sum of $A^{1\times 8}$ and N_1 '.

The rank of the left A-module L is:

9

The rank of the left A-module L' is:

> OreRank(Pp,A);

9

The left A-homomorphism f_1 from L to L' induced by O[3], where O[3] is defined by

> 0[3];

is a left A-isomorphism:

> TestIso(P,Pp,O[3],A);

true

If P = (0 P2), where P2 is defined by

> P2 := submatrix(P,1..5,2..14);

then L is isomorphic to the direct sum of A and L_2 , where the left A-module L_2 is finitely presented by P2. The rank of L_2 is:

> OreRank(P2,A);

8

Similarly, if P' = (0 P2'), where P2' is defined by

> P2p := submatrix(Pp,1..5,2..14);

then L' is isomorphic to the direct sum of A and L_2 ', where the left A-module L_2 ' is finitely presented by P2'. The rank of L_2 ' is:

> OreRank(P2p,A);

8

Then we have that L_2 is isomorphic to L_2 '. Let us compute the corresponding left A-isomorphism f_2 from L_2 onto L_2 '.

> X := Cancellation(P2p,0[3],A);

We obtain that f_2 is induced by X. We can check again that f_2 is a left A-isomorphism:

> TestIso(P2,P2p,X,A);

true

If P2 = (0 P3), where P3 is defined by

> P3 := submatrix(P2,1..5,2..13);

then L_2 is isomorphic to the direct sum of A and L_3 , where the left A-module L_3 is finitely presented by P3. The rank of L_3 is:

> OreRank(P3,A);

7

If P2' = (0 P3'), where P3' is defined by

> P3p := submatrix(P2p,1..5,2..13);

then L_2 ' is isomorphic to the direct sum of A and L_3 ', where the left A-module L_3 ' is finitely presented by P3'. The rank of L_3 ' is:

OreRank(P3p,A);

7

Then we have that L_3 and L_3 ' are isomorphic. Let us compute the corresponding left A-isomorphism f_3 from L_3 onto L_3 '.

We obtain that f_3 is induced by Y. We can check again that f_3 is a left A-isomorphism:

TestIso(P3,P3p,Y,A);

true

If P3 = (0 P4), where P4 is defined by

P4 := submatrix(P3,1..5,2..12

then L_3 is isomorphic to the direct sum of A and L_4 , where the left A-module L_4 is finitely presented by P4. The rank of L_4 is:

OreRank(P4,A);

6

If P3' = (0 P4'), where P4' is defined by

> P4p := submatrix(P3p,1..5,2..12);

then L_3 ' is isomorphic to the direct sum of A and L_4 ', where the left A-module L_4 ' is finitely presented by P4'. The rank of L_4 ' is:

OreRank(P4p,A);

6

Then we have that L_4 and L_4 ' are isomorphic. Let us compute the corresponding left A-isomorphism f_4 :

Z := Cancellation(P4p,Y,A);

$$Z := \begin{bmatrix} dy \,,\, 0 \,,\, 1 \,,\, -(1+dx) \,dy \,,\, -dx \,,\, 1+dx \,,\, 0 \,,\, -1 \,,\, 1 \,,\, 0 \,,\, 0 \\ -1 \,,\, 0 \,,\, 0 \,,\, dx \,,\, 0 \,,\, 0 \,,\, \frac{1}{2} \,,\, 0 \,,\, 0 \,,\, 1 \,,\, 0 \\ 0 \,,\, -2 \,,\, 0 \,,\, 0 \,,\, -(2+dx) \,dy + dy \,dx \,,\, 0 \,,\, 1+\frac{dx}{2} \,,\, dy \,,\, 0 \,,\, 0 \,,\, 1 \\ 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, -dx \,,\, -\frac{dy}{2} \,,\, 0 \,,\, -1 \,,\, -dy \,,\, 0 \\ 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, -\frac{dx}{2} \,,\, -dy \,,\, 0 \,,\, 0 \,,\, -1 \\ 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, -\frac{dx}{2} \,,\, -dy \,,\, 0 \,,\, 0 \,,\, -1 \\ 0 \,,\, 0 \,,\, 0 \,,\, -dy \,,\, 0 \,,\, 1 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \\ 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, -dy \,,\, 0 \,,\, \frac{1}{2} \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \\ 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, -dy \,,\, 0 \,,\, \frac{1}{2} \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \,,\, 0 \\ 0 \,,\, 0 \,$$

We obtain that f_4 is induced by Z. We can check again that f_4 is a left A-isomorphism:

TestIso(P4,P4p,Z,A);

true

If P4 = (0 P5), where P5 is defined by

> P5 := submatrix(P4,1..5,2..11);

then L_4 is isomorphic to the direct sum of A and L_5 , where the left A-module L_5 is finitely presented by P5. The rank of L_5 is:

> OreRank(P5,A);

5

If P4' = (0 P5'), where P5' is defined by

> P5p := submatrix(P4p,1..5,2..11)

then L_4 ' is isomorphic to the direct sum of A and L_5 ', where the left A-module L_5 ' is finitely presented by P5'. The rank of L_5 ' is:

> OreRank(P5p,A);

5

Then we have that L_5 and L_5 ' are isomorphic. Let us compute the corresponding left A-isomorphism f_5 .

> U := Cancellation(P5p,Z,A);

$$U := \begin{bmatrix} 0, -1, dx + (1+dx) dy, dx, -1 - dx, \frac{1}{2}, 1, -1, 1, 0 \\ -2, 0, 0, -(2+dx) dy + dy dx, 0, 1 + \frac{dx}{2}, dy, 0, 0, 1 \\ 0, 0, 0, 0, -dx, -\frac{dy}{2}, 0, -1, -dy, 0 \\ 0, 0, 0, 0, 0, -\frac{dx}{2}, -dy, 0, 0, -1 \\ 0, 0, -dy, 0, 1, 0, 0, 0, 0, 0 \\ 0, 0, dx, 0, 0, \frac{1}{2}, 0, 0, 1, 0 \\ 0, 0, 0, -dy, 0, \frac{1}{2}, 0, 0, 0, 0 \\ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 \end{bmatrix}$$

We obtain that f_5 is induced by U. We can check again that f_5 is a left A-isomorphism:

> TestIso(P5,P5p,U,A);

true

If P5 = (0 P6), where P6 is defined by

> P6 := submatrix(P5,1..5,2..10);

$$P6 := \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -dx & -dy & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & -dx & -dy \\ 0 & 0 & 0 & 0 & 0 & -dx & -dy & 0 & 0 \end{bmatrix}$$

then L_5 is isomorphic to the direct sum of A and L_6 , where the left A-module L_6 is finitely presented by P6. The rank of L_6 is:

> OreRank(P6,A);

4

If P5' = (0 P6'), where P6' is defined by

> P6p := submatrix(P5p,1..5,2..10);

$$P6p := \begin{bmatrix} 0 & 0 & 0 & -dx & -\frac{dy}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\frac{dx}{2} & -dy & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

then L_5 ' is isomorphic to the direct sum of A and L_6 ', where the left A-module L_6 ' is finitely presented by P6'. The rank of L_6 ' is:

> OreRank(P6p,A);

4

Then we have that L_6 and L_6 ' are isomorphic. Let us compute the corresponding left A-isomorphism f_6 .

> V := Cancellation(P6p,U,A);

We obtain that f_6 is induced by V. We can check again that f_6 is a left A-isomorphism:

> TestIso(P6,P6p,V,A);

true

If P6 = (0 P7), where P7 is defined by

> P7 := submatrix(P6,1..5,2..9);

$$P7 := \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -dx & -dy & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & -dx & -dy \\ 0 & 0 & 0 & 0 & -dx & -dy & 0 & 0 \end{bmatrix}$$

then L_6 is isomorphic to the direct sum of A and L_7 , where the left A-module L_7 is finitely presented by P7. The rank of L_7 is:

> OreRank(P7,A);

3

If P6' = (0 P7'), where P7' is defined by

> P7p := submatrix(P6p,1..5,2..9);

$$P7p := \begin{bmatrix} 0 & 0 & -dx & -\frac{dy}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -\frac{dx}{2} & -dy & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

then L_6 ' is isomorphic to the direct sum of A and L_7 ', where the left A-module L_7 ' is finitely presented by P7'. The rank of L_7 ' is:

> OreRank(P7p,A);

3

Then we have that L_7 and L_7 ' are isomorphic. Let us compute the corresponding left A-isomorphism f_7 .

> W := map(collect,Cancellation(P7p,V,A),[y,dx,dy]):

We obtain that f_7 is induced by W. We can check again that f_7 is a left A-isomorphism:

> TestIso(P7,P7p,W,A);

true

Let us compute a matrix Q satisfying P7 W = Q P7':

> Q := Factorize(Mult(P7,W,A),P7p,A);

$$Q := \left[egin{array}{ccccc} 1 & 0 & -1 & -dy & 0 \ 0 & 1 & 0 & 0 & -1 \ 1 & 0 & 0 & -dy & 0 \ 0 & 0 & 0 & 1 & 0 \ 0 & 1 & 0 & 0 & 0 \end{array}
ight]$$

If P7 = (0 P8), where P8 is defined by

> P8 := submatrix(P7,3..5,3..8);

$$P8 := \begin{bmatrix} -dx & -dy & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & -dx & -dy \\ 0 & 0 & -dx & -dy & 0 & 0 \end{bmatrix}$$

then L_7 is isomorphic to the direct sum of A and L_8 , where the left A-module L_8 is finitely presented by P8. The rank of L_8 is:

> OreRank(P8,A);

3

If P7' = (0 P8'), where P8' is defined by

> P8p := submatrix(P7p,1..2,1..5);

$$P8p := \begin{bmatrix} 0 & 0 & -dx & -\frac{dy}{2} & 0 \\ 0 & 0 & 0 & -\frac{dx}{2} & -dy \end{bmatrix}$$

then L_7 ' is isomorphic to the direct sum of A and L_8 ', where the left A-module L_8 ' is finitely presented by P8'. The rank of L_8 ' is:

> OreRank(P8p,A);

Let us consider the matrix W' obtained by taking the last five rows of W

> Wp := submatrix(W,3..8,1..5):

i.e., the rows of W' are respectively defined by:

Let us consider the matrix Q' obtained by taking the last three rows of Q:

> Qp := submatrix(Q,3..5,1..2);

$$Qp := \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{array} \right]$$

We can easily check that P8 W' = Q' P8':

> simplify(evalm(Mult(P8,Wp,A)-Mult(Qp,P8p,A)));

We can also check that the left A-homomorphism f_8 from L_8 to L_8 ' induced by W' is a left A-isomorphism:

> TestIso(P8,P8p,Wp,A);

We note that the left A-module L_8 corresponds to Cosserat's equations. Moreover, from the structure of the matrix P8', it is clear that L_8 ' is isomorphic to the direct sum of $A^{1\times 2}$ and L_9 ', where the left A-module L_9 ' is finitely presented by P9' and P9' is defined by:

> P9p := submatrix(P8p,1..2,3..5);

$$P9p := \begin{bmatrix} -dx & -\frac{dy}{2} & 0\\ 0 & -\frac{dx}{2} & -dy \end{bmatrix}$$

We also note that L_9 ' corresponds to the linear PD system defined by the equilibrium of the symmetric stress tensor. Hence, we find again that L_8 is isomorphic to the direct sum of $A^{1\times 2}$ and L_9 '.