
> with(OreModules):

> with(OreMorphisms):

> with(Stafford):

> with(linalg):

Let us consider the first Weyl algebra A = A1(Q), where Q is the field of rational numbers,

> A := DefineOreAlgebra(diff=[d,t], polynom=[t]):

and the left A-module M finitely presented by the matrix defined by:

> R := evalm([[d,t,0]]);

R :=
[
d t 0

]
The rank of the left A-module M is:

> OreRank(R,A);

2

Since R admits a right inverse S defined by

> S := RightInverse(R,A);

S :=

 t
−d
0


M is a stably free left A-module of rank 2, i.e., a free left A-module of rank 2. Using the fact that the
direct sum of M and A is isomorphic to A1×3, and using the Cancellation Theorem, let us compute a
basis of M. Let us first compute

> X := stackmatrix(R,1-Mult(S,R,A));

X :=


d t 0

−d t + 1 −t2 0
d2 2 + d t 0
0 0 1


which defines a left A-isomorphism from the direct sum of A and M onto A1×3. Moreover, the direct sum
of A and M is isomorphic to the left A-module L finitely presented by

> P := augment(evalm([[0]]),R);

P :=
[

0 d t 0
]

Similarly, a finite presentation of A1×2 is given by the matrix defined by

> Rp := evalm([[0$2]]);

Rp :=
[

0 0
]

and A1×3 is isomorphic to the left A-module L’ which is finitely presented by the matrix defined by

> Pp := augment(evalm([[0]]),Rp);
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Pp :=
[

0 0 0
]

Let us check again that the left A-homomorphism from L to L’ induced by X is a left A-isomorphism:

> TestIso(P,Pp,X,A);

true

We can now apply the algorithm corresponding to the Cancellation Theorem to these matrices:

> Q := map(collect,Cancellation(Rp,X,A,"splithom"),[d,t]):

to obtain a left A-isomorphism h from M to Aˆ(1 x 2) induced by Q

> rowdim(Q); coldim(Q);

3

2

whose first column is defined by

> submatrix(Q,1..3,1..1); (−t4 − t3) d2 + (−3 t2 − 4 t3 − t4) d− 3 t2 − 2 t3

(t2 + t3) d3 + (t3 + 6 t + 8 t2) d2 + (15 t + 6 t2 + 6) d + 6 + 6 t
−d2 t3 + (−t3 − 3 t2) d− t− 2 t2


and whose second columns is defined by

> submatrix(Q,1..3,2..2); (−t4 − t2 − 2 t3) d3 + (−t− t4 − 6 t2 − 6 t3) d2 + (−6 t2 − 2 t + 1− 3 t3) d− t2 + 2
2 + (t + 2 t2 + t3) d4 + (3 + 10 t2 + 12 t + t3) d3 + (14 + 24 t + 7 t2) d2 + (10 t + 12) d

(−t3 − t2) d3 + (−t− 5 t2 − t3) d2 + (−3 t− 3 t2) d + 1− t


Let us check again that h is a left A-isomorphism:

> TestIso(R,Rp,Q,A);

true

Thus, the matrix Q defines an injective parametrization of M, i.e., we have kerA(.Q) = A R

> SyzygyModule(Q,A); [
d t 0

]
and Q admits a left inverse T

> T := map(collect,LeftInverse(Q,A),[d,t]):

> rowdim(T); coldim(T);

2

3

whose first two columns are

> submatrix(T,1..2,1..2);
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[
−2 (t2 + t3) d2 + (5 t + 7 t2 + t3) d + 4 + 10 t + 5 t2

t −2 t2 − t3 − t3 d

]
and whose last column is defined by

> submatrix(T,1..2,3..3);[
(t + 2 t2 + t3) d3 + (3 + 11 t + 9 t2 + t3) d2 + (11 + 19 t + 6 t2) d + 7 + 6 t

(−t3 − t2) d2 + (−t− 4 t2 − t3) d + 1− 2 t− 2 t2

]
Hence, we get the exact sequence

0 −→ A
.R−→ A1×3 .Q−→ A1×2 −→ 0,

which shows that M, defined by cokerA(.R), is isomorphic to imA(.Q) = A1×2. In particular, the residue
classes of the rows of the left inverse T of Q define a basis of M.
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