```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the first Weyl algebra $A=A_{1}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d,t], polynom=[t]):
```

the left A-module M finitely presented by the matrix defined by

```
> R := evalm([[t^2,t],[t*d+2,d]]);
```

$$
R:=\left[\begin{array}{cc}
t^{2} & t \\
t d+2 & d
\end{array}\right]
$$

and the left A-module M^{\prime} finitely presented by the matrix defined by

```
> Rp := evalm([[t^2],[t*d+2]]);
```

$$
R p:=\left[\begin{array}{c}
t^{2} \\
t d+2
\end{array}\right]
$$

Let us also consider the left A-homomorphism χ from M' to M induced by the matrix defined by

```
> W := evalm([[1,0]]);
```

$$
\mathrm{W}:=\left[\begin{array}{ll}
1 & 0
\end{array}\right]
$$

We can check that χ is a left A-isomorphism:

```
> TestIso(Rp,R,W,A);
```

true

Since M is isomorphic to M', the direct sum of $A^{1 \times 4}$ and N_{1} and the direct sum of $A^{1 \times 3}$ and N_{2}, where N_{1} and N_{2} are finitely presented by the formal adjoint of R and R', respectively, are isomorphic. The corresponding left A-isomorphism can be computed by the command AuslanderEquivalence:

```
> unprotect(0);
> 0 := AuslanderEquivalence(Rp,R,W,A,opt):
```

We obtain that the left A-module L finitely presented by the matrix defined by
$>P:=O[1] ;$

$$
P:=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & t^{2} & 1-t d \\
0 & 0 & 0 & 0 & 0 & t & -d
\end{array}\right]
$$

is isomorphic to the direct sum of $A^{1 \times 4}$ and N_{1}, and the left A-module L' finitely presented by the matrix defined by

```
> Pp := O[2];
```

$$
P p:=\left[\begin{array}{ccccccc}
0 & 0 & 0 & t^{2} & 1-t d & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is isomorphic to the direct sum of $A^{1 \times 3}$ and N_{2}. Moreover, the matrix defined by

```
> X := O[3];
```

$$
X:=\left[\begin{array}{cccccrc}
0 & -1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 1 & 0 & 0 \\
1 & -t^{2} & -1+t d & 0 & 0 & 1 & 0 \\
0 & -t & d & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & t^{2} & 1-t d & -1 & 0 \\
0 & 0 & 0 & t d+2 & -d^{2} & 0 & -d \\
0 & 0 & 0 & t^{2} & 1-t d & 0 & -t
\end{array}\right]
$$

induces a left A-homomorphism f from L to L ' which is a left A-isomorphism:

```
> TestIso(P,Pp,X,A);
```

true

The inverse f^{-1} of f is induced by the matrix defined by:

```
> Xp := O[5];
```

$$
X p:=\left[\begin{array}{ccccccc}
-t^{2} & -1+t d & 1 & 0 & 1 & 0 & 0 \\
-t d-2 & d^{2} & 0 & d & 0 & 1 & 0 \\
-t^{2} & -1+t d & 0 & t & 0 & 0 & 1 \\
-t d-1 & d^{2} & 0 & d & 0 & 1 & 0 \\
-t^{2} & t d & 0 & t & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & -1 & t^{2} & 1-t d \\
0 & 0 & 0 & 0 & 0 & t & -d
\end{array}\right]
$$

We can check again that the above left A-homomorphism is an isomorphism:

```
> TestIso(Pp,P,Xp,A);
```


true

If $\mathrm{P}=(0 \mathrm{P} 2)$, where P 2 is defined by
$>$ P2 := submatrix(P,1..3,2..7);

$$
P 2:=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & t^{2} & 1-t d \\
0 & 0 & 0 & 0 & t & -d
\end{array}\right]
$$

and $\mathrm{P}^{\prime}=\left(0, \mathrm{P} 2^{\prime}\right)$, where $\mathrm{P} 2{ }^{\prime}$ is defined by
$>\mathrm{P} 2 \mathrm{p}:=$ submatrix $(\mathrm{Pp}, 1 . .3,2 . .7)$;

$$
P 2 p:=\left[\begin{array}{cccccc}
0 & 0 & t^{2} & 1-t d & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

L2 is the left A-module finitely presented by P2 and L2' is the left A-module finitely presented by P2', then L2 is isomorphic to L2'. Let us compute the corresponding left A-isomorphism f 2 .

```
> Y := Cancellation(P2p,X,A);
```

$$
Y:=\left[\begin{array}{rcccrc}
0 & -1 & 0 & 1 & 0 & 0 \\
-1 & -1+t d & 1-t^{2} & 0 & 1 & 0 \\
0 & d & -t & 0 & 0 & 1 \\
0 & 0 & t^{2} & 1-t d & -1 & 0 \\
0 & 0 & t d+2 & -d^{2} & 0 & -d \\
0 & 0 & t^{2} & 1-t d & 0 & -t
\end{array}\right]
$$

We obtain that the left A-homomorphism f2 from L2 to L2' induced by Y is a left A-isomorphism.
$>$ TestIso(P2, P2p, Y, A);

> true

If $\mathrm{P} 2=(0 \mathrm{P} 3)$ and $\mathrm{P} 2^{\prime}=\left(0 \mathrm{P} 3^{\prime}\right)$, where
$>$ P3 := submatrix $(\mathrm{P} 2,1 . .3,2 . .6)$;

$$
P 3:=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & t^{2} & 1-t d \\
0 & 0 & 0 & t & -d
\end{array}\right]
$$

> P3p := submatrix(P2p,1..3,2..6);

$$
P 3 p:=\left[\begin{array}{ccccc}
0 & t^{2} & 1-t d & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

L3 is the left A-module finitely presented by P 3 and L 3 ' is the left A-module finitely presented by ${ }^{\prime} 3$ ', then L3 is isomorphic to L3'. Let us compute the corresponding left A-isomorphism f 3 .

```
> Z := Cancellation(P3p,Y,A);
```

$$
Z:=\left[\begin{array}{cccrc}
1 & 1-t^{2} & -2+t d & 1 & 0 \\
0 & -t & d & 0 & 1 \\
0 & t^{2} & 1-t d & -1 & 0 \\
0 & t d+2 & -d^{2} & 0 & -d \\
0 & t^{2} & 1-t d & 0 & -t
\end{array}\right]
$$

We obtain that the left A-homomorphism f 3 from L3 to L3' induced by Z is an isomorphism. Let us check that f 3 is a left A-isomorphism.

```
> TestIso(P3,P3p,Z,A);
```

true
Finally, if P3 $=(0 \mathrm{P} 4)$, where

```
> P4 := submatrix(P3p,1..3,2..5);
```

$$
P_{4}:=\left[\begin{array}{cccc}
t^{2} & 1-t d & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$\mathrm{P}^{\prime}{ }^{\prime}=\left(0 \mathrm{P} 4^{\prime}\right)$, where

```
> P4p := submatrix(P3,1..3,2..5);
```

$$
P 4 p:=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
0 & 0 & t^{2} & 1-t d \\
0 & 0 & t & -d
\end{array}\right]
$$

L4 is the left A-module finitely presented by P4, and L4' is the left A-module finitely presented by P4', then we cannot deduce a left A-isomorphism f 4 from L 4 to $\mathrm{L} 4{ }^{\prime}$ from f 3 since $\operatorname{rank}_{A}\left(\mathrm{~L} 4^{\prime}\right)=1$:

```
> U := Cancellation(P4p,Z,A);
```

Error, (in Stafford/ReductionOfUnimodularElement) expecting that the rank of the left module presented by the first matrix is at least 2.

