```
> with(OreModules):
> with(OreMorphisms):
> with(Stafford):
> with(linalg):
```

Let us consider the second Weyl algebra $A=A_{2}(\mathbb{Q})$, where \mathbb{Q} is the field of rational numbers,

```
> A := DefineOreAlgebra(diff=[dx,x], diff=[dy,y], polynom=[x,y],
> comm=[u,rho,c]):
```

and the left A-module L finitely presented by the matrix P of PD defined by:

```
> P := evalm([[u*rho*dx, c^2*dx,0],[0,c^2*dy,u*rho*dx],[rho*dx,u*dx,rho*dy]]);
```

$$
P:=\left[\begin{array}{ccc}
u \rho d x & c^{2} d x & 0 \\
0 & c^{2} d y & u \rho d x \\
\rho d x & u d x & \rho d y
\end{array}\right]
$$

The left A-module L corresponds to the steady two-dimensional rotational isentropic flow (see R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume II, Wiley Classics Library, Wiley, 1962, pp. 436437). Let us compute $\operatorname{ker}_{A}(. \mathrm{P})$:

```
> SyzygyModule(P,A);
```


$\operatorname{INJ}(3)$

Thus, P has full row rank, which shows that $\operatorname{rank}_{A}\left(A^{1 \times 3} P\right)=3$. Hence, L admits Stafford's reduction. Let us compute one. We obtain

```
> S := map(collect,StaffordReduction(P,A),[dx,dy]):
> nops(S);
```

 2
 that L is isomorphic to the left A-module L_{1} finitely presented by $\mathrm{S}[1]$, where $\mathrm{S}[1]$ is defined by
$>$ S[1];

$$
\begin{aligned}
& {\left[0, u \rho\left(-u^{2}+c^{2}\right) d x^{2}+c^{2} d y^{2} u \rho\right]} \\
& {\left[\left(-u^{2}+c^{2}\right) d x^{2},-u d x \rho d y\right]} \\
& {\left[\left(c^{2}\left(-u^{2}+c^{2}\right)+c^{2}\left(-u^{2}+c^{2}\right) x\right) d y d x-c^{2}\left(-u^{2}+c^{2}\right) d y\right.} \\
& \left.-u \rho d x\left(-u^{2}+c^{2}\right)+\left(-u \rho x c^{2}-c^{2} u \rho\right) d y^{2}\right]
\end{aligned}
$$

and the left A-isomorphism γ from L_{1} onto L is induced by $\mathrm{S}[2]$, where $\mathrm{S}[2]$ is defined by

```
> S[2];
```

$$
\left[\begin{array}{ccc}
u \rho x+u \rho & 1+c^{2} x+c^{2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

We can check again that γ defines a left A-isomorphism:

```
> TestIso(S[1],P,S[2],A);
```


true

If f_{1}, f_{2}, f_{3} are the standard basis vectors of $A^{1 \times 3}$, then the residue classes y_{1}, y_{2}, y_{3} of f_{1}, f_{2}, f_{3}, respectively, form a family of generators of L . Then $\mathrm{z}=\mathrm{S}[2]$ y is a set of generators $\left\{z_{1}, z_{2}\right\}$ of L , where $\mathrm{y}=\left(y_{1}, y_{2}, y_{3}\right)^{\wedge} \mathrm{T}$ and $\mathrm{z}=\left(z_{1} z_{2}\right)^{\wedge} \mathrm{T}$. In particular, we have

$$
z_{1}=u \rho(x+1) y_{1}+\left(c^{2}(x+1)+1\right) y_{2}, \quad z_{2}=y_{3} .
$$

The inverse γ^{-1} of γ is induced by $\mathrm{U}[1]$, where $\mathrm{U}[1]$ is the first entry of U defined by:
$>\operatorname{U}:=\operatorname{map}(c o l l e c t$, InverseMorphism(S[1], $\mathrm{P}, \mathrm{S}[2], \mathrm{A}),[\mathrm{dx}, \mathrm{dy}, \mathrm{u}, \mathrm{rho}, \mathrm{c}]$, distributed);

$$
\begin{aligned}
& U:=\left[\begin{array}{cc}
\frac{d x}{u \rho}+\frac{(x+1) c^{2} d x}{u \rho}-\frac{c^{2}}{u \rho} & -\frac{\left(1+c^{2}(x+1)\right) d y}{-u^{2}+c^{2}} \\
1+(-x-1) d x & \frac{u \rho d y(x+1)}{-u^{2}+c^{2}} \\
0 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
0 & \frac{1}{-u^{2}+c^{2}} & 0 \\
0 & 0 & -\frac{1}{-u^{2}+c^{2}} \\
0 & \frac{1+c^{2}(x+1)+(-x-1) u^{2}}{u\left(-u^{2}+c^{2}\right)} & 0
\end{array}\right]}
\end{aligned}
$$

We can check again that $\mathrm{U}[1]$ defines a left A-isomorphism from L to L_{1}.

```
> TestIso(P,S[1],U[1],A);
```

true

The above results show that $\mathrm{y}=\mathrm{U}[1] \mathrm{z}$, and the linear PD system $\mathrm{P} y=0$ is equivalent to the linear PD system $\mathrm{S}[1] \mathrm{z}=0$ defined by two unknowns and three equations.

One relation can be removed from $\mathrm{S}[1]$, i.e., there exists a (2×2) matrix T with entries in A such that $A^{1 \times 3} \mathrm{~S}[1]=A^{1 \times 2} \mathrm{~T}$, and thus L is isomorphic to the left A-module L_{1} finitely presented by T. Let us compute such a matrix T :

```
> Q := StaffordReduction(P,A,"reduce_relations"=true):
> nops(Q);
```

$$
2
$$

We can choose $\mathrm{T}=\mathrm{Q}[1]$, where:

```
> Q[1];
```

$$
\begin{aligned}
& {\left[c^{2}\left(-u^{2}+c^{2}\right) d x d y x-c^{2}\left(-u^{2}+c^{2}\right) d y+c^{2}\left(-u^{2}+c^{2}\right) d x d y\right.} \\
& \left.-\rho d y^{2} c^{2} x u-u \rho d x\left(-u^{2}+c^{2}\right)-c^{2} d y^{2} u \rho\right] \\
& {\left[\left(u^{2}-c^{2}\right) d x^{2}, u d x \rho d y\right]}
\end{aligned}
$$

Moreover, we have $\mathrm{Q}[2]=\mathrm{S}[2]$

$$
\begin{aligned}
& >\operatorname{map}(\text { collect }, \mathrm{Q}[2],[\mathrm{u}, \mathrm{c}, \mathrm{rho}]) ; \\
& \qquad\left[\begin{array}{ccc}
u \rho(x+1) & 1+c^{2}(x+1) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

which shows that the left A-isomorphism γ from L onto L_{1} is induced by $\mathrm{Q}[2]$.

