> with(OreModules):
> with(OreMorphisms) :
> with(Stafford):
> with(linalg):

Let us consider the second Weyl algebra A = A5(Q), where @ is the field of rational numbers,

> A := DefineOreAlgebra(diff=[d[1],x[1]], diff=[d[2],x[2]],
> polynom=[x[1],x[2]1):

and the left A-module M finitely presented by the matrix R defined by:

> R := evalm([[0,d[1],d[2]+x[1]1]);
R::[O di do+xq ]

The rank of the left A-module M is:

> OreRank(R,A);

2
Since R admits a right inverse S defined by
> S := RightInverse(R,A);
0
S = do + x1
—d;

M is a stably free left A-module of rank 2, i.e., a free left A-module of rank 2. Using the fact that the
direct sum of M and A is isomorphic to A'*3, and using the Cancellation Theorem, let us compute a
basis of M. Let us first compute

> X := stackmatrix(R,1-Mult(S,R,A));

0 dq do + 11
v |1 0 0
T 0 7(d2+.’£1)d1+1 7(d2+1'1)2
0 dy? 2+didy+dyay

which defines the left A-isomorphism g from the direct sum of A and M onto A'*3. Moreover, the direct
sum of A and M is isomorphic to the left A-module L finitely presented by the matrix P defined by

> P := augment(evalm([[0]]),R);
P::[O 0 di dg-f—.%'l]

Similarly, a finite presentation of A'*2 is given by the matrix R’ defined by

> Rp := evalm([[0$2]]);
Rp:=[0 0]

and A1*3 is isomorphic to the left A-module L’ finitely presented by the matrix P’ = (0 R’) defined by

> Pp := augment(evalm([[0]]),Rp);



Pp = [ 0 0 O ]
Let us check again that the left A-homomorphism f from L to L’ induced by X is a left A-isomorphism:

> TestIso(P,Pp,X,A);

true
We can apply the algorithm corresponding to the Cancellation Theorem to P, P’, and X

> @ := Cancellation(Rp,X,A,"splithom");

dy do + 1
QZ: 7(d2+1’1)d1+1 7(d2+l’1)2
dq? 24dydy +dy

to obtain a left A-isomorphism h from M onto A'*?2 induced by Q. Let us check again that h is a left
A-isomorphism:

> TestIso(R,Rp,Q,A);
true

Thus, the matrix Q defines an injective parametrization of M, i.e., we have ker,(.Q) = A R

> SyzygyModule(Q,A);
[0 dq d2—|—.’L‘1}

and Q admits a left inverse

> T := LeftInverse(Q,A);

Hence, we get the exact sequence

0— A-f ates 9 g2 g

which shows that M, which is the cokernel of .R, is isomorphic to ima(.Q) = A3 Q = A2, In
particular, the residue classes of the rows of the left inverse T of Q define a basis of M.

Let us compare this approach with the ones developed in F. Chyzak, A. Quadrat, D. Robertz, ”Effective
algorithms for parametrizing linear control systems over Ore algebras”, Appl. Algebra Engrg. Comm.
Comput. 16 (2005), pp. 319-376 and A. Quadrat, D. Robertz, ”Computation of bases of free modules
over the Weyl algebras”, J. Symbolic Comput. 42 (2007), pp. 1113-1141. Let us first check if we can
compute a basis of M by means of a minimal parametrization.

> K := MinimalParametrizations(R,A);
1 0 1 0
K=l 0 —d?—=2dox1—x2 |, | 0 —dido—dyz;+1
0 2+d1d2+d1$1 0 d12

We obtain that ker4(.K[i]) = A R for i = 1, 2, and thus, M is isomorphic to A1*? K][i]. But none of the
K[i]’s admits a left inverse.



> map(LeftInverse,K,A);

[0, 0]

Therefore, we get that A>3 KJi] is a proper left A-submodule of A'*2, and thus these two minimal
parametrizations do not define an injective parametrization of M.

Let us now use the algorithm developed in A. Quadrat, D. Robertz, ”Computation of bases of free
modules over the Weyl algebras”, J. Symbolic Comput. 42 (2007), pp. 1113-1141, and implemented in
the Stafford package for the computation of bases of free left A-modules of rank greater than or equal to
2:

> Qp := InjectiveParametrization(R,A);
da + 71 dy
Qp;: d1d22+2d1d2x1—d22—2d2x1+d1x12—x12 —d1+d12d2+d12x1+1—d1d2—d1x1
27d12d2+d1d27d12l‘172d1+d11’1 7d13+d12

We obtain that ker,(.Q) = AR

> SyzygyModule(Qp,A);
[ 0 di do+x1 }

and Q" admits a left inverse T’ defined by

> Tp := LeftInverse(Qp,A);

di? —dy 0
1

Tp:: 7d1d27d11‘1+d2+1’1+1

which yields that M is isomorphic to A'X2 Q’ = A*2,



