```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the first Weyl algebra $A=A_{1}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[d,t], polynom=[t]):
```

and the left A-module M finitely presented by the matrix defined by:

```
> R := evalm([[d,t,0]]);
```

$$
R:=\left[\begin{array}{lll}
d & t & 0
\end{array}\right]
$$

The rank of the left A-module M is:
> OreRank(R,A);

Since R admits a right inverse S defined by

```
> S := RightInverse(R,A);
```

$$
S:=\left[\begin{array}{c}
t \\
-d \\
0
\end{array}\right]
$$

M is a stably free left A-module of rank 2 , i.e., a free left A-module of rank 2 . Using the fact that the direct sum of M and A is isomorphic to $A^{1 \times 3}$, and using the Cancellation Theorem, let us compute a basis of M. Let us first compute

```
> X := stackmatrix(R,1-Mult(S,R,A));
    X:=[}[\begin{array}{ccc}{d}&{t}&{0}\\{-dt+1}&{-\mp@subsup{t}{}{2}}&{0}\\{\mp@subsup{d}{}{2}}&{2+dt}&{0}\\{0}&{0}&{1}\end{array}
```

which defines a left A-isomorphism from the direct sum of A and M onto $A^{1 \times 3}$. Moreover, the direct sum of A and M is isomorphic to the left A-module L finitely presented by

```
> P := augment(evalm([[0]]),R);
\[
P:=\left[\begin{array}{llll}
0 & d & t & 0
\end{array}\right]
\]
```

Similarly, a finite presentation of $A^{1 \times 2}$ is given by the matrix defined by

```
> Rp := evalm([[0$2]]);
```

$$
R p:=\left[\begin{array}{ll}
0 & 0
\end{array}\right]
$$

and $A^{1 \times 3}$ is isomorphic to the left A-module L' which is finitely presented by the matrix defined by

```
> Pp := augment(evalm([[0]]),Rp);
```

$$
P p:=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right]
$$

Let us check again that the left A-homomorphism from L to L^{\prime} induced by X is a left A-isomorphism:

```
> TestIso(P,Pp,X,A);
```

true

We can now apply the algorithm corresponding to the Cancellation Theorem to these matrices:

```
> Q := map(collect,Cancellation(Rp,X,A,"splithom"),[d,t]):
```

to obtain a left A-isomorphism h from M to $A^{\wedge}(1 \times 2)$ induced by Q

```
> rowdim(Q); coldim(Q);
```


3

2
whose first column is defined by

$$
\begin{aligned}
& >\operatorname{submatrix}(\mathbb{Q}, 1.3,1 . .1) ; \\
& \qquad\left[\begin{array}{c}
\left(-t^{4}-t^{3}\right) d^{2}+\left(-3 t^{2}-4 t^{3}-t^{4}\right) d-3 t^{2}-2 t^{3} \\
\left(t^{2}+t^{3}\right) d^{3}+\left(t^{3}+6 t+8 t^{2}\right) d^{2}+\left(15 t+6 t^{2}+6\right) d+6+6 t \\
-d^{2} t^{3}+\left(-t^{3}-3 t^{2}\right) d-t-2 t^{2}
\end{array}\right]
\end{aligned}
$$

and whose second columns is defined by

```
> submatrix(Q,1..3,2..2);
```

$$
\left[\begin{array}{c}
\left(-t^{4}-t^{2}-2 t^{3}\right) d^{3}+\left(-t-t^{4}-6 t^{2}-6 t^{3}\right) d^{2}+\left(-6 t^{2}-2 t+1-3 t^{3}\right) d-t^{2}+2 \\
2+\left(t+2 t^{2}+t^{3}\right) d^{4}+\left(3+10 t^{2}+12 t+t^{3}\right) d^{3}+\left(14+24 t+7 t^{2}\right) d^{2}+(10 t+12) d \\
\left(-t^{3}-t^{2}\right) d^{3}+\left(-t-5 t^{2}-t^{3}\right) d^{2}+\left(-3 t-3 t^{2}\right) d+1-t
\end{array}\right]
$$

Let us check again that h is a left A-isomorphism:

```
> TestIso(R,Rp,Q,A);
```

true

Thus, the matrix Q defines an injective parametrization of M , i.e., we have $k e r_{A}(. \mathrm{Q})=A \mathrm{R}$

```
> SyzygyModule(Q,A);
```

$$
\left[\begin{array}{lll}
d & t & 0
\end{array}\right]
$$

and Q admits a left inverse T

```
> T := map(collect,LeftInverse(Q,A),[d,t]):
> rowdim(T); coldim(T);
```

whose first two columns are

```
> submatrix(T,1..2,1..2);
```

$$
\left[\begin{array}{cc}
-2 & \left(t^{2}+t^{3}\right) d^{2}+\left(5 t+7 t^{2}+t^{3}\right) d+4+10 t+5 t^{2} \\
t & -2 t^{2}-t^{3}-t^{3} d
\end{array}\right]
$$

and whose last column is defined by
$>$ submatrix $(\mathrm{T}, 1 . .2,3 . .3)$;

$$
\left[\begin{array}{c}
\left(t+2 t^{2}+t^{3}\right) d^{3}+\left(3+11 t+9 t^{2}+t^{3}\right) d^{2}+\left(11+19 t+6 t^{2}\right) d+7+6 t \\
\left(-t^{3}-t^{2}\right) d^{2}+\left(-t-4 t^{2}-t^{3}\right) d+1-2 t-2 t^{2}
\end{array}\right]
$$

Hence, we get the exact sequence

$$
0 \longrightarrow A \xrightarrow{. R} A^{1 \times 3} \xrightarrow{. Q} A^{1 \times 2} \longrightarrow 0,
$$

which shows that M, defined by $\operatorname{coker}_{A}(. \mathrm{R})$, is isomorphic to $\mathrm{im}_{A}(. \mathrm{Q})=A^{1 \times 2}$. In particular, the residue classes of the rows of the left inverse T of Q define a basis of M .

